JPH03183765A - Conductive sialon target material - Google Patents

Conductive sialon target material

Info

Publication number
JPH03183765A
JPH03183765A JP32236189A JP32236189A JPH03183765A JP H03183765 A JPH03183765 A JP H03183765A JP 32236189 A JP32236189 A JP 32236189A JP 32236189 A JP32236189 A JP 32236189A JP H03183765 A JPH03183765 A JP H03183765A
Authority
JP
Japan
Prior art keywords
phase
sialon
target material
sputtering
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32236189A
Other languages
Japanese (ja)
Inventor
Shunichiro Matsumoto
俊一郎 松本
Yutaka Kubo
裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP32236189A priority Critical patent/JPH03183765A/en
Publication of JPH03183765A publication Critical patent/JPH03183765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a conductive sialon target material capable of forming a superior protective film by a compounding a beta'- or alpha-sialon phase of a specific composition, a phase of the nitride of the group IVa elements, and an amorphous grain boundary layer in which Y, Si, Al, and N are allowed to exist. CONSTITUTION:This conductive sialon target material is composed of a combined phase consisting of a beta'-sialon phase represented by Si6-zAlzOzN8-z (where 0<z<=4.2) and/or an alpha-sialon phase represented by Mx(Si,Al)12(O,N)16 [where 0<x<2 and M means Li, Mg, Ca, Y, and rare earth elements (excluding La and Ce) ], a phase of the nitride of the group IVa elements, and an amorphous grain boundary phase in which Y, Si, Al, and N are allowed to exist. This target material can form, e.g., a superior protective film for magneto-optical recording medium. Further, this target material has electric conductivity and enables film formation at a relatively low temp. and D.C. sputtering. Moreover, it is preferable that TiN is used by >30-<70vol.% as the above nitride phase.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、光磁気記録用媒体の保護膜形成に用いられる
スパッタリング用ターゲットおよび保護膜材料に関する
[Industrial Application Field] The present invention relates to a sputtering target and a protective film material used for forming a protective film on a magneto-optical recording medium.

【従来の技術】[Conventional technology]

従来、光磁気ディスク用の保護膜材料として、Sin、
Sin、、AIN(太田他:日本応用磁気学会誌8.2
(1984) P、93)、St、N4(虎沢他:光メ
モリーシンポジウム°86論文集P、87)、5iAI
ON(浅野他:光メモリーシンポジウム′86論文集P
、51)等が提案され、これらの組成を主体とするター
ゲツト材を用いてスパッタリング法で基板上に成膜され
ている。保護膜に対しては、i)記録媒体の保護性能が
良好なこと、it)透明かつ高屈折率を有することが求
められている。 〔発明が解決しようとする課題〕 ところが、前述の保護膜を形成させるには、次のような
成膜上の欠点がある。すなわち、(1)スパッタリング
法により形成したSiOおよび5i0.膜は酸素が遊離
し易く、記録媒体として用いられる希土類金属−遷移金
属合金薄膜の希土類金属元素と反応し、選択酸化を生ず
るため光磁気特性が劣化する。 (2)SiO,Sin、は絶縁体であるため、高周波電
源を用いたRFスパッタで成膜を行なうが、前記RFス
パッタの場合、基板温度の上昇が大きく、このため基板
材料として通常用いられるポリカーボネートCPC)な
どの樹脂を用いると基板が変形する等の問題がある。 遊離酸素による特性劣化を改善した保護膜材料としては
AIN、SiN、5iAION等が提案され実用化され
ている。これらの保護膜形成には、例えば5iAION
の場合、SiOとAIをターゲツト材として用い、これ
をアルゴンと窒素ガスの雰囲気中で反応スパッタを行な
うことで形成されている。しかしこのような反応性スパ
ッタでは、SiとAIの量比が変動し易く所望組成の保
護膜を安定的に形成することは困難である。上記問題点
を解決する手段として特開昭63−223169号に所
望組成の5iAION焼結体をターゲツト材を用いてス
パッタ成膜を行なう方法が開示されている。しかし、5
iA1ON焼結体はSin、Sin、と同じく絶縁体で
あるため高周波スパッタでしか成膜できず、基板温度の
上昇が問題となるPC基板への成膜には適用し難いとい
う*、iti点がある。 本発明の目的は、光磁気記録媒体の保護膜などに優れ、
かつ比較的低温で成膜できる直流スパッタを可能とする
導電性を有するサイアロンターゲット材を提供すること
である。 〔課題を解決するための手段〕 本発明者等は上記問題点を解決すべく検討を行なった結
果、窒化珪素に対して所定の割合で焼結助剤とIVa族
の窒化物とを混合した後、これを焼結して得られるβ′
−サイアロン相およびまたはαサイアロン相とIVa族
の窒化物相およびY、SL。 AI、Nが存在する非晶質粒界相からなる複合体をター
ゲツト材として用いれば、高周波および直流のいずれの
タイプのスパッタ成膜も可能であり、光磁気ディスク用
の保護膜として優れた特性を有することを見出した。 すなわち、本発明はS i、 −z A l工Oz N
 −z (但し、2はO(Z≦4.2)で表わされるβ
′−サイアロン相およびま見はMx(SL、Al)+*
(0,N)m@(0<X<2.MはIj、Mg、Ca、
Y、希土類元素(La、Ca除())で表わされるαサ
イアロン相とIVa族の窒化物相およびY、Si+AI
、Nが存在する非晶質粒界相の複合相からなることを特
徴とする導電性サイアロンターゲット材であり、好まし
くは、IVa族の窒化物相がTiNであり、その体積%
が30%を越え70%未満である前記記載の導電性サイ
アロンターゲット材である。 本発明の導電性サイアロンターゲット材を製造するには
、例えば窒化珪素と、前記窒化珪素に対して6〜25重
量iの2種以上の焼結助剤と、前記窒化珪素、焼結助剤
および全体で30体積1を越え70体積−未満の窒化チ
タンとを混合した後、これを焼結することで得ることが
できる。さらに前記焼結助剤は好ましくはY、O,とA
I、O,の合計で4〜18重量1、AINのポリタイプ
2〜7重量iからなるものが良い。一方、窒化チタン好
ましくは40−60体体積である。ここで、Y、O,と
Al、O,の添加量が合計で4〜18重量iとするのが
好ましい理由は、4重量1以下では焼結体は緻密化せず
、このような材料をスパッタ用のターゲットとして用い
た場合、スパッタ中に異常放電を生ずるためである。逆
に18重量−を越えると膜中の酸素量が過剰ヒなり、ス
パッタ膜の保護性能が低下してしまうためである。また
、AINのポリタイプの量が2〜7重量iとするのが好
ましい理由は、2重量i以下ではスパッタ膜の保護性能
が十分でなく、また7重量2を越えると焼結性が低下し
、ターゲツト材として十分な密度が得られないためであ
る。本発明において、窒化チタンの体積−を導電性サイ
アロンターゲット材の30%を越え70%未満とする理
由は、30%以下では直流スパッタ時の放電安定性が悪
く、70%以上になると焼結体が緻密化しないためであ
る。直流スパッタ時の放電安定性から見ると窒化チタン
の体積−は、40〜60%が好ましい。 上述の窒化珪素は、難焼結性であるため、焼結助剤を添
加する。好ましい焼結助剤は、Y、03、AI、O,、
AIN、AINポリタイプ(AIN中にSLとOが固溶
したもの)、MgO等である。このうち、AI、O,、
AIN、AINポリタイプは窒化珪素と混合焼結するこ
とによりβ′−サイアロンおよびまたはαサイアロンを
形成する。なかでも望ましい焼結剤はY、O,とAIN
ポリタイプとAl、O,との組合せからなるものである
0本発明の導電性サイアロンターゲット材はβ′−サイ
アロン相およびまたはαサイアロン相、TiN相および
粒界相の3相からなっているが、粒界相中にはY、Si
。 Al、O,Nが存在し非晶質相となっている。この粒界
相により、導電性を付与させるTiN粒子を最大70%
未満と多量に含む場合にも焼結が良好に進行する。 なお、以下に本発明によるサイアロンターゲットの製造
方法の一例を述べる。窒化珪素と焼結助剤およびチタン
窒化物の混合粉末をそのまま乾式あるいは湿式で所定の
形状に成形することができる。湿式で成形した場合は、
乾燥処理を行なった後に常圧または加圧下に窒素含有ガ
ス雰囲気下で焼結する方法、あるいは原料粉末を所定の
形状のダイスに充填し、ホットプレスする方法等がある
が、いずれの方法を用いてもよい。 窒化ガスの圧力は炉の耐圧性の観点から300kg70
程度までとするのが好ましい。 焼結温度は通常1600〜1900℃であるが、その理
由は1600℃では焼結時の緻密化が不十分であり、1
900℃を越えると窒化珪素が分解を起こすからである
。好ましい焼結温度範囲は、1650〜1800℃であ
る。 本発明により得られた焼結体は、焼結後HIP処理を行
なえばさらに緻密化することが可能であり、スパッタ中
の放電安定性が向上する。 〔実施例〕 以下に実施例を示す。 実施例1 焼結助剤として、9重量iのY、Oい6重量iのAI、
O,及び4重量iのAINポリタイプをSL、N4粉末
に添加し、得られた混合物と45体積雪の窒化チタンを
調合し、イソプロピルアルコール中でボールミルにより
粉砕、混合した。襦漬した造粒後の混合粉末を金型に充
填し、1トンl−の圧力で成形した。これを1750℃
、1気圧で1時間窒素雰囲気中で焼結した。得られたサ
イアロン焼結体からφLot X 3tの成膜評価用の
ターゲツト材を加工した。 成膜評価は高周波(RF)電源および直流(D C)電
源を有するマグネトロンタイプのスパッタ装置を用いて
、1aunの板厚からなるポリカーボネート基板上に成
膜を行なった。成膜条件は、高周波電源使用時は出力5
1J/ cnに、直流電源使用時は500■、Arガス
圧5 X 1O−1torrターゲツトと基板間の距離
は70IIII11で、基板とターゲットは対向させで
ある。 なお、比較例として、5iA1ON、AIN、Si、N
4. Sin、およびSiOターゲットの成膜評価も同
時に行ない、成膜評価結果を第1表にそれぞれ示す。本
発明である導電性サイアロンは高周波、直流のいずれの
タイプでもスパッタ可能であり、特に直流スパッタした
場合、ポリカーボネート基板に対するダメージ(反り、
曲がり)が非常に少ないことがわかった。それに対し比
較例のターゲツト材は、高周波スパッタしかできず、基
板に対するダメージも大きいことが判明した。 第 表 DC・・・直流 RF・・・高周波 O・・・放電 ×・・・放電せず なお、得られた導電性サイアロンターゲット材の走査型
電子顕微鏡写真を第1図に示す。第1図において、白色
層はTiN相であり、黒炭色相はβ′−サイアロン相、
白色層は粒界相である。 次に基板にプリグループ(案内溝付)のガラスディスク
基板を用いて、各種保護膜性能について調査した。ディ
スクの膜構成は、ガラス基板/保護膜(第1層) / 
Tb−Fe−Go(磁性層)/保護膜(第2層)である
。第1層目の保護膜厚は700人、Tb−Fe−Co1
1厚1000人、第2層目の保護膜厚は1200人とし
スパッタリングにより成膜を行なった。保護性能の評価
試験は、各ディスクを90℃、60%相対湿度の恒温恒
湿槽に保持し、C/N比の経時変化を測定した。 保護性能試験の評価結果を第2図に示す。本発明の導電
性サイアロンは、保護性能良好とされている一般のサイ
アロン(以下5iAIONと記す)、A I N 、 
S 1m N 4と同等の性能を有することがわかる。 実施例2 5i、N4粉末、Y、0.粉末、At、O,粉末、AI
Nポリタイプ粉末、TiN粉末を用いて、Y、O,+A
I、O,量、AINポリタイプ量を種々変化させた組成
に配合し、実施例1と同様に焼結した焼結体の焼結密度
、直流スパッタ時の放電安定性、保護膜性能について評
価した6なお、この際TiN量は45体積%とした。こ
の結果を第2表に示す。この結果から本発明において、
y、o、+AI、0..AINポリタイプの量はそれぞ
れ4〜18重量%、2〜7重量Sが望ましいことがわか
る。 実施例3 sisN*−in量%(Y、O,+Al、O,)−3重
量%AINポリタイプの組成にて配合後、種々の体積率
のTiNを添加し実施例1と同様に焼結し、実施例2と
同様に評価を行なった。結果を第3表に示す。この結果
からTiNの含有量は30体積電を越え70体積雪未満
が好ましいことが明らかである。 〔発明の効果〕 本発明によれば、樹脂基板に対するダメージが少ない直
流スパッタが可能で、かつ光磁気記録媒体の保護膜とし
て優れた保護性能を有する導電性サイアロン膜の形成が
可能となる。
Conventionally, as protective film materials for magneto-optical disks, Sin,
Sin, AIN (Ota et al.: Journal of the Japanese Society of Applied Magnetics 8.2
(1984) P, 93), St, N4 (Torazawa et al.: Optical Memory Symposium °86 Proceedings P, 87), 5iAI
ON (Asano et al.: Optical Memory Symposium '86 Proceedings P
, 51), etc. have been proposed, and films are formed on substrates by sputtering using target materials mainly having these compositions. The protective film is required to i) have good protection performance for the recording medium, and it) be transparent and have a high refractive index. [Problems to be Solved by the Invention] However, forming the above-mentioned protective film has the following drawbacks in film formation. That is, (1) SiO and 5i0. Oxygen is easily liberated from the film, reacts with the rare earth metal element of the rare earth metal-transition metal alloy thin film used as a recording medium, and selective oxidation occurs, resulting in deterioration of magneto-optical properties. (2) Since SiO and Sin are insulators, they are deposited by RF sputtering using a high-frequency power source. However, in the case of RF sputtering, the substrate temperature increases significantly, so polycarbonate, which is usually used as a substrate material, is used for film formation. If a resin such as CPC is used, there are problems such as deformation of the substrate. AIN, SiN, 5iAION, and the like have been proposed and put into practical use as protective film materials that improve characteristic deterioration due to free oxygen. For forming these protective films, for example, 5iAION
In this case, SiO and AI are used as target materials, and they are formed by reactive sputtering in an atmosphere of argon and nitrogen gas. However, in such reactive sputtering, the ratio of Si to AI tends to fluctuate, making it difficult to stably form a protective film with a desired composition. As a means to solve the above-mentioned problems, Japanese Patent Laid-Open No. 63-223169 discloses a method in which a 5iAION sintered body having a desired composition is formed by sputtering using a target material. However, 5
Since the iA1ON sintered body is an insulator like Sin, it can only be formed into a film by high-frequency sputtering, and it is difficult to apply it to film formation on PC boards where an increase in substrate temperature is a problem. be. The purpose of the present invention is to provide excellent protective films for magneto-optical recording media,
Another object of the present invention is to provide a sialon target material having conductivity that enables direct current sputtering that allows film formation at relatively low temperatures. [Means for Solving the Problems] As a result of studies to solve the above problems, the present inventors mixed a sintering aid and a group IVa nitride in a predetermined ratio to silicon nitride. After that, β′ obtained by sintering this
- a sialon phase and or an α-sialon phase and a group IVa nitride phase and Y, SL. If a composite consisting of an amorphous grain boundary phase in which AI and N exist is used as a target material, both high frequency and direct current sputtering film formation is possible, and it has excellent properties as a protective film for magneto-optical disks. It was found that That is, the present invention provides S i, -z A l engineering Oz N
-z (However, 2 is β expressed as O (Z≦4.2)
'-Sialon phase and Mx(SL, Al)+*
(0,N)m@(0<X<2.M is Ij, Mg, Ca,
α-sialon phase represented by Y, rare earth elements (La, Ca excluded ()) and IVa group nitride phase, and Y, Si+AI
, a conductive sialon target material characterized by being composed of a composite phase of an amorphous grain boundary phase in which N is present, preferably the IVa group nitride phase is TiN, and the volume %
is more than 30% and less than 70%. In order to produce the conductive sialon target material of the present invention, for example, silicon nitride, two or more sintering aids in an amount i of 6 to 25 by weight relative to the silicon nitride, the silicon nitride, the sintering aid, and It can be obtained by mixing more than 30 volumes and less than 70 volumes of titanium nitride in total and then sintering the mixture. Furthermore, the sintering aids are preferably Y, O, and A.
It is preferable that the total weight of I, O, is 4 to 18 weight 1, and the polytype of AIN is 2 to 7 weight i. On the other hand, titanium nitride preferably has a body volume of 40-60. Here, the reason why it is preferable that the total addition amount of Y, O, and Al, O is 4 to 18 weight i is that if it is less than 4 weight 1, the sintered body will not be densified, and such materials will not be densified. This is because when used as a sputtering target, abnormal discharge occurs during sputtering. On the other hand, if it exceeds 18% by weight, the amount of oxygen in the film becomes excessive and the protective performance of the sputtered film deteriorates. In addition, the reason why it is preferable to set the amount of polytype of AIN to 2 to 7 weight i is that if the amount is less than 2 weight i, the protection performance of the sputtered film is insufficient, and if it exceeds 7 weight 2, the sinterability will decrease. This is because the target material cannot have sufficient density. In the present invention, the reason why the volume of titanium nitride is more than 30% and less than 70% of the conductive sialon target material is that if it is less than 30%, the discharge stability during DC sputtering is poor, and if it is more than 70%, the sintered body This is because it does not become dense. From the viewpoint of discharge stability during DC sputtering, the volume of titanium nitride is preferably 40 to 60%. Since the above-mentioned silicon nitride is difficult to sinter, a sintering aid is added thereto. Preferred sintering aids are Y, 03, AI, O,...
These include AIN, AIN polytype (SL and O dissolved in AIN), MgO, etc. Among these, AI, O,...
AIN, AIN polytype forms β'-sialon and/or α-sialon by mixing and sintering with silicon nitride. Among them, the preferred sintering agents are Y, O, and AIN.
The conductive sialon target material of the present invention, which is composed of a combination of polytype and Al, O, is composed of three phases: a β'-sialon phase and/or an α-sialon phase, a TiN phase, and a grain boundary phase. , Y, Si in the grain boundary phase
. Al, O, and N are present, forming an amorphous phase. This grain boundary phase allows up to 70% of TiN particles to impart electrical conductivity.
Sintering progresses well even when the content is less than or equal to a large amount. An example of a method for manufacturing a sialon target according to the present invention will be described below. The mixed powder of silicon nitride, sintering aid, and titanium nitride can be directly formed into a predetermined shape by dry or wet methods. If molded using wet method,
There are two methods: sintering in a nitrogen-containing gas atmosphere under normal pressure or pressurization after drying, or filling raw material powder into a die of a predetermined shape and hot pressing. You can. The pressure of nitriding gas is 300kg70 from the viewpoint of pressure resistance of the furnace.
It is preferable to keep it to a certain extent. The sintering temperature is usually 1,600 to 1,900°C, but the reason is that densification during sintering is insufficient at 1,600°C;
This is because silicon nitride decomposes when the temperature exceeds 900°C. A preferred sintering temperature range is 1650-1800°C. The sintered body obtained by the present invention can be further densified by performing HIP treatment after sintering, and the discharge stability during sputtering is improved. [Example] Examples are shown below. Example 1 As sintering aids, 9 weight i of Y, O, 6 weight i of AI,
O, and AIN polytype of 4 wt. The granulated mixed powder soaked in water was filled into a mold and molded under a pressure of 1 ton l-. This is 1750℃
, sintered in a nitrogen atmosphere at 1 atm for 1 hour. A target material for film formation evaluation of φLot X 3t was processed from the obtained sialon sintered body. For film formation evaluation, a film was formed on a polycarbonate substrate having a thickness of 1 aun using a magnetron type sputtering apparatus having a radio frequency (RF) power source and a direct current (DC) power source. The film forming conditions are output 5 when using a high frequency power supply.
1 J/cn, when using a DC power supply, the Ar gas pressure was 500 mm, the Ar gas pressure was 5.times.1 O-1 torr, the distance between the target and the substrate was 70 III11, and the substrate and target were opposed to each other. In addition, as a comparative example, 5iA1ON, AIN, Si, N
4. Film formation evaluations of Sin and SiO targets were also conducted at the same time, and the film formation evaluation results are shown in Table 1. The conductive sialon of the present invention can be sputtered with either high frequency or direct current, and especially when sputtered with direct current, it may cause damage (warpage, warping, etc.) to the polycarbonate substrate.
It was found that there was very little bending. On the other hand, it was found that the target material of the comparative example could only be used for high frequency sputtering and caused great damage to the substrate. Table 1: DC...Direct current RF...High frequency O...Discharge ×...FIG. 1 shows a scanning electron micrograph of the conductive sialon target material obtained without discharging. In FIG. 1, the white layer is a TiN phase, and the black charcoal hue is a β'-sialon phase.
The white layer is the grain boundary phase. Next, the performance of various protective films was investigated using a pre-group (with guide grooves) glass disk substrate as the substrate. The film structure of the disc is glass substrate/protective film (first layer)/
Tb-Fe-Go (magnetic layer)/protective film (second layer). The protective film thickness of the first layer is 700, Tb-Fe-Co1
Films were formed by sputtering with a thickness of 1,000 layers and a thickness of 1,200 layers for the second layer. In the protection performance evaluation test, each disk was kept in a constant temperature and humidity chamber at 90° C. and 60% relative humidity, and the change in C/N ratio over time was measured. Figure 2 shows the evaluation results of the protection performance test. The conductive sialon of the present invention is a general sialon (hereinafter referred to as 5iAION) which is said to have good protection performance, A I N ,
It can be seen that it has the same performance as S 1m N 4. Example 2 5i, N4 powder, Y, 0. Powder, At, O, powder, AI
Using N polytype powder and TiN powder, Y, O, +A
The sintered bodies were mixed in compositions with various amounts of I, O, and AIN polytype and sintered in the same manner as in Example 1. The sintered bodies were evaluated for sintered density, discharge stability during DC sputtering, and protective film performance. In this case, the amount of TiN was 45% by volume. The results are shown in Table 2. From this result, in the present invention,
y, o, +AI, 0. .. It can be seen that the amount of the AIN polytype is preferably 4 to 18% by weight and 2 to 7% by weight S, respectively. Example 3 After compounding with the composition of sisN*-in amount % (Y, O, + Al, O,) - 3 wt% AIN polytype, various volume percentages of TiN were added and sintered in the same manner as in Example 1. However, evaluation was performed in the same manner as in Example 2. The results are shown in Table 3. From this result, it is clear that the content of TiN is preferably more than 30 volumes and less than 70 volumes. [Effects of the Invention] According to the present invention, it is possible to perform DC sputtering with little damage to a resin substrate, and to form a conductive sialon film having excellent protective performance as a protective film for a magneto-optical recording medium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により導電性サイアロンターケゲット材
の組織の一例を示す走査型電子顕微鏡による組織写真、
第2図は本発明のターゲットをスパッタリングで成膜し
、そのC/N比の経時変化を示す図である。 第 図 ターゲツト材の組織写真 (Elf)) N /フ 手 続 補 正 書(方式) %式% 1、事件の表示 平成 年 特 許 願 第 22361 号 2、発明の名称 導電性サイアロンターゲット材 3、補正をする者 事件との関係 特 許
FIG. 1 is a photograph taken by a scanning electron microscope showing an example of the structure of the conductive sialon target material according to the present invention;
FIG. 2 is a diagram showing the change over time in the C/N ratio of a film formed by sputtering using the target of the present invention. Figure Structure photograph of target material (Elf)) N/F Procedural amendment (method) % formula % 1. Display of case Heisei Patent Application No. 22361 2. Name of invention Conductive SiAlON target material 3. Make amendments patent related to the case

Claims (1)

【特許請求の範囲】 1 Si_6_−_ZAl_ZO_ZN_3_−_Z(
但し、Zは0<Z≦4.2)で表わされるβ′−サイア
ロン相およびまたはMx(Si,Al)_1_2(O,
N)_1_6(0<X<2,MはLi,Mg,Ca,Y
,希土類元素(La,Ce除く))で表わされるαサイ
アロン相とIVa族の窒化物相およびY,Si,Al,N
が存在する非晶質粒界相の複合相からなることを特徴と
する導電性サイアロンターゲット材。 2 IVa族の窒化物相がTiNであり、その体積%が3
0%を越え70%未満である請求項1に記載の導電性サ
イアロンターゲット材。
[Claims] 1 Si_6_-_ZAl_ZO_ZN_3_-_Z(
However, Z is β'-sialon phase expressed as 0<Z≦4.2) and or Mx(Si,Al)_1_2(O,
N)_1_6(0<X<2, M is Li, Mg, Ca, Y
, rare earth elements (excluding La and Ce)) and the IVa group nitride phase, as well as Y, Si, Al, and N.
A conductive sialon target material characterized by being composed of a composite phase of an amorphous grain boundary phase in which . 2 The IVa group nitride phase is TiN, and its volume % is 3
The conductive sialon target material according to claim 1, which has a content of more than 0% and less than 70%.
JP32236189A 1989-12-12 1989-12-12 Conductive sialon target material Pending JPH03183765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32236189A JPH03183765A (en) 1989-12-12 1989-12-12 Conductive sialon target material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32236189A JPH03183765A (en) 1989-12-12 1989-12-12 Conductive sialon target material

Publications (1)

Publication Number Publication Date
JPH03183765A true JPH03183765A (en) 1991-08-09

Family

ID=18142785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32236189A Pending JPH03183765A (en) 1989-12-12 1989-12-12 Conductive sialon target material

Country Status (1)

Country Link
JP (1) JPH03183765A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478456A (en) * 1993-10-01 1995-12-26 Minnesota Mining And Manufacturing Company Sputtering target
US5736240A (en) * 1993-10-01 1998-04-07 Minnesota Mining And Manufacturing Company Amorphous rare earth oxides
KR100987499B1 (en) * 2010-07-26 2010-10-13 한국기계연구원 SiAlON having magnetic properties and the manufacturing method thereof
US20230272521A1 (en) * 2020-09-03 2023-08-31 Jx Nippon Mining & Metals Corporation Sputtering Target, Manufacturing Method Therefor, And Manufacturing Method For Magnetic Recording Medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478456A (en) * 1993-10-01 1995-12-26 Minnesota Mining And Manufacturing Company Sputtering target
US5736240A (en) * 1993-10-01 1998-04-07 Minnesota Mining And Manufacturing Company Amorphous rare earth oxides
KR100987499B1 (en) * 2010-07-26 2010-10-13 한국기계연구원 SiAlON having magnetic properties and the manufacturing method thereof
US20230272521A1 (en) * 2020-09-03 2023-08-31 Jx Nippon Mining & Metals Corporation Sputtering Target, Manufacturing Method Therefor, And Manufacturing Method For Magnetic Recording Medium

Similar Documents

Publication Publication Date Title
EP0287841B1 (en) Sintered body of aluminum nitride
JPH03183765A (en) Conductive sialon target material
KR20080044267A (en) Siox: si composite material compositions and methods of making same
KR100237316B1 (en) Sputtering target for forming magnetic thin film and the manufacturing method thereof
JPH01252582A (en) Electrically conductive ceramic sintered compact
EP0119869B1 (en) Non-magnetic substrate material
TW554062B (en) ZnS-SiO2 sputtering target material and optical recording medium using the same to form ZnS-SiO2 phase transition type optical disk protective film
EP0345358B1 (en) Target material for forming superconductive film
EP1112988A1 (en) ZnS-series sintered material and method for producing the same, target using the ZnS-series sintered material, thin film, and optical recording medium using the thin film
JP3428432B2 (en) Sputtering target material for forming a Bi-Sr-Ta-O-based ferroelectric thin film and a film forming method using the same
JP3368764B2 (en) Sputtering target for optical recording protective film formation with less generation of particles
JP3468137B2 (en) Sputtering target for optical recording medium protective film formation without spatter cracking
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JP2001181833A (en) Sputtering target for deposit optical recording medium protective film free from sputtering crack
JP3460504B2 (en) Target material for sialon film formation
JP3129046B2 (en) Sputtered sintered target material with excellent thermal shock resistance
JP2002284570A (en) Oxide sintered compact and sputtering target
JP3127773B2 (en) Sputtering target for ferroelectric film formation
JPH02156079A (en) Target material for forming superconducting film of tl-ba-ca-cu-o system
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
EP0377073A2 (en) Sputtering target used for forming quinary superconductive oxide
JPH0238368A (en) Production of sintered material of aluminum nitride
KR960006249B1 (en) Process for producing an aluminium sintered product
JPH02157150A (en) Target material for forming superconducting film of bi-sr-ca-cu-o system
JP2001207256A (en) Sputtering target for deposition of protective film for optical recording medium, free from cracking at sputtering