JPH03183377A - Ultrasonic wave motor - Google Patents

Ultrasonic wave motor

Info

Publication number
JPH03183377A
JPH03183377A JP1320481A JP32048189A JPH03183377A JP H03183377 A JPH03183377 A JP H03183377A JP 1320481 A JP1320481 A JP 1320481A JP 32048189 A JP32048189 A JP 32048189A JP H03183377 A JPH03183377 A JP H03183377A
Authority
JP
Japan
Prior art keywords
hollow cylinder
piezoelectric ceramic
ceramic hollow
voltage
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1320481A
Other languages
Japanese (ja)
Other versions
JPH072033B2 (en
Inventor
Hiroshi Shimizu
洋 清水
Tetsuo Yoshida
哲男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP1320481A priority Critical patent/JPH072033B2/en
Publication of JPH03183377A publication Critical patent/JPH03183377A/en
Publication of JPH072033B2 publication Critical patent/JPH072033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To facilitate machining, to eliminate bonding process and to suppress dispersion by applying first and second oblique electrodes on the outer circumferential face of a hollow cylinder while inclining by about 45 deg. with respect to the axis. CONSTITUTION:First and second oblique electrodes 22, 23, inclining by about 45 deg. with respect to the axis of a hollow cylinder 21, are applied on the outer circumferential face of the hollow piezoelectric ceramic cylinder 21 thus providing first two terminals. When the hollow cylinder 21 is subjected to polarization, it is polarized in the direction perpendicular to the direction of the first and second oblique electrodes 22, 23. Upon application of a voltage between the oblique electrodes 22, 23 under this state, contractive distortion is produced in the direction of polarization if the polarity of the voltage is same as that of the polarization voltage, whereas elongating distortion is produced in the perpendicular direction. Consequently, torsional displacement is produced in the hollow cylinder 21. By such method, machining is facilitated, bonding process is eliminated and dispersion can be suppressed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はOA機器等に用いられる圧電振動子の超音波振
動を用いたいわゆる超音波モータに関し、特に構造が簡
単な捩り一拡がり複合振動子型超音波モータに関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a so-called ultrasonic motor using ultrasonic vibration of a piezoelectric vibrator used in OA equipment, etc., and in particular to a torsion-spread compound vibrator with a simple structure. Regarding type ultrasonic motor.

[従来の技術] 一般に、超音波モータは、異なる方向の2つの振動を組
み合わせて楕円運動を発生させ、前記楕円運動振動の発
生部分に回転自在に支持されたロータあるいは、移動子
を圧接することにより構成されている。
[Prior Art] Generally, an ultrasonic motor generates an elliptical motion by combining two vibrations in different directions, and presses a rotatably supported rotor or a mover against the portion where the elliptical motion vibration is generated. It is made up of.

第7図は従来の縦−捩り振動子型超音波モータの構造例
を示す斜視図であり、圧電捩り振動子101および圧電
縦振動子102か接合され、さらにこれらの両側に金属
中空円柱103及び104が接合されて構成され縦〜捩
り複合振動子105の一方の端部の中心から軸106が
突き出され、軸受け107により回転自在に支持された
ロータ108がコイルバネ109及びナツト110によ
り前記縦−捩り複合振動子105の端面に圧接されてい
る。
FIG. 7 is a perspective view showing an example of the structure of a conventional vertical-torsional transducer type ultrasonic motor, in which a piezoelectric torsional transducer 101 and a piezoelectric longitudinal transducer 102 are joined, and metal hollow cylinders 103 and A shaft 106 is protruded from the center of one end of a vertical-torsional composite vibrator 105, which is constructed by joining 104, and a rotor 108 rotatably supported by a bearing 107 is rotated by a coil spring 109 and a nut 110. It is pressed against the end face of the composite vibrator 105.

ここで、軸106は前記縦−捩り複合振動子の振動の節
に固定されている。
Here, the shaft 106 is fixed at a vibration node of the longitudinal-torsional composite vibrator.

第8図は第7図に示した超音波モータの捩り複合振動子
101の構造例を示す斜視図であり、リング状の圧電捩
り振動子101は4個の扇形圧電セラミックス板112
が接合されて構成されている。各々の扇形の圧電セラミ
ックス板112は、第9図に示すようにそれぞれ扇の弦
の方向に分極処理が施されており、扇形の圧電セラミッ
クス板112の上下面に電極を施し、上下電極間に直流
電圧を印加すると扇形の圧電セラミックス板には板厚と
平行なすべり歪みが発生する。
FIG. 8 is a perspective view showing an example of the structure of the torsional compound vibrator 101 of the ultrasonic motor shown in FIG.
It is constructed by joining. Each fan-shaped piezoelectric ceramic plate 112 is polarized in the direction of the chord of the fan, as shown in FIG. When a DC voltage is applied, a sliding strain parallel to the plate thickness occurs in the fan-shaped piezoelectric ceramic plate.

第8図に7すように、4(F、の扇形)圧電セラミック
ス板112がリング状に接合されている場合、各々の扇
形の圧電セラミックス板112に発生したすべり歪みは
合成されて、リングの上下面が捩じれるような捩り歪み
となる。
As shown in FIG. 8, when four (F, sector-shaped) piezoelectric ceramic plates 112 are joined in a ring shape, the sliding strain generated in each sector-shaped piezoelectric ceramic plate 112 is combined, and the ring's This results in torsional distortion in which the upper and lower surfaces are twisted.

第8図に示した従来の圧電捩り振動子101を作製する
場合は、まず、第10図に示すように、幅方向に分極処
理された圧電セラミックス板113から超音波加工によ
り扇形の圧電セラミックス板を打ち抜いて第9図に示す
ような扇の弦の方向に分極された扇形の圧電セラミック
ス板112を作り、これを4個接着して円板状に構成す
るか、第11図(a)に示すように、矢印で示す厚さ方
向に分極された圧電セラミックスのブロック114から
、第11図(b)に示すように分極方向が対角線の方向
となるような正四角柱115を切り出し、第11図(C
)に示すように、4本の正四角柱115を分極方向が閉
じたループとなるように重ねて接着し、第11図(d)
に示すように外周及び内周を中空円柱状に研磨した後、
第11図(e)に示すようにリング状に切断することに
より作製している。
When manufacturing the conventional piezoelectric torsional vibrator 101 shown in FIG. 8, first, as shown in FIG. A fan-shaped piezoelectric ceramic plate 112 polarized in the direction of the chord of the fan as shown in FIG. As shown, from a block 114 of piezoelectric ceramics polarized in the thickness direction shown by the arrow, a square prism 115 with the polarization direction diagonal as shown in FIG. 11(b) is cut out. (C
), four square prisms 115 are stacked and glued together so that the polarization direction forms a closed loop, as shown in FIG. 11(d).
After polishing the outer and inner peripheries into a hollow cylindrical shape as shown in
It is manufactured by cutting into a ring shape as shown in FIG. 11(e).

第12図は従来の圧電縦振動子102の一構造例であり
、両面に電極が施され、厚さ方向に分極された圧電セラ
ミックスリング116に電圧を印加し厚さ方向の振動(
縦振動と呼ぶ)を得るものである。
FIG. 12 shows an example of the structure of a conventional piezoelectric vertical vibrator 102, in which a voltage is applied to a piezoelectric ceramic ring 116 that has electrodes on both sides and is polarized in the thickness direction, causing vibration in the thickness direction (
(called longitudinal vibration).

低い印加電圧で大きな振動振幅を得るために、第14図
のように薄い圧電セラミックスリング116を複数個積
層して、圧電縦振動子102′を構成する場合もある。
In order to obtain a large vibration amplitude with a low applied voltage, a piezoelectric longitudinal vibrator 102' may be constructed by laminating a plurality of thin piezoelectric ceramic rings 116 as shown in FIG.

[発明が解決しようとする課題] 第8図に示した従来の圧電捩り振動子101においては
、複数個の圧電セラミックスが接着されて構成されてい
るため、接着による特性のばらつきが大きい。また、第
9図、第10図及び第11図(a) 、 (b) 、(
c) 、 (d)に示したように圧電捩り振動子102
を得るための加工が複雑で、コスト的にも非常に費用が
かかるものであった。さらに、捩り振動と縦振動を同時
に得ようとした場合は第8図に示した圧電捩り振動子1
02と第12図又は第13図に示した圧電縦振動子10
2とを接着するため、やはり接着による特性のばらつき
と接着コストがかかるという問題があった。
[Problems to be Solved by the Invention] Since the conventional piezoelectric torsional vibrator 101 shown in FIG. 8 is configured by bonding a plurality of piezoelectric ceramics, there are large variations in characteristics due to bonding. Also, Figures 9, 10, and 11 (a), (b), (
c) As shown in (d), the piezoelectric torsion vibrator 102
The processing required to obtain this was complex and extremely expensive. Furthermore, if you want to obtain torsional vibration and longitudinal vibration at the same time, use the piezoelectric torsional vibrator 1 shown in Figure 8.
02 and the piezoelectric longitudinal vibrator 10 shown in FIG. 12 or FIG.
2, there were also problems of variations in properties due to adhesion and high adhesion costs.

そこで、本発明の技術的課題は、以上に示した従来の超
音波モータにおける欠点を除去し、加工が簡単で、接着
工程のない、ばらつきの少ない圧電捩り振動子を提供し
、さらに同一の圧電素子に拡がり振動子を形成した圧電
捩り一拡がり複合振動子を用いた超音波モータを提供す
ることにある。
Therefore, the technical problem of the present invention is to eliminate the drawbacks of the conventional ultrasonic motor shown above, provide a piezoelectric torsional vibrator that is easy to process, does not require an adhesive process, and has little variation, and furthermore, An object of the present invention is to provide an ultrasonic motor using a piezoelectric torsion-expanding composite vibrator in which an expanding vibrator is formed in the element.

[課題を解決するための手段] 本発明によれば、圧電セラミックス中空円柱の長さ方向
の略中央部分の外周面に全周に渡って前記圧電セラミッ
クス中空円柱の軸方向に対してほぼ45°の方向に交差
指電極を施して二端子とし、該交差指電極を用いて前記
圧電セラミックス中空円柱に分極処理を施し、該交差指
電極を用いて前記圧電セラミックス中空円柱に分極処理
を施し、該交差指電極間に交流電圧を印加して前記圧電
セラミックス中空円柱に捩り振動を励振可能とし、前記
圧電セラミックス中空円柱の少なくとも一方の端部近傍
に前記圧電セラミックス中空円柱の軸方向と平行な方向
に交差指電極を形成して夫々二端子とし、該交差指電極
を用いて前記圧電セラミックス中空円柱の端部近傍に分
極処理を施し、各々の交差指電極間の交流電圧を印加し
て前記圧電セラミックスの端部近傍に拡がり振動を励振
可能とした一体型捩り一拡がり複合振動子と、前記拡が
り振動子部分に、圧接された回転自在なロータとを備え
たことを特徴とする超音波モータが得られる。
[Means for Solving the Problems] According to the present invention, the outer circumferential surface of the approximately central portion in the longitudinal direction of the piezoelectric ceramic hollow cylinder has an angle of approximately 45° with respect to the axial direction of the piezoelectric ceramic hollow cylinder over the entire circumference. applying interdigital electrodes in the direction of , forming two terminals, using the interdigital electrodes to polarize the piezoelectric ceramic hollow cylinder; using the interdigital electrodes to polarize the piezoelectric ceramic hollow cylinder; An alternating current voltage is applied between the interdigital electrodes to enable torsional vibration to be excited in the piezoelectric ceramic hollow cylinder, and the piezoelectric ceramic hollow cylinder is provided near at least one end thereof in a direction parallel to the axial direction of the piezoelectric ceramic hollow cylinder. Interdigital electrodes are formed to have two terminals, and the piezoelectric ceramic hollow cylinder is polarized near the ends using the interdigital electrodes, and an alternating current voltage is applied between the interdigital electrodes to polarize the piezoelectric ceramic hollow cylinder. An ultrasonic motor is provided, comprising: an integrated torsion-expanding compound vibrator capable of exciting a spreading vibration near an end of the ultrasonic motor; and a freely rotatable rotor press-welded to the expanding vibrator portion. It will be done.

本発明によれば、圧電セラミックス中空円柱の長さ方向
の略中央部分の外周面に全周に渡って前記圧電セラミッ
クス中空円柱の軸方向に対してほぼ45°の方向に交差
指電極を施して二端子とし、該交差指電極を用いて前記
圧電セラミックス中空円柱に分極処理を施し、該交差指
電極を用いて前記圧電セラミックス中空円柱に分極処理
を施し、該交差指電極間に交流電圧を印加して前記圧電
セラミックス中空円柱に捩り振動を励振可能とし、前記
圧電セラミックス中空円柱の少なくとも一方の端部近傍
に前記圧電セラミックス中空円柱の円周方向と平行な方
向に交差指電極を形成して夫々二端子とし、該交差指電
極を用いて前記圧電セラミックス中空円柱の端部近傍に
分極処理を施し、各々の交差指電極間の交流電圧を印加
して前記圧電セラミックスの端部近傍に拡がり振動を励
振可能とした一体型捩り一拡がり複合振動子と、前記拡
がり振動子部分に、圧接された回転自在なロータとを備
えたことを特徴とする超音波モータが得られる。
According to the present invention, interdigital electrodes are provided on the outer peripheral surface of a substantially central portion in the longitudinal direction of the piezoelectric ceramic hollow cylinder over the entire circumference in a direction approximately 45° with respect to the axial direction of the piezoelectric ceramic hollow cylinder. Two terminals are used, the piezoelectric ceramic hollow cylinder is polarized using the interdigital electrodes, the piezoelectric ceramic hollow cylinder is polarized using the interdigital electrodes, and an alternating current voltage is applied between the interdigital electrodes. to enable torsional vibration to be excited in the piezoelectric ceramic hollow cylinder, and interdigital electrodes are formed in the vicinity of at least one end of the piezoelectric ceramic hollow cylinder in a direction parallel to the circumferential direction of the piezoelectric ceramic hollow cylinder, respectively. Two terminals are used, and the interdigital electrodes are used to perform polarization near the ends of the piezoelectric ceramic hollow cylinder, and an alternating current voltage is applied between each interdigital electrode to cause vibrations to spread to the vicinity of the ends of the piezoelectric ceramic. There is obtained an ultrasonic motor characterized by comprising an integrated torsion-expansion compound vibrator capable of excitation and a rotatable rotor press-welded to the expansion vibrator portion.

[作 用] 本発明の超音波モータでは、圧電捩り一拡がり複合振動
子において、まず圧電セラミックス中空円柱の外周面に
、該中空円柱の軸方向に対して45°の方向に形成され
た第1及び第2の斜め電極を施して、第1の二端子とし
、この第1の二端子を用いて前記圧電セラミックス中空
円柱に分極処理を施すと、分極方向は、前記第1及び第
2の斜め電極の指電極方向と直角な方向となる。この状
態で、前記第1及び第2の斜め電極間に電圧を印加する
と、電圧の極性が分極の電圧の極性と同じ場合は、分極
の方向に縮み歪みが発生する。
[Function] In the ultrasonic motor of the present invention, in the piezoelectric torsion-expanding compound vibrator, first, a first cylindrical tube is formed on the outer circumferential surface of the piezoelectric ceramic hollow cylinder in a direction at 45° with respect to the axial direction of the hollow cylinder. and a second diagonal electrode to form a first two terminals, and when the piezoelectric ceramic hollow cylinder is polarized using the first two terminals, the polarization direction is the same as the first and second diagonal electrodes. The direction is perpendicular to the direction of the finger electrodes. In this state, when a voltage is applied between the first and second diagonal electrodes, if the polarity of the voltage is the same as the polarity of the polarization voltage, shrinkage distortion occurs in the polarization direction.

分極方向に伸びあるいは縮み歪みが発生した場合は、分
極方向と直角な方向には、夫々これらと反対に縮みある
いは伸び歪みが発生する。
When an elongation or contraction strain occurs in the polarization direction, a contraction or expansion strain occurs in the direction perpendicular to the polarization direction, respectively, in the opposite direction.

以上の結果として、前記圧電セラミックス中空円柱に捩
り変位が発生する。
As a result of the above, torsional displacement occurs in the piezoelectric ceramic hollow cylinder.

また、本発明の超音波モータでは、圧電捩り−拡がり振
動子において、圧電セラミックス中空円柱の外周面に該
中空円柱の軸に沿う方向に第1及び第2の縦電極を施し
て第2の二端子とし、つぎにこの第2の二端子を用いて
前記圧電セラミックス中空円柱に分極処理を施すと分極
方向は前記交差指電極の指電極方向と直角な方向、即ち
、中空円柱の円周方向となる。この状態で、前記交差指
電極に電圧を印加すると、電圧の極性が分極時の電圧の
極性と同じ場合は、分極の方向に伸び歪みが発生し、電
圧の極性が分極時の電圧の極性よりもと逆の場合には、
分極の方向に縮み歪みが発生する。即ち、縦効果により
、中空円柱の直径が大きくなったり、小さくなったりす
る。
In addition, in the ultrasonic motor of the present invention, in the piezoelectric torsion-spread vibrator, first and second vertical electrodes are provided on the outer peripheral surface of the piezoelectric ceramic hollow cylinder in a direction along the axis of the hollow cylinder. When the piezoelectric ceramic hollow cylinder is polarized using the second two terminals, the polarization direction is perpendicular to the direction of the finger electrodes of the interdigital electrodes, that is, the circumferential direction of the hollow cylinder. Become. In this state, when a voltage is applied to the interdigital electrodes, if the polarity of the voltage is the same as the polarity of the voltage during polarization, stretching distortion will occur in the direction of polarization, and the polarity of the voltage will be greater than the polarity of the voltage during polarization. In the opposite case,
Shrinkage distortion occurs in the direction of polarization. That is, the diameter of the hollow cylinder increases or decreases due to the longitudinal effect.

一方、本発明の超音波モータの圧電捩り一拡がり複合振
動子においては、圧電セラミックスの中空円柱の外周面
に、この中空円柱の円周に沿う方向に第1及び第2の周
電極を施して上記第2の二端子と同様の第2の二端子と
し、つぎにこの第2の二端子を用いて前記圧電セラミッ
クス中空円柱に分極処理を施すと分極方向は、前記交差
指電極の電極指方向と直角な方向、即ち、中空円柱の軸
に沿う方向となる。
On the other hand, in the piezoelectric torsion-expansion composite vibrator of the ultrasonic motor of the present invention, first and second circumferential electrodes are provided on the outer peripheral surface of a hollow cylinder made of piezoelectric ceramic in a direction along the circumference of the hollow cylinder. A second two-terminal similar to the second two-terminal described above is used, and when the piezoelectric ceramic hollow cylinder is polarized using this second two-terminal, the polarization direction is in the direction of the electrode fingers of the interdigital electrode. In other words, the direction is perpendicular to the axis of the hollow cylinder.

この状態で、前記第2の二端子に電圧を印加すると、電
圧の極性が、分極時の電圧の極性と同じ場合は、分極の
方向に伸び歪みが発生し、電圧の極性が分極時の電圧の
極性と逆の場合は、分極の方向に縮み歪みが発生する。
In this state, when a voltage is applied to the second two terminals, if the polarity of the voltage is the same as the polarity of the voltage at the time of polarization, an elongation strain will occur in the direction of polarization, and the polarity of the voltage will change to the voltage at the time of polarization. If the polarity is opposite to that of , shrinkage distortion occurs in the direction of polarization.

この結果、横効果により、中空円柱の直径が大きくなっ
たり、小さくなったりする。
As a result, the diameter of the hollow cylinder increases or decreases due to the transverse effect.

[実施例コ 以下本発明の実施例について図面を用いて詳しく説明す
る。
[Embodiments] Examples of the present invention will be described below in detail with reference to the drawings.

第1図は本発明の超音波モータの一構造例を示す斜視図
である。
FIG. 1 is a perspective view showing an example of the structure of an ultrasonic motor according to the present invention.

第1図において、圧電捩り一拡がり複合振動子28の中
空部に軸6を貫通させ、圧電捩り一拡がり振動子28の
内側で前記圧電捩り一拡がり複合振動子28の共振の節
の部分で固定する。軸6の端部に軸受け8により回転自
在に支持されたカップ状ロータ8をスプリング9を介し
て六ット10により圧電捩り一拡がり複合振動子28の
端部外周面に圧接するように構成する。圧電捩り一複合
振動子28は、捩り振動の共振の節の位置となる中央部
をリング状の支持枠30で固定することが可能で、この
支持枠30により安定な支持が可能になる。
In FIG. 1, the shaft 6 is passed through the hollow part of the piezoelectric torsion-spread compound vibrator 28, and fixed at the resonance node of the piezoelectric torsion-spread compound vibrator 28 inside the piezoelectric torsion-spread compound vibrator 28. do. A cup-shaped rotor 8 rotatably supported by a bearing 8 at the end of the shaft 6 is configured to be pressed against the outer circumferential surface of the end of the composite vibrator 28 through a spring 9 and a piezoelectric torsion 10. . The piezoelectric torsion-composite vibrator 28 can be fixed with a ring-shaped support frame 30 at its center, which is the position of the resonance node of torsional vibration, and this support frame 30 enables stable support.

第2図(a) 、(b) 、 (c) 、(d)は本発
明の実施例に係る超音波モータに用いる圧電捩り一拡が
り複合振動子の動作原理の説明図である。
FIGS. 2(a), (b), (c), and (d) are explanatory diagrams of the operating principle of a piezoelectric torsion-spanning compound vibrator used in an ultrasonic motor according to an embodiment of the present invention.

第2図(a)は圧電セラミックス−面に形成された交差
指電極を示す斜視図である。
FIG. 2(a) is a perspective view showing interdigital electrodes formed on a piezoelectric ceramic surface.

第2図(a)において、圧電セラミックス板17の一方
の面に、互いに平行に複数個の第1及び第2の指電極1
8.19が形成され、夫々同じ側の端部同士が、1つお
きに共通電極18゛19−に接続され、交差指電極が形
成されている。
In FIG. 2(a), a plurality of first and second finger electrodes 1 are arranged parallel to each other on one surface of a piezoelectric ceramic plate 17.
8.19 are formed, and the end portions on the same side are connected to the common electrodes 18 and 19- every other time, thereby forming interdigital electrodes.

第2図(b) 、(c)、(d)は第2図(a)の圧電
セラミックス板−面に形成された交差指電極を模式的に
示す断面図である。第2図(a)において、破線の矢印
1は、第2図(a)の指電極18.19を二端子5,6
として用いて分極処理を施したときの分極の向きを示し
ており、第2図(c) 、 (d)は第2図(b)のよ
うに分極処理された圧電セラミックス板17に端子5及
び6から直流電圧を印加した場合に発生する歪みの状態
を示しており、実線の矢印2は、電界の向きを示してい
る。
FIGS. 2(b), (c), and (d) are cross-sectional views schematically showing interdigital electrodes formed on the surface of the piezoelectric ceramic plate of FIG. 2(a). In FIG. 2(a), a dashed arrow 1 indicates that the finger electrodes 18 and 19 in FIG. 2(a) are connected to two terminals 5 and 6.
Figures 2(c) and 2(d) show the direction of polarization when the piezoelectric ceramic plate 17 is polarized as shown in Figure 2(b). 6 shows the state of distortion that occurs when a DC voltage is applied, and the solid arrow 2 indicates the direction of the electric field.

第2図(C)から分かるように、電圧の極性が分極時の
電圧の極性と逆の場合、即ち、実線の矢印2と破線の矢
印1とが逆方向の場合は、分極の方向に縮み歪みが発生
する。
As can be seen from Figure 2 (C), when the polarity of the voltage is opposite to the polarity of the voltage during polarization, that is, when solid arrow 2 and broken arrow 1 are in opposite directions, the contraction occurs in the direction of polarization. Distortion occurs.

第3図は中空円柱20の両端面が図の矢印のように捩れ
ている場合に、中空円柱20の外周面に発生する歪みの
状態を示しており、中空円柱20の軸方向に苅して45
°の角度方向で、しかも捩じれ矢印の向きに伸び歪みを
発生し、これと直角な方向に縮み歪みが発生している。
FIG. 3 shows the state of distortion that occurs on the outer peripheral surface of the hollow cylinder 20 when both end faces of the hollow cylinder 20 are twisted as shown by the arrows in the figure. 45
An elongation strain occurs in the direction of the torsion arrow, and a shrinkage strain occurs in the direction perpendicular to this direction.

従って、圧電セラミックス中空円柱の外周面の中央部に
、第2図(a)で示したような交差指電極を指電極18
゜1つの方向が圧電セラミックス中空円柱の軸方向に対
して45°の角度となるように形成し、この交差指電極
を二端子として用いて分極処理を行い、同じ交差指電極
に直流電圧を印加すると、電圧の極性が分極時の電圧極
性と逆の場合は逆方向に捩じれる。
Therefore, interdigitated finger electrodes 18 as shown in FIG.
゜It is formed so that one direction is at an angle of 45° with respect to the axial direction of the piezoelectric ceramic hollow cylinder, and the interdigital electrodes are used as two terminals to perform polarization processing, and a DC voltage is applied to the same interdigital electrodes. Then, if the polarity of the voltage is opposite to the polarity of the voltage during polarization, it will be twisted in the opposite direction.

また、圧電セラミックス中空円柱20の前記中央に隣接
する外周面に、第2図に示したような交差指電極を電極
指の方向が圧電セラミックス中空円柱の軸に沿う方向に
形成し、この交差指電極を二端子として用いて分極処理
を行い、同じ交差指電極に直流電圧を印加すると、電圧
の極性が分極時の電圧の極性と同じ場合に中空円柱の直
径が大きくなり、電圧の極性が分極時の電圧の極性と逆
の場合は、逆に直径が大きくなる。
Furthermore, interdigital electrodes as shown in FIG. 2 are formed on the outer circumferential surface of the piezoelectric ceramic hollow cylinder 20 adjacent to the center, with the direction of the electrode fingers along the axis of the piezoelectric ceramic hollow cylinder. When polarization is performed using the electrodes as two terminals and a DC voltage is applied to the same interdigital electrode, the diameter of the hollow cylinder increases if the polarity of the voltage is the same as the polarity of the voltage during polarization, and the polarity of the voltage becomes polarized. Conversely, if the polarity of the voltage is opposite to that of the current, the diameter increases.

一方、圧電セラミックス中空円柱の外周面に、第2図に
示したような交差指電極を指電極の方向が圧電セラミッ
クス中空円柱の円周方向と平行に形成し、この交差指電
極を用いて分極処理を行い、同じ交差指電極に直流電圧
を印加すると、電圧の極性が分極時の電圧の極性と同じ
場合に、中空円柱の長さがのび、電圧の極性が分極時の
電圧の極性と逆の場合には、中空円柱20の長さが縮む
On the other hand, interdigital electrodes as shown in Fig. 2 are formed on the outer peripheral surface of the piezoelectric ceramic hollow cylinder, with the direction of the finger electrodes parallel to the circumferential direction of the piezoelectric ceramic hollow cylinder, and polarization is performed using the interdigital electrodes. When a DC voltage is applied to the same interdigital electrode, the length of the hollow cylinder increases when the polarity of the voltage is the same as the polarity of the voltage during polarization, and the polarity of the voltage is opposite to the polarity of the voltage during polarization. In this case, the length of the hollow cylinder 20 is reduced.

この結果、横効果により、中空円柱20の直径は小さく
なったり大きくなったりする。
As a result, the diameter of the hollow cylinder 20 becomes smaller or larger due to the lateral effect.

第4図は、本発明の実施例に係る超音波モータに用いら
れる圧電捩り一拡がり複合振動子の一構造例を示す斜視
図である。
FIG. 4 is a perspective view showing an example of the structure of a piezoelectric torsion-expansion composite vibrator used in an ultrasonic motor according to an embodiment of the present invention.

第4図において、圧電セラミックス中空円柱2〕の略中
央部の外周面に軸方向に対して45゜の角度となるよう
に、互いに平行に複数の第1及び第2の斜め電極22及
び23が形成され、それぞれ第1及び第2の共通電極2
2′及び23′に接続されている。さらに、圧電セラミ
ックス中空円柱21の一方の端部近傍に、軸方向と平行
に互いに交差する複数の第1及び第2の縦電極24゜2
5が形成され、夫々同じ番号の電極が、第3及び第4の
共通電極24−.25−により、電気的に接続されてい
る。
In FIG. 4, a plurality of first and second oblique electrodes 22 and 23 are arranged parallel to each other at an angle of 45° to the axial direction on the outer circumferential surface of the piezoelectric ceramic hollow cylinder 2 at the approximate center thereof. are formed, respectively, first and second common electrodes 2
2' and 23'. Furthermore, near one end of the piezoelectric ceramic hollow cylinder 21, a plurality of first and second vertical electrodes 24°2 are arranged parallel to the axial direction and intersecting with each other.
5 are formed, each having the same number as the third and fourth common electrodes 24-. 25-, it is electrically connected.

第4図において、第1及び第2の共通電極22′及び2
3′を第1の二端子とし、この第1の二端子間に直流高
電圧を印加して分極処理を施したのち、複合振動子の捩
りモードの共振周波数に等しい周波数の交流電圧を印加
すれば、圧電セラミックス中空円柱21は両端部が捩じ
れるように共振する。
In FIG. 4, first and second common electrodes 22' and 2
3' is the first two terminals, and after polarization treatment is performed by applying a high DC voltage between the first two terminals, an AC voltage with a frequency equal to the resonance frequency of the torsional mode of the compound vibrator is applied. For example, the piezoelectric ceramic hollow cylinder 21 resonates so that both ends thereof are twisted.

同様にして、第3及び第4の共通電極24−25′を第
2の二端子とし、この第2の二端子間に直流高電圧を印
加して分極処理を施した後、上記捩りの共振周波数に等
しい交流電圧を印加すれば圧電セラミックス中空円柱2
1の端部は、縦効果により、捩りの共振周波数で拡がり
振動する。
Similarly, the third and fourth common electrodes 24-25' are used as second two terminals, and after polarization treatment is performed by applying a DC high voltage between the second two terminals, the torsional resonance If an AC voltage equal to the frequency is applied, the piezoelectric ceramic hollow cylinder 2
The ends of 1 spread and vibrate at the torsion resonance frequency due to the longitudinal effect.

中空円柱21の捩り振動の共振周波数は、中空円柱の長
さによって定まり、拡がり振動に対する共振周波数は中
空円柱の平均直径によって定まるため、平均直径を適当
に選定することにより、前記捩り振動の共振周波数と拡
がり振動の共振周波数とを同じにすることができる。
The resonant frequency of the torsional vibration of the hollow cylinder 21 is determined by the length of the hollow cylinder, and the resonant frequency of the spreading vibration is determined by the average diameter of the hollow cylinder. Therefore, by appropriately selecting the average diameter, the resonant frequency of the torsional vibration can be adjusted. and the resonance frequency of the spreading vibration can be made the same.

第5図は本発明の実施例に係る超音波モータに用いられ
る圧電捩り一拡がり複合振動子の他の構造例を示す斜視
図である。
FIG. 5 is a perspective view showing another structural example of a piezoelectric torsion-expansion composite vibrator used in an ultrasonic motor according to an embodiment of the present invention.

第5図において、圧電セラミックス中空円柱の略中央部
の外周面に軸方向に対して45°の角度となるように、
互い平行に複数の第1及び第2の斜め電極32及び33
が、第4図の圧電捩り一拡がり複合振動子と同様に形成
されている。それぞれ共通型!1ii32−及び33−
に接続されている。
In FIG. 5, on the outer circumferential surface of the approximately central part of the piezoelectric ceramic hollow cylinder, at an angle of 45° with respect to the axial direction,
A plurality of first and second oblique electrodes 32 and 33 are arranged parallel to each other.
is formed in the same way as the piezoelectric torsion-expansion composite vibrator shown in FIG. Each type is common! 1ii32- and 33-
It is connected to the.

さらに、圧電セラミックス中空円柱21′の一方の端部
近傍に、円周に沿うに互いに平行に複数の第1及び第2
の周電極34.35が形成され、夫々同じ番号の電極が
第3及び第4の共通電極34′及び35″によって、電
気的に接続されている。
Further, near one end of the piezoelectric ceramic hollow cylinder 21', a plurality of first and second electrodes are arranged parallel to each other along the circumference.
circumferential electrodes 34, 35 are formed, and the electrodes having the same number are electrically connected by third and fourth common electrodes 34' and 35''.

第5図において、第1及び第2の共通電極を第1の二端
子として、この第1の二端子間に直流高電圧を印加して
分極処理を施した後、複合振動子の捩りモードの共振周
波数に等しい周波数の交流電圧をこの第2の二端子に印
加すれば圧電セラミックス中空円柱21−は両端部が捩
じれるように共振する。
In FIG. 5, the first and second common electrodes are used as the first two terminals, and after polarization treatment is performed by applying a DC high voltage between the first two terminals, the torsional mode of the compound vibrator is When an alternating current voltage with a frequency equal to the resonance frequency is applied to the second two terminals, the piezoelectric ceramic hollow cylinder 21- resonates so that both ends are twisted.

同様にして、第3及び第4の共通電極34゛35゛を第
2の二端子し、この第2の二端子間にに直流高電圧を印
加して分極処理を施した後、上記捩りの共振周波数に等
しい交流電圧を印加すれば圧電セラミックス中空円柱2
1′端部は横効果により、捩りの共振周波数で拡がり振
動する。中空円柱の捩り振動の共振周波数は、中空円柱
の長さによって定まり、拡がり運動に対する共振周波数
は中空円柱の平均直径によって定まるため、平均直径を
適当に選定することにより、前記捩り振動の共振周波数
と拡がり振動の共振周波数とを同じにすることができる
Similarly, the third and fourth common electrodes 34 and 35 are made into two second terminals, and a DC high voltage is applied between the second two terminals to perform polarization treatment. If an AC voltage equal to the resonance frequency is applied, the piezoelectric ceramic hollow cylinder 2
The 1' end expands and vibrates at the torsion resonance frequency due to the transverse effect. The resonant frequency of the torsional vibration of a hollow cylinder is determined by the length of the hollow cylinder, and the resonant frequency for the spreading motion is determined by the average diameter of the hollow cylinder, so by appropriately selecting the average diameter, the resonant frequency of the torsional vibration and the resonant frequency of the torsional vibration can be adjusted. The resonance frequency of the spreading vibration can be made the same.

第6図(a)第4図及び第5図の圧電捩り一振動子の振
動位置を示す正面図で、第6図(b) 、 (c)は第
6図(a)の圧電捩り一拡がり複合振動子28の振動状
態の説明図である。第6図(b)において、捩り振動に
対しては、圧電縦振り複合振動子28の中央部が振動の
節となり、一方両端が最大の捩り変位を持つ。
Figure 6(a) is a front view showing the vibration position of the piezoelectric torsion vibrator in Figures 4 and 5, and Figures 6(b) and (c) are the piezoelectric torsion vibration positions in Figure 6(a). FIG. 2 is an explanatory diagram of a vibration state of a composite vibrator 28. FIG. In FIG. 6(b), for torsional vibration, the central part of the piezoelectric vertical composite vibrator 28 becomes a vibration node, while both ends have the maximum torsional displacement.

第6図(C)に示すように、拡がり振動に対しても、中
央部が振動の節となり、両端で最大の拡がり変位量とな
る。
As shown in FIG. 6(C), even with respect to spreading vibration, the central portion becomes a node of vibration, and the amount of spreading displacement becomes maximum at both ends.

第6図(b) 、 (c)かられかるように、拡がり振
動に対する印加電圧の周波数を捩りの共振周波数と同じ
周波数とすると、圧電捩り一拡がり複合振動子28の端
部は、捩りの共振周波数と同期して直径方向の振動をす
る。したがって、圧電捩り一拡がり複合振動子28の端
部の直径が拡がるとき一方向にねじれ、縮むとき逆方向
に捩じれる。この結果、圧電膜−捩り複合振動子28の
端部近傍の外周面に楕円運動振動が発生する。捩り振動
あるいは、拡がり振動のいずれか一方の印加電圧の位相
を互いに180°異なるようにすると楕円運動振動の向
きが逆転する。
As can be seen from FIGS. 6(b) and 6(c), if the frequency of the applied voltage for the spreading vibration is the same as the torsional resonance frequency, the end of the piezoelectric torsion-spreading composite vibrator 28 will be at the torsional resonance frequency. It vibrates in the diametrical direction in synchronization with the frequency. Therefore, when the diameter of the end of the piezoelectric torsion-expansion compound vibrator 28 expands, it is twisted in one direction, and when it is contracted, it is twisted in the opposite direction. As a result, elliptical motion vibration occurs on the outer peripheral surface near the end of the piezoelectric film-torsion composite vibrator 28. If the phases of the applied voltages for either the torsional vibration or the spreading vibration are made to differ by 180 degrees from each other, the direction of the elliptic motion vibration is reversed.

[発明の効果] 以上説明したように、本発明によれば、超音波モータを
構成するための振動モードとして捩り振動と拡がり振動
を利用し、通常−膜内に適用されているプレス成型技術
により容易に製造することが可能な圧電セラミックス中
空円柱を用いて、これらの外周面にこれも一般的な技術
である電極印刷を施すことにより圧電捩り振動子及び圧
電拡がり振動子が一体形状として得られるため、製造が
容易で、接着工程や複雑な加工工程による特性のばらつ
きの少ない圧電膜−捩り複合振動子が得られる。
[Effects of the Invention] As explained above, according to the present invention, torsional vibration and spreading vibration are used as vibration modes for configuring an ultrasonic motor, and press molding technology that is normally applied in a membrane is used to create an ultrasonic motor. By using piezoelectric ceramic hollow cylinders that can be easily manufactured and applying electrode printing, which is also a common technique, to the outer peripheral surface of these cylinders, a piezoelectric torsion oscillator and a piezoelectric spreading oscillator can be obtained as an integrated structure. Therefore, it is possible to obtain a piezoelectric film-torsion composite vibrator that is easy to manufacture and has less variation in characteristics due to bonding steps and complicated processing steps.

また、本発明によれば、圧電捩り一拡がり複合振動子を
用いて、超音波モータを構成すれば、構造が簡単で、特
性のばらつきの少ない超音波モータが得られ、実用的な
効果は大きい。
Further, according to the present invention, if an ultrasonic motor is constructed using a piezoelectric torsion-expansion compound vibrator, an ultrasonic motor with a simple structure and less variation in characteristics can be obtained, and the practical effects are great. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る超音波モータの構造例を
示す斜視図、第2図(a) 、(b) 、 (c) 、
 (d)は交差指電極を用いて分極および電圧印加を行
った場合の歪みの発生状態の説明図、第3図は圧電セラ
ミックス中空円柱を捩ったときの歪みの発生状態の説明
図、第4図は本発明の実施例に係る超音波モータに用い
られる圧電捩り一拡がり複合振動子の一構造例を示す斜
視図、第5図は本発明の実施例に係る超音波モータに用
いられる圧電捩り一拡がり複合振動子の他の構造例を示
す斜視図、第6図(a) 、(b) 、(c)は圧電捩
り一拡がり複合振動子の捩り変位及び拡がり変位の相対
的変位量の説明に供する図、第7図は従来の縦−捩り型
超音波モータの構造例を示す斜視図、第8図は従来の捩
り振動子の構造を示す斜視図、第9図および第10図は
第8図の捩り振動子の製造工程の説明図、第11図(a
) 、 (b) 、(c) 、(d) 、(e)は従来
の捩り振動子の製造工程の説明図、第12図は従来の縦
振動子の一構造例を示す斜視図、第13図は従来の縦振
動子の他の構造例を示す斜視図である。 図中、6・・・軸、7・・・軸受、8・・・ローター 
9・・・スプリング、10・・・ナツト、17・・・圧
電セラミックス薄板、18.19・・・指電極、18−
.19−・・、共通電極、20・・・圧電セラミックス
中空円柱、21.21″・・・圧電セラミックス中空円
柱、22゜23.32.33・・・斜め電極(捩り振動
子用交差指電極) 、22−.23−.32−.33−
・・・共通電極、24.25・・・縦電極(縦効果拡が
り振動子用交差指電極) 、24−.25”・・・周電
極(横効果拡がり振動子用交差指電極)、28・・・圧
電捩り一拡がり複合振動子、30・・・支持枠、101
・・・圧電捩り振動子、102・・・圧電縦振動子、1
03゜104・・・金属中空円柱、106・・・軸、1
07・・・軸受、108・・・ローター 109・・・
スプリング、110・・・ナツト、112・・・扇型圧
電セラミックス板、113,114・・・圧電セラミッ
クス板、115・・・圧電セラミックス板角柱、]16
・・・圧電セラミックスリング。 第2図 第7図 范8図 始9図 第10図
FIG. 1 is a perspective view showing a structural example of an ultrasonic motor according to an embodiment of the present invention, and FIGS. 2(a), (b), (c),
(d) is an explanatory diagram of how distortion occurs when polarization and voltage are applied using interdigital electrodes; Figure 3 is an explanatory diagram of how distortion occurs when a piezoelectric ceramic hollow cylinder is twisted; FIG. 4 is a perspective view showing an example of the structure of a piezoelectric torsion-expansion composite vibrator used in an ultrasonic motor according to an embodiment of the present invention, and FIG. FIGS. 6(a), (b), and (c), which are perspective views showing other structural examples of the torsional-spreading compound vibrator, show the relative displacement amounts of torsional displacement and spreading displacement of the piezoelectric torsion-spreading compound vibrator. 7 is a perspective view showing an example of the structure of a conventional vertical-torsion type ultrasonic motor, FIG. 8 is a perspective view showing the structure of a conventional torsional oscillator, and FIGS. 9 and 10 are diagrams for explanation. An explanatory diagram of the manufacturing process of the torsional vibrator shown in Fig. 8, and Fig. 11 (a
), (b), (c), (d), and (e) are explanatory diagrams of the manufacturing process of a conventional torsional oscillator, FIG. 12 is a perspective view showing an example of the structure of a conventional longitudinal oscillator, and FIG. The figure is a perspective view showing another structural example of a conventional longitudinal vibrator. In the diagram, 6... shaft, 7... bearing, 8... rotor
9... Spring, 10... Nut, 17... Piezoelectric ceramic thin plate, 18.19... Finger electrode, 18-
.. 19-..., common electrode, 20... piezoelectric ceramic hollow cylinder, 21.21''... piezoelectric ceramic hollow cylinder, 22゜23.32.33... diagonal electrode (interdigital electrode for torsional vibrator) , 22-.23-.32-.33-
...Common electrode, 24.25...Vertical electrode (interdigital electrode for longitudinal effect spread oscillator), 24-. 25”...Circumferential electrode (cross-finger electrode for transverse effect spreading vibrator), 28...Piezoelectric torsion-spreading composite vibrator, 30...Support frame, 101
...Piezoelectric torsional vibrator, 102...Piezoelectric longitudinal vibrator, 1
03゜104...Metal hollow cylinder, 106...Axis, 1
07...Bearing, 108...Rotor 109...
Spring, 110... Nut, 112... Fan-shaped piezoelectric ceramic plate, 113, 114... Piezoelectric ceramic plate, 115... Piezoelectric ceramic plate prism,] 16
...Piezoelectric ceramic sling. Figure 2 Figure 7 Fan 8 Figure Start 9 Figure 10

Claims (2)

【特許請求の範囲】[Claims] 1.圧電セラミックス中空円柱の長さ方向の略中央部分
の外周面に全周に渡って前記圧電セラミックス中空円柱
の軸方向に対してほぼ45°の方向に第1及び第2の斜
め電極を形成して第1の二端子とし、該第1の二端子を
用いて前記圧電セラミックス中空円柱に分極処理を施し
、該第1の二端子間に第1の交流電圧を印加して前記圧
電セラミックス中空円柱に捩り振動を励振可能とすると
共に、前記圧電セラミックス中空円柱の少なくとも一方
の端部近傍に前記圧電セラミックス中空円柱の軸に沿う
方向に第1及び第2の縦電極を形成して第2の二端子と
し、該第2の二端子を用いて前記圧電セラミックス中空
円柱の端部近傍に分極処理を施し、該第2の二端子間に
第1の交流電圧と周波数の等しい第2の交流電圧を印加
して前記圧電セラミックスの端部近傍に拡がり振動を励
振可能とした一体型捩り−拡がり複合振動子と、前記拡
がり振動子部分に、圧接された回転自在なロータと を備えたことを特徴とする超音波モータ。
1. First and second oblique electrodes are formed on the outer peripheral surface of a substantially central portion in the longitudinal direction of the piezoelectric ceramic hollow cylinder over the entire circumference in a direction approximately 45° with respect to the axial direction of the piezoelectric ceramic hollow cylinder. the piezoelectric ceramic hollow cylinder is polarized using the first two terminals, and a first alternating current voltage is applied between the first two terminals to polarize the piezoelectric ceramic hollow cylinder. A torsional vibration can be excited, and first and second vertical electrodes are formed near at least one end of the piezoelectric ceramic hollow cylinder in a direction along the axis of the piezoelectric ceramic hollow cylinder, and a second two-terminal is formed. Polarization treatment is performed near the end of the piezoelectric ceramic hollow cylinder using the second two terminals, and a second AC voltage having the same frequency as the first AC voltage is applied between the second two terminals. The present invention is characterized by comprising an integrated torsion-spreading compound vibrator capable of exciting spreading vibration near the end of the piezoelectric ceramic, and a freely rotatable rotor pressure-welded to the spreading vibrator portion. ultrasonic motor.
2.圧電セラミックス中空円柱の長さ方向の略中央部分
の外周面に全周に渡って前記圧電セラミックス中空円柱
の軸方向に対してほぼ45°の方向に第1及び第2の斜
め電極を施して第1の二端子とし、該第1の二端子を用
いて前記圧電セラミックス中空円柱に分極処理を施し、
該第1の二端子間に第1の交流電圧を印加して前記圧電
セラミックス中空円柱に捩り振動を励振可能とすると共
に、前記圧電セラミックス中空円柱の少なくとも一方の
端部近傍に前記圧電セラミックス中空円柱の円周に沿う
方向に第1及び第2の周電極を形成して第2の二端子と
し、該第2の二端子を用いて前記圧電セラミックス中空
円柱の端部近傍に分極処理を施し、該第2の二端子間に
前記第1の交流電圧と周波数の等しい第2の交流電圧を
印加して前記圧電セラミックスの端部近傍に拡がり振動
を励振可能とした一体型捩り−拡がり複合振動子と、前
記拡がり振動子部分に圧接された回転自在なロータと を備えたことを特徴とする超音波モータ。
2. First and second oblique electrodes are provided on the outer peripheral surface of a substantially central portion in the longitudinal direction of the piezoelectric ceramic hollow cylinder over the entire circumference in a direction approximately 45° with respect to the axial direction of the piezoelectric ceramic hollow cylinder. 1, and using the first two terminals to polarize the piezoelectric ceramic hollow cylinder,
A first AC voltage is applied between the first two terminals to enable torsional vibration to be excited in the piezoelectric ceramic hollow cylinder, and the piezoelectric ceramic hollow cylinder is placed near at least one end of the piezoelectric ceramic hollow cylinder. forming first and second circumferential electrodes in the direction along the circumference of the piezoelectric ceramic hollow cylinder to form a second two terminals, and using the second two terminals to polarize near the end of the piezoelectric ceramic hollow cylinder; An integrated torsion-spreading composite vibrator that can spread and excite vibration near the end of the piezoelectric ceramic by applying a second AC voltage having the same frequency as the first AC voltage between the second two terminals. and a freely rotatable rotor that is pressed into contact with the expansion transducer portion.
JP1320481A 1989-12-12 1989-12-12 Ultrasonic motor Expired - Lifetime JPH072033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320481A JPH072033B2 (en) 1989-12-12 1989-12-12 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1320481A JPH072033B2 (en) 1989-12-12 1989-12-12 Ultrasonic motor

Publications (2)

Publication Number Publication Date
JPH03183377A true JPH03183377A (en) 1991-08-09
JPH072033B2 JPH072033B2 (en) 1995-01-11

Family

ID=18121929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320481A Expired - Lifetime JPH072033B2 (en) 1989-12-12 1989-12-12 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH072033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160035435A (en) * 2014-09-23 2016-03-31 한석인 Mixing and injection device for trace double liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160035435A (en) * 2014-09-23 2016-03-31 한석인 Mixing and injection device for trace double liquid

Also Published As

Publication number Publication date
JPH072033B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
JP2006149180A (en) Flat-type piezoelectric ultrasonic motor
JP3122882B2 (en) Ultrasonic motor
JPH03183377A (en) Ultrasonic wave motor
JP2729828B2 (en) Ultrasonic motor
JP3122881B2 (en) Ultrasonic motor
JP2832614B2 (en) Ultrasonic motor
JP2691617B2 (en) Ultrasonic motor
JP2729829B2 (en) Ultrasonic motor
JPH0340765A (en) Ultrasonic motor
JP3168430B2 (en) Ultrasonic motor
JP2832613B2 (en) Ultrasonic motor
JPH02294280A (en) Tubular electrostrictive rotor and motor
JPH07107756A (en) Ultrasonic motor
JP2816851B2 (en) Piezoelectric torsional displacement element, piezoelectric expansion / contraction displacement element, and piezoelectric composite displacement element
JPH0522966A (en) Ultrasonic motor
JPH0319291A (en) Piezoelectric composite vibrator
JP3141210B2 (en) Ultrasonic motor
JPS62277079A (en) Piezoelectric driving device
JP2995665B2 (en) Ultrasonic motor
JP2961545B2 (en) Piezoelectric elliptical oscillator
JP2903425B2 (en) Ultrasonic motor
JPH0522961A (en) Ultrasonic motor
JPH0226282A (en) Ultrasonic motor
JPH03235678A (en) Ultrasonic motor
JP3141209B2 (en) Ultrasonic motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 15

EXPY Cancellation because of completion of term