JP2729829B2 - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JP2729829B2
JP2729829B2 JP1053640A JP5364089A JP2729829B2 JP 2729829 B2 JP2729829 B2 JP 2729829B2 JP 1053640 A JP1053640 A JP 1053640A JP 5364089 A JP5364089 A JP 5364089A JP 2729829 B2 JP2729829 B2 JP 2729829B2
Authority
JP
Japan
Prior art keywords
vibrator
piezoelectric
torsional
longitudinal
sectional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1053640A
Other languages
Japanese (ja)
Other versions
JPH02237478A (en
Inventor
洋 清水
哲男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKIN KK
Original Assignee
TOOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOKIN KK filed Critical TOOKIN KK
Priority to JP1053640A priority Critical patent/JP2729829B2/en
Publication of JPH02237478A publication Critical patent/JPH02237478A/en
Application granted granted Critical
Publication of JP2729829B2 publication Critical patent/JP2729829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はOA機器等に用いられる圧電振動子の超音波振
動を用いたいわゆる超音波モータに関し、特に構造が簡
単な縦−捩り振動子型超音波モータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a so-called ultrasonic motor using ultrasonic vibration of a piezoelectric vibrator used for office automation equipment and the like, and particularly to a longitudinal-torsional vibrator type having a simple structure. It relates to an ultrasonic motor.

[従来の技術] 第9図は従来の縦−捩り振動子型超音波モータに用い
られている縦−捩り複合振動子101の構造例の斜視図で
ある。圧電捩り振動子102および圧電縦振動子103が金属
円柱4を介して接合され、さらにこれらの両側に金属円
柱5、および6が接合されている。この場合金属円柱の
代りに金属円筒を用いることができる。第10図は第9図
に示した縦−捩り複合振動子101を用いて構成した超音
波モータの構造例の斜視図であり、縦−捩り複合振動子
101の一方の端部の中心部に少なくとも振動の節点まで
達する穴が形成され、その穴部に穴径よりも細い軸7が
挿入され、前記接点で複合振動子101に固定されてい
る。さらに軸受け8により回転自在に支持されたロータ
ー9がコイルバネ10およびナット11により前記縦−捩り
複合振動子101の端面に圧接されている。第11図は第9
図に示した圧電捩り振動子の構造例であり、円板状の圧
電捩り振動子102は4個の扇形の圧電セラミックス板112
が接合されて構成されている。各々の扇形の圧電セラミ
ックス板112は第12図に示すようにそれぞれ扇の弦の方
向に分極処理が施されており、扇形の圧電セラミックス
板の上下面に電極を施し、上下電極間に直流電圧を印加
すると扇形の圧電セラミックス板には板厚と平行なすべ
り歪みが発生する。4個の扇形の圧電セラミックス板11
2が円板状に接合されている場合、各々の扇形の圧電セ
ラミックス板に発生したすべり歪みは合成されて、円板
の上下面が捩じれるような捩り歪みとなる。
[Prior Art] FIG. 9 is a perspective view of a structural example of a longitudinal-torsional combined vibrator 101 used in a conventional longitudinal-torsional vibrator type ultrasonic motor. The piezoelectric torsional vibrator 102 and the piezoelectric longitudinal vibrator 103 are joined via the metal cylinder 4, and the metal cylinders 5 and 6 are joined on both sides thereof. In this case, a metal cylinder can be used instead of the metal cylinder. FIG. 10 is a perspective view of a structural example of an ultrasonic motor constituted by using the longitudinal-torsion composite vibrator 101 shown in FIG.
At the center of one end of 101 is formed a hole reaching at least a vibration node. A shaft 7 having a diameter smaller than the diameter of the hole is inserted into the hole and fixed to the composite vibrator 101 at the contact point. Further, a rotor 9 rotatably supported by a bearing 8 is pressed against an end face of the longitudinal-torsion composite vibrator 101 by a coil spring 10 and a nut 11. FIG. 11 shows the ninth
This is an example of the structure of the piezoelectric torsional vibrator shown in the figure, in which a disc-shaped piezoelectric torsional vibrator 102 has four fan-shaped piezoelectric ceramic plates 112.
Are joined. Each of the fan-shaped piezoelectric ceramic plates 112 is polarized in the direction of the chord of the fan as shown in FIG. 12, electrodes are provided on the upper and lower surfaces of the fan-shaped piezoelectric ceramic plate, and a DC voltage is applied between the upper and lower electrodes. Is applied, a sliding distortion parallel to the thickness of the fan-shaped piezoelectric ceramic plate is generated. Four fan-shaped piezoelectric ceramic plates 11
When 2 is joined in a disk shape, the slip distortion generated in each of the sector-shaped piezoelectric ceramic plates is combined, resulting in a torsional distortion in which the upper and lower surfaces of the disk are twisted.

第11図に示した従来の圧電捩り振動子においては、ま
ず第13図に示すように、軸方向に分極処理された圧電セ
ラミックス板113から超音波加工により扇形の圧電セラ
ミックス板を打ち抜いて第12図に示すような扇の弦の方
向に分極された扇形の圧電セラミックス板112を作り、
これを4個接着して円板状に構成するか、第14図に示す
ように、厚さ方向に分極された圧電セラミックスのブロ
ック114から、分極方向が対角線の方向となるような正
四角柱115を切り出し、4本の正四角柱115を分極方向が
閉じたループとなるように重ねて接着し、外周をパイプ
状に研磨した後、円板状に切断するなどしている。
In the conventional piezoelectric torsion vibrator shown in FIG. 11, first, as shown in FIG. 13, a fan-shaped piezoelectric ceramics plate is punched out from a piezoelectric ceramics plate 113 which is polarized in an axial direction by ultrasonic processing. Create a fan-shaped piezoelectric ceramics plate 112 polarized in the direction of the chord of the fan as shown in the figure,
Four of them are bonded to each other to form a disk shape, or as shown in FIG. 14, a piezoelectric ceramic block 114 polarized in the thickness direction is used to form a square prism 115 whose polarization direction is a diagonal direction. Are cut out, and four square prisms 115 are overlapped and bonded so as to form a loop having a closed polarization direction, the outer periphery is polished into a pipe shape, and then cut into a disk shape.

第15図は従来の圧電縦振動子の構造例であり、両面に
電極が施され、厚さ方向に分極された圧電セラミックス
円板103に電圧を印加し厚さ方向の振動を得るものであ
る。低い印加電圧で大きな振動振幅を得るために、薄い
圧電セラミックス円板116を複数個積層して第16図の10
3′のように構成する場合もある。
FIG. 15 shows an example of the structure of a conventional piezoelectric longitudinal vibrator, in which electrodes are applied to both surfaces and a voltage is applied to a piezoelectric ceramic disk 103 polarized in the thickness direction to obtain vibration in the thickness direction. . In order to obtain a large vibration amplitude at a low applied voltage, a plurality of thin piezoelectric ceramic disks
In some cases, it is configured as in 3 '.

[発明が解決しようとする課題] 第11図に示した従来の圧電捩り振動子102において
は、複数個の圧電セラミックスが接着されて構成されて
いるため、接着による特性のばらつきが大きい。また、
第12図、第13図および第14図に示したように圧電捩り振
動子102を得るための加工が複雑で、コスト的にも非常
に費用がかかるものであった。
[Problem to be Solved by the Invention] In the conventional piezoelectric torsional vibrator 102 shown in FIG. 11, since a plurality of piezoelectric ceramics are bonded, the characteristic variation due to the bonding is large. Also,
As shown in FIG. 12, FIG. 13 and FIG. 14, the processing for obtaining the piezoelectric torsional vibrator 102 was complicated and very costly.

本発明の技術的課題は、以上に示した従来の圧電捩り
振動子を用いた超音波モータの欠点を除去し、加工が簡
単で、接着工程のない、ばらつきの少ない圧電捩り振動
子を用いた超音波モータを提供することにある。
The technical problem of the present invention is to eliminate the drawbacks of the ultrasonic motor using the conventional piezoelectric torsional vibrator described above, to use a piezoelectric torsional vibrator that is easy to process, has no bonding process, and has little variation. An object of the present invention is to provide an ultrasonic motor.

また本発明の別の技術的課題は中空状の圧電縦−捩り
複合振動子を用いることにより、中空部を貫通する軸に
より二つのローターを前記圧電縦−捩り複合振動子の両
端部に圧接した2ローター型の超音波モータを提供する
ことにある。
Another technical problem of the present invention is that, by using a hollow piezoelectric vertical-torsion composite vibrator, two rotors are pressed against both ends of the piezoelectric vertical-torsion composite vibrator by a shaft penetrating the hollow portion. An object of the present invention is to provide a two-rotor ultrasonic motor.

[課題を解決するための手段] 本発明によれば、中心軸と直交する第1の断面形状を
有するとともに前記中心軸の回りに捩り振動を行う圧電
捩り振動子と、該捩り振動子の一端に一端が対向するよ
うに配され、前記第1の断面形状と実質的に等しい第2
の断面形状を有するとともに前記中心軸方向に伸縮振動
を行う圧電縦振動子と、前記圧電捩り振動子の他端に一
端が接合され、前記第1の断面形状と実質的に等しい第
3の断面形状を有する第1の金属材と、前記圧電縦振動
子の他端に一端が接合され前記第1の断面形状と実質的
に等しい第4の断面形状を有する第2の金属材とを有す
るランシュバン型縦−捩り複合振動子と、前記第1及び
第2の金属材の少くとも一方の他端に圧接されるロータ
とを有し、 前記圧電捩り振動子は、外周面を有する圧電セラミッ
クスと、前記外周面に該圧電セラミックスの前記中心軸
に対して交差する方向で交互に配された複数の第1の斜
め電極及び複数の第2の斜め電極を有することを特徴と
する超音波モータが得られる。
[Means for Solving the Problems] According to the present invention, a piezoelectric torsional vibrator having a first cross-sectional shape orthogonal to a central axis and performing torsional vibration around the central axis, and one end of the torsional vibrator A second end substantially opposite to the first cross-sectional shape.
And a third section having one end joined to the other end of the piezoelectric torsional vibrator and having one end joined to the other end of the piezoelectric torsional vibrator, the third section being substantially equal to the first section shape. A first metal material having a shape, and a second metal material having one end joined to the other end of the piezoelectric longitudinal vibrator and having a fourth cross-sectional shape substantially equal to the first cross-sectional shape. A longitudinal-torsional composite vibrator, and a rotor pressed against at least one of the other ends of the first and second metal materials, wherein the piezoelectric torsional vibrator has a piezoelectric ceramic having an outer peripheral surface; An ultrasonic motor having a plurality of first oblique electrodes and a plurality of second oblique electrodes alternately arranged on the outer peripheral surface in a direction intersecting with the central axis of the piezoelectric ceramic is obtained. Can be

[作 用] 本発明の超音波モータに用いる圧電縦−捩り複合振動
子は、まず圧電セラミックス円柱の外周面に該圧電セラ
ミックスの長さ方向に対して好ましくは45゜の方向に第
1及び第2の交差指電極を施して二端子とし、つぎにこ
の二端子を用いて前記圧電セラミックス円柱パイプに分
極処理を施すと分極方向は前記第1及び第2の交差指電
極の長さ方向と直角な方向となる。
[Operation] The piezoelectric longitudinal-torsion composite vibrator used in the ultrasonic motor according to the present invention comprises a first and a second piezoelectric vibrator, which are formed on the outer peripheral surface of a piezoelectric ceramic cylinder, preferably in the direction of 45 ° with respect to the longitudinal direction of the piezoelectric ceramic. By applying two interdigital electrodes to form two terminals, and then using the two terminals to polarize the piezoelectric ceramic cylindrical pipe, the polarization direction is perpendicular to the length direction of the first and second interdigital electrodes. Direction.

この状態で前記二端子に電圧を印加すると、電圧の極
性が分極時の電圧の極性と同じ場合は分極の方向に伸び
歪みが発生し、電圧の極性がこの分極時の電圧の極性と
逆の場合は分極の方向に縮み歪みが発生する。分極方向
に伸びあるいは縮み歪みが発生した場合は分極方向と直
角な方向にはそれぞれこれらと反対に縮みあるいは伸び
歪みが発生する。
When a voltage is applied to the two terminals in this state, if the polarity of the voltage is the same as the polarity of the voltage at the time of polarization, stretching strain occurs in the direction of polarization, and the polarity of the voltage is opposite to the polarity of the voltage at the time of polarization. In such a case, shrinkage distortion occurs in the direction of polarization. When an elongation or contraction strain is generated in the polarization direction, a contraction or elongation strain is generated in the direction perpendicular to the polarization direction, respectively.

以上の結果として前記圧電セラミックス円柱に捩り変
位が発生する。この圧電セラミックス円柱は、中空部を
有する圧電セラミックス円筒でも同様に、捩り変位が発
生する。
As a result, torsional displacement occurs in the piezoelectric ceramic cylinder. In the piezoelectric ceramic cylinder, torsional displacement similarly occurs in a piezoelectric ceramic cylinder having a hollow portion.

このような圧電捩り振動子と従来の縦方向に伸縮する
圧電縦振動子を一端同士をそろえて、また、他端にそれ
ぞれ金属材の一端を接合して、この金属材の他端が捩り
振動と縦振動とが合成された縦−捩り複合振動即ち、一
端が軸に沿う面内で楕円振動を行うランジュバン型縦−
捩り複合振動子を形成する。この複合振動子の少くとも
一端にローターを圧接すると、この圧接された金属材の
他端の縦−捩り複合振動は、ローターの回転運動に変換
される。
One end of such a piezoelectric torsional vibrator and a conventional piezoelectric longitudinal vibrator that expands and contracts in the vertical direction are aligned, and one end of a metal material is joined to the other end, respectively. Longitudinal-torsional composite vibration, which is a combination of longitudinal vibration and longitudinal vibration, that is, a Langevin-type longitudinal vibration in which one end performs an elliptical vibration in a plane along an axis.
Form a torsional composite vibrator. When a rotor is pressed against at least one end of the composite vibrator, the longitudinal-torsional composite vibration at the other end of the pressed metal material is converted into a rotational motion of the rotor.

[実施例] 以下本発明について図面を用いて詳しく説明する。EXAMPLES Hereinafter, the present invention will be described in detail with reference to the drawings.

実施例1 第1図は本発明の第1の実施例に係る超音波モータの
構造を示す斜視図であり、第4図に示した圧電捩り振動
子1と第15図に示した圧電縦振動子を用い、さらにこれ
らの両側に金属円柱5、および6を接合してランジュバ
ン型縦−捩り振動子とし、このランジュバン型縦−捩り
振動子の一方の端面に第10図の場合と同様な方法で軸7
が、ランジュバン型振動子の振動の節点に固定され、軸
受8により回転自在に支持されたローター9がスプリン
グ10を介してナット11によりランジュバン型縦−捩り振
動子の一方の端面に圧接されて構成されている。
Embodiment 1 FIG. 1 is a perspective view showing a structure of an ultrasonic motor according to a first embodiment of the present invention, wherein a piezoelectric torsional vibrator 1 shown in FIG. 4 and a piezoelectric longitudinal vibration shown in FIG. In addition, a metal cylinder 5 and 6 are joined on both sides thereof to form a Langevin type vertical-torsional vibrator, and one end face of the Langevin type vertical-torsional vibrator is applied to one end face in the same manner as in FIG. With axis 7
The rotor 9 is fixed to a vibration node of the Langevin type vibrator, and is rotatably supported by a bearing 8. The rotor 9 is pressed against one end face of the Langevin type longitudinal-torsional vibrator by a nut 11 via a spring 10. Have been.

第2図は本発明の第1の実施例に係る超音波モータに
用いる圧電捩り振動子の動作原理の説明図である。第2
図(a)において、圧電セラミックス板17の一方の面に
は互いに交差する複数個の電極18,19が形成され、それ
ぞれ一つおきに共通電極18′,19′に接続され第1及び
第2の交差指電極を形成している。第2図(b)におい
て破線の矢印はこのような第1及び第2の交差指電極を
用いて分極処理を施したときの分極の向きを示してお
り、第2図(c),(d)は第2図(b)のように分極
処理された圧電セラミックス板17に直流電圧を印加した
場合に発生する歪みの状態を示しており、実線の矢印は
電界の向きを示している。第2図(c),(d)から分
かるように、電圧の極性が分極時の電圧の極性と同じ場
合は分極の方向に伸び歪みが発生し、電圧の極性が分極
時の電圧の極性と逆の場合は分極の方向に縮み歪みが発
生する。第3図は円柱20の両端面が図の矢印のように捩
じれている場合に、円柱20の外周面に発生する歪みの状
態を示しており、円柱20の軸方向に対して45゜の角度の
方向で、しかも捩じれの破線の矢印の向きに伸び縮みが
発生し、これと直角な一点鎖線で示される矢印の方向に
縮み歪みが発生している。
FIG. 2 is an explanatory diagram of the operation principle of the piezoelectric torsional vibrator used in the ultrasonic motor according to the first embodiment of the present invention. Second
In FIG. 1A, a plurality of electrodes 18 and 19 crossing each other are formed on one surface of a piezoelectric ceramic plate 17, and are alternately connected to common electrodes 18 'and 19', respectively. Are formed. In FIG. 2 (b), broken arrows indicate the directions of polarization when the polarization processing is performed using such first and second interdigital electrodes, and FIGS. 2 (c) and (d). ) Shows the state of distortion generated when a DC voltage is applied to the piezoelectric ceramic plate 17 which has been subjected to the polarization treatment as shown in FIG. 2 (b), and the solid line arrows show the direction of the electric field. As can be seen from FIGS. 2 (c) and 2 (d), when the polarity of the voltage is the same as the polarity of the voltage at the time of polarization, stretching strain occurs in the direction of the polarization, and the polarity of the voltage is the same as the polarity of the voltage at the time of polarization. In the opposite case, shrinkage distortion occurs in the direction of polarization. FIG. 3 shows a state of distortion occurring on the outer peripheral surface of the cylinder 20 when both end surfaces of the cylinder 20 are twisted as indicated by arrows in the figure, and shows an angle of 45 ° with respect to the axial direction of the cylinder 20. , And in the direction of the torsional dashed arrow, contraction occurs in the direction of the dashed-dotted arrow perpendicular to this direction.

従って圧電セラミックス円柱の外周面に、第2図に示
したような第1及び第2の交差指電極を交差指の方向が
圧電セラミックス円柱の長さ方向に対して45゜の角度と
なるように形成し、この第1及び第2の交差指電極を用
いて分極処理を行い、同じ交差指電極に直流電圧を印加
すると、電圧の極性が分極時の電圧の極性と同じ場合に
圧電セラミックス円柱は一方向に捩じれ、電圧の極性が
分極時の電圧の極性と逆の場合は逆方向に捩じれる。ま
た、圧電セラミックスが円筒の場合も、同様な捩り振動
を発生する。
Accordingly, the first and second interdigital electrodes as shown in FIG. 2 are provided on the outer peripheral surface of the piezoelectric ceramic cylinder so that the direction of the interdigital finger is at an angle of 45 ° to the length direction of the piezoelectric ceramic cylinder. Then, a polarization process is performed using the first and second interdigital electrodes, and a DC voltage is applied to the same interdigital electrode. When the polarity of the voltage is the same as the polarity of the voltage at the time of polarization, the piezoelectric ceramic cylinder is formed. It twists in one direction and twists in the opposite direction if the polarity of the voltage is opposite to the polarity of the voltage during polarization. Also, when the piezoelectric ceramics are cylindrical, similar torsional vibrations are generated.

第4図は本発明の第1の実施例に係る超音波モータに
用いられる圧電捩り振動子の一実施例の構造を示す斜視
図であり、リング状圧電セラミックス20′の略半分の部
分の外周面に長さ方向に対して45゜の角度となるよう
に、互いに交差する複数の第1及び第2の斜め電極22及
び23が形成され、それぞれ第1及び第2の共通電極22′
および23′に接続されている。第4図において、共通電
極22′および23′間に直流高電圧を印加して分極処理を
施した後、この捩り振動子の共振周波数に等しい周波数
の交流電圧を印加すればリング状圧電セラミックス20′
は両端部が捩じれるように共振する。
FIG. 4 is a perspective view showing the structure of one embodiment of the piezoelectric torsional vibrator used in the ultrasonic motor according to the first embodiment of the present invention. A plurality of first and second oblique electrodes 22 and 23 intersecting each other are formed on the surface at an angle of 45 ° with respect to the length direction, and the first and second common electrodes 22 ′ are respectively formed.
And 23 '. In FIG. 4, after applying a DC high voltage between the common electrodes 22 'and 23' to perform polarization processing, and applying an AC voltage having a frequency equal to the resonance frequency of the torsional vibrator, the ring-shaped piezoelectric ceramic 20 can be obtained. ′
Resonates so that both ends are twisted.

実施例2 第5図は本発明の第2の実施例に係る超音波モータの
構造例の斜視図であり、パイプ状ランジュバン型圧電縦
−捩り複合振動子2の中空部に、軸26を貫通させ、軸26
の両端部に軸受8,8′により回転自在に支持されたロー
ター9,9′がスプリング10,10′を介してナット11,11′
によりランジュバン型縦−捩り振動子の端面に圧接され
て構成されている。
Embodiment 2 FIG. 5 is a perspective view of a structural example of an ultrasonic motor according to a second embodiment of the present invention, in which a shaft 26 passes through a hollow portion of a pipe-shaped Langevin type piezoelectric longitudinal-torsional composite vibrator 2. Let the axis 26
Rotors 9, 9 'rotatably supported by bearings 8, 8' at both ends of the nuts 11, 11 'via springs 10, 10'.
And is pressed against the end face of the Langevin type vertical-torsional vibrator.

第6図は本発明の第2の実施例に係る超音波モータに
用いられるパイプ状ランジュバン型圧電縦−捩り複合振
動子2の構造を示す斜視図である。第4図に示した圧電
捩り振動子1と第15図に示した従来の圧電縦振動子103
をエポキシ樹脂等の接着材で接着し、この両側に金属パ
イプ5′,および6′を同様の接着材で接合して構成さ
れている。圧電捩り振動子1の位置は図に示したよう
に、捩り振動子の部分の中心がランジュバン型振動子2
の全長lのほぼ1/4の位置に配置する。この場合、ラン
ジュバン型振動子2の振動状態は第7図に示すようにな
る。すなわち、捩り振動に対しては、捩り振動子の部分
の中心がランジュバン型振動子の全長lのほぼ1/4の位
置に配置されているため、ランジュバン型振動子の全長
lのほぼ1/4の位置が振動の節となるような振動モード
で共振する。第7図から分かるように、ランジュバン型
振動子2の両端部はこの振動子の中心軸回りに同じ向き
に捩じれる。また、縦振動に対しては、印加電圧の周波
数を捩りの共振周波数と同じ周波数とすると、ランジュ
バン型振動子2の両端部は捩りの共振と同期してこの振
動子の中心軸方向の伸縮振動をする。したがって、捩り
振動の振幅が大きくなるタイミングに伸び振動が最大と
なるように二つの印加電圧の位相を調節すると、ランジ
ュバン型縦−捩り振動子の両面は、中心軸に沿う面内で
楕円振動する。この場合に一方の印加電圧の位相を180
゜変化させると楕円振動の向きが逆転する。
FIG. 6 is a perspective view showing the structure of a pipe-shaped Langevin type piezoelectric vertical-torsion composite vibrator 2 used in an ultrasonic motor according to a second embodiment of the present invention. The piezoelectric torsional vibrator 1 shown in FIG. 4 and the conventional piezoelectric longitudinal vibrator 103 shown in FIG.
Are bonded by an adhesive such as an epoxy resin, and metal pipes 5 'and 6' are joined to both sides of the adhesive with a similar adhesive. As shown in the figure, the position of the piezoelectric torsional vibrator 1 is such that the center of the torsional vibrator is the Langevin type vibrator 2.
Is arranged at a position approximately 1/4 of the total length l of In this case, the vibration state of the Langevin type vibrator 2 is as shown in FIG. That is, with respect to torsional vibration, the center of the torsional vibrator is located at approximately 1/4 of the total length l of the Langevin-type vibrator, and therefore, approximately 1/4 of the total length l of the Langevin-type vibrator. Resonates in a vibration mode such that the position becomes a node of vibration. As can be seen from FIG. 7, both ends of the Langevin type vibrator 2 are twisted in the same direction around the central axis of the vibrator. As for the longitudinal vibration, if the frequency of the applied voltage is the same as the torsional resonance frequency, both ends of the Langevin type vibrator 2 expand and contract in the central axis direction of the vibrator in synchronization with the torsional resonance. do. Therefore, when the phases of the two applied voltages are adjusted so that the extension vibration becomes maximum at the timing when the amplitude of the torsional vibration becomes large, both surfaces of the Langevin type vertical-torsional vibrator oscillate elliptically in a plane along the central axis. . In this case, the phase of one applied voltage is 180
゜ When changed, the direction of the elliptical vibration is reversed.

第8図は本発明の第2の実施例に係る超音波モータに
用いられるパイプ状ランジュバン型圧電縦−捩り複合振
動子の他の構造例を示す斜視図であり、第4図に示した
圧電捩り振動子1と第15図に示した圧電縦振動子103の
中空部に端部外周にねじの切られたパイプ状のボルト28
を貫通させ、この両側に内周に前記ボルトと螺合するネ
ジの切られた金属パイプ5″,および6″を締め付けて
構成されている。第8図においても捩り振動子の位置を
ランジュバン型振動子3の全長lのほぼ1/4の位置に配
置すると第7図のランジュバン振動子の場合と同様な原
理で振動する。
FIG. 8 is a perspective view showing another example of the structure of the pipe-shaped Langevin type piezoelectric longitudinal-torsion composite vibrator used in the ultrasonic motor according to the second embodiment of the present invention. A torsion oscillator 1 and a pipe-like bolt 28 whose outer periphery is threaded around the hollow portion of the piezoelectric longitudinal oscillator 103 shown in FIG.
And threaded metal pipes 5 ″ and 6 ″ which are screwed to the bolts on the inner circumferences on both sides thereof. Also in FIG. 8, when the torsional vibrator is arranged at a position which is approximately / 4 of the total length 1 of the Langevin type vibrator 3, the torsional vibrator vibrates on the same principle as the Langevin vibrator in FIG.

第5図で示した超音波モータは前述したようにランジ
ュバン型縦−捩り複合振動子の端面は同じ向きに捩じれ
るため、二つのローター9,9′は同一方向に回転する。
As described above, in the ultrasonic motor shown in FIG. 5, the end faces of the Langevin type longitudinal-torsion composite vibrator are twisted in the same direction, so that the two rotors 9, 9 'rotate in the same direction.

またランジュバン型縦−捩り複合振動子は捩り振動の
共振の節の位置となる両端部から1/4の位置をリング状
の支持枠27,27′で支持固定することが可能で安定な支
持が可能となる。
In addition, the Langevin type longitudinal-torsional composite vibrator can support and fix 1/4 position from both ends, which are the nodes of resonance of torsional vibration, with ring-shaped support frames 27, 27 ', and stable support is achieved. It becomes possible.

[発明の効果] 以上示したように本発明よれば、超音波モータ用圧電
縦振動子および捩り振動子として通常一般的に適用され
ているプレス成型技術により容易に製造することが可能
な圧電セラミックス円柱を用いて、これらの外周面にこ
れも一般的な技術である電極印刷を施すことにより圧電
捩り振動子および圧電縦振動子が一体形状として得られ
るため、製造が容易で、接着工程や複雑な加工工程によ
る特性のばらつきの少ない超音波モータが得られる。更
に、圧電セラミックス円柱の代りに圧電セラミックス円
筒を用いても、同様な超音波モータが得られる。
[Effects of the Invention] As described above, according to the present invention, a piezoelectric ceramic which can be easily manufactured by a press molding technique generally applied as a piezoelectric vertical vibrator for an ultrasonic motor and a torsional vibrator. By applying electrode printing, which is also a common technique, to these outer peripheral surfaces using a cylinder, the piezoelectric torsional vibrator and the piezoelectric longitudinal vibrator can be obtained as an integral shape, making it easy to manufacture, making the bonding process and complicated An ultrasonic motor with less variation in characteristics due to various processing steps can be obtained. Further, a similar ultrasonic motor can be obtained by using a piezoelectric ceramic cylinder instead of a piezoelectric ceramic cylinder.

また本発明によれば、パイプ状圧電縦−捩り複合振動
子の中空部に軸を貫通させ、二つのローターを同時に回
転させる方式の超音波モータが実現できロータ間より幅
の広い物も駆動することができる。以上、本発明の超音
波モータはこの圧電縦−捩り複合振動子を用いているの
で構造が簡単で、特性のばらつきの少ない超音波モータ
が得られ、実用的な効果が大きい。
Further, according to the present invention, it is possible to realize an ultrasonic motor of a system in which a shaft is penetrated through a hollow portion of a pipe-shaped piezoelectric longitudinal-torsion composite vibrator and simultaneously rotates two rotors, and also drives an object wider than between rotors. be able to. As described above, since the ultrasonic motor of the present invention uses this piezoelectric longitudinal-torsion composite vibrator, an ultrasonic motor having a simple structure and a small variation in characteristics can be obtained, and the practical effect is large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例に係る超音波モータの構
造を示す斜視図、第2図は交差指電極を用いて分極及び
電圧印加を行った場合の歪みの発生状態の説明図、第3
図は円柱状弾性体を捩ったときの歪みの発生状態の説明
図、第4図は本発明の第1の実施例に係る超音波モータ
の圧電捩り複合振動子を示す斜視図、第5図は本発明の
第2の実施例に係る超音波モータの構造を示す斜視図、
第6図は本発明の第2の実施例に係る超音波モータに用
いられるパイプ状ランジュバン複合振動子の構造を示す
斜視図、第7図は第6図のパイプ状ランジュバン複合振
動子の変位の大きさを示す説明図、第8図は本発明の第
2の実施例に係る超音波モータに用いられるパイプ状ラ
ンジュバン型圧電縦−捩り複合振動子の他の構造例を示
す斜視図、第9図は従来の縦−捩りランジュバン型振動
子の構造を示す斜視図、第10図は従来の縦−捩り型超音
波モータの構造を示す斜視図、第11図は従来の捩り振動
子の構造を示す斜視図、第12図および第13図は従来の捩
り振動子の製造工程の説明図、第14図は従来の捩り振動
子の製造工程の説明図、第15図は従来の縦振動子の構造
を示す斜視図、第16図は従来の縦振動子の他の構造を示
す斜視図である。 図中、1:圧電縦−捩り複合振動子、2:圧電捩り振動子、
3:圧電縦振動子、4,5,5′,5″,6,6′,6″:金属円柱、
7:軸、8:軸受、9:ローター、10:スプリング、11:ナッ
ト、17:圧電セラミックス薄板、18,19:交差指電極、1
8′,19′:共通電極、20:円柱状弾性体、20′:リング
状圧電セラミックス、22,23:捩り振動子用交差指電極、
22′,23′:共通電極、24:25,縦振動子用交差指電極、2
6:軸、27,27′:支持枠、28:パイプ状ボルト、101:圧電
縦−捩り複合振動子、102:圧電捩り振動子、103:圧電縦
振動子、112:扇型圧電セラミックス板、113,114:圧電セ
ラミックス板、115:圧電セラミックス板角柱、116:圧電
セラミックス円板である。
FIG. 1 is a perspective view showing a structure of an ultrasonic motor according to a first embodiment of the present invention, and FIG. 2 is an explanatory diagram of a state of occurrence of distortion when polarization and voltage are applied using interdigital electrodes. , Third
FIG. 4 is an explanatory view of a state in which distortion occurs when the columnar elastic body is twisted. FIG. 4 is a perspective view showing a piezoelectric torsional composite vibrator of the ultrasonic motor according to the first embodiment of the present invention. The figure is a perspective view showing the structure of the ultrasonic motor according to the second embodiment of the present invention,
FIG. 6 is a perspective view showing the structure of a pipe-shaped Langevin composite vibrator used in an ultrasonic motor according to a second embodiment of the present invention, and FIG. 7 is a view showing the displacement of the pipe-shaped Langevin composite vibrator shown in FIG. FIG. 8 is a perspective view showing another example of the structure of a pipe-shaped Langevin type piezoelectric longitudinal-torsional composite vibrator used in the ultrasonic motor according to the second embodiment of the present invention. FIG. 10 is a perspective view showing the structure of a conventional longitudinal-torsional Langevin type vibrator, FIG. 10 is a perspective view showing the structure of a conventional vertical-torsional ultrasonic motor, and FIG. 11 is a diagram showing the structure of a conventional torsional vibrator. FIG. 12 and FIG. 13 are explanatory views of a manufacturing process of a conventional torsional vibrator, FIG. 14 is an explanatory diagram of a manufacturing process of a conventional torsional vibrator, and FIG. FIG. 16 is a perspective view showing a structure, and FIG. 16 is a perspective view showing another structure of a conventional longitudinal vibrator. In the figure, 1: a piezoelectric longitudinal-torsional composite oscillator, 2: a piezoelectric torsional oscillator,
3: Piezoelectric longitudinal vibrator, 4, 5, 5 ', 5 ", 6, 6', 6": metal cylinder,
7: Shaft, 8: Bearing, 9: Rotor, 10: Spring, 11: Nut, 17: Piezoceramic thin plate, 18, 19: Cross finger electrode, 1
8 ', 19': common electrode, 20: columnar elastic body, 20 ': ring-shaped piezoelectric ceramic, 22, 23: interdigital electrode for torsional vibrator,
22 ', 23': common electrode, 24:25, cross finger electrode for longitudinal oscillator, 2
6: shaft, 27, 27 ': support frame, 28: pipe-shaped bolt, 101: piezoelectric vertical-torsion composite vibrator, 102: piezoelectric torsional vibrator, 103: piezoelectric vertical vibrator, 112: fan-type piezoelectric ceramics plate, 113, 114: piezoelectric ceramic plate, 115: piezoelectric ceramic plate prism, 116: piezoelectric ceramic disk.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】中心軸と直交する第1の断面形状を有する
とともに前記中心軸の回りに捩り振動を行う圧電捩り振
動子と、該捩り振動子の一端に一端が対向するように配
され、前記第1の断面形状と実質的に等しい第2の断面
形状を有するとともに前記中心軸方向に伸縮振動を行う
圧電縦振動子と、前記圧電捩り振動子の他端に一端が接
合され、前記第1の断面形状と実質的に等しい第3の断
面形状を有する第1の金属材と、前記圧電縦振動子の他
端に一端が接合され前記第1の断面形状と実質的に等し
い第4の断面形状を有する第2の金属材とを有するラン
シュバン型縦−捩り複合振動子と、 前記第1及び第2の金属材の少くとも一方の他端に圧接
されるロータとを有し、 前記圧電捩り振動子は、外周面を有する圧電セラミック
スと、前記外周面に該圧電セラミックスの前記中心軸に
対して交差する方向で交互に配された複数の第1の斜め
電極及び複数の第2の斜め電極を有することを特徴とす
る超音波モータ。
1. A piezoelectric torsional vibrator having a first cross-sectional shape orthogonal to a central axis and performing torsional vibration around the central axis, and one end of the piezoelectric torsional vibrator is arranged to face one end of the torsional vibrator. A piezoelectric longitudinal vibrator having a second cross-sectional shape substantially equal to the first cross-sectional shape and performing expansion and contraction vibration in the central axis direction, and one end connected to the other end of the piezoelectric torsional vibrator; A first metal member having a third sectional shape substantially equal to the first sectional shape, and a fourth metal material having one end joined to the other end of the piezoelectric longitudinal vibrator and substantially equal to the first sectional shape. A piezoelectric element comprising: a ranchevan-type longitudinal-torsional composite vibrator having a second metal material having a cross-sectional shape; and a rotor pressed against at least one of the other ends of the first and second metal materials. The torsional vibrator includes a piezoelectric ceramic having an outer peripheral surface, Ultrasonic motor and having a plurality of first oblique electrode and the plurality of second oblique electrodes arranged alternately in a direction intersecting the central axis of the piezoelectric ceramic on the peripheral surface.
JP1053640A 1989-03-08 1989-03-08 Ultrasonic motor Expired - Lifetime JP2729829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1053640A JP2729829B2 (en) 1989-03-08 1989-03-08 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1053640A JP2729829B2 (en) 1989-03-08 1989-03-08 Ultrasonic motor

Publications (2)

Publication Number Publication Date
JPH02237478A JPH02237478A (en) 1990-09-20
JP2729829B2 true JP2729829B2 (en) 1998-03-18

Family

ID=12948501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1053640A Expired - Lifetime JP2729829B2 (en) 1989-03-08 1989-03-08 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2729829B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646962B2 (en) * 2007-11-09 2011-03-09 独立行政法人科学技術振興機構 Positioning device
US10312830B2 (en) 2015-08-19 2019-06-04 Lawrence Livermore National Security, Llc Electrostatic generator/motor rotor electrode system suitable for installation on the outer surface of an EMB rotor

Also Published As

Publication number Publication date
JPH02237478A (en) 1990-09-20

Similar Documents

Publication Publication Date Title
JP3823340B2 (en) Vibration motor
JP2729829B2 (en) Ultrasonic motor
JP2729828B2 (en) Ultrasonic motor
JP3122882B2 (en) Ultrasonic motor
JP2832614B2 (en) Ultrasonic motor
JP3122881B2 (en) Ultrasonic motor
JP2691617B2 (en) Ultrasonic motor
JP2832613B2 (en) Ultrasonic motor
JP2867269B2 (en) Piezoelectric composite vibrator
JPH0514512B2 (en)
JPH0340765A (en) Ultrasonic motor
JP2816851B2 (en) Piezoelectric torsional displacement element, piezoelectric expansion / contraction displacement element, and piezoelectric composite displacement element
JP2929224B2 (en) Ultrasonic motor
JP2903425B2 (en) Ultrasonic motor
JP3168430B2 (en) Ultrasonic motor
JP2995665B2 (en) Ultrasonic motor
JP3141210B2 (en) Ultrasonic motor
JPH072229B2 (en) Piezoelectric elliptical motion oscillator
JP3141209B2 (en) Ultrasonic motor
JPH0522966A (en) Ultrasonic motor
JPH03183377A (en) Ultrasonic wave motor
JPH0522961A (en) Ultrasonic motor
JPH0663773B2 (en) Piezoelectric vibration gyro
JPH0799945B2 (en) Piezoelectric elliptical motion oscillator
JPH08163879A (en) Ultrasonic oscillator and ultrasonic motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12