JP2961545B2 - Piezoelectric elliptical oscillator - Google Patents

Piezoelectric elliptical oscillator

Info

Publication number
JP2961545B2
JP2961545B2 JP63311844A JP31184488A JP2961545B2 JP 2961545 B2 JP2961545 B2 JP 2961545B2 JP 63311844 A JP63311844 A JP 63311844A JP 31184488 A JP31184488 A JP 31184488A JP 2961545 B2 JP2961545 B2 JP 2961545B2
Authority
JP
Japan
Prior art keywords
peripheral surface
outer peripheral
piezoelectric ceramic
electrodes
hollow cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63311844A
Other languages
Japanese (ja)
Other versions
JPH0316188A (en
Inventor
洋 清水
哲男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKIN KK
Original Assignee
TOOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOKIN KK filed Critical TOOKIN KK
Priority to JP63311844A priority Critical patent/JP2961545B2/en
Publication of JPH0316188A publication Critical patent/JPH0316188A/en
Application granted granted Critical
Publication of JP2961545B2 publication Critical patent/JP2961545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、OA機器や玩具などに用いられる小型モータ
に関し、特にローター直径の小さい小型の超音波モータ
に用いられる圧電楕円運動振動子に関するものである。
Description: TECHNICAL FIELD The present invention relates to a small motor used for office automation equipment and toys, and more particularly to a piezoelectric elliptical oscillator used for a small ultrasonic motor having a small rotor diameter. It is.

[従来の技術] 超音波モータは、従来の電磁モータと比較して、低回
転で高いトルクが得られること、停止保持力を有するこ
と、電磁ノイズが少ないことなどの利点を有しておりカ
メラのオートフォーカス用や自動車のパワーモータなど
に使用されている。
[Prior art] Ultrasonic motors have advantages over conventional electromagnetic motors in that they can obtain high torque at low rotation speed, have a holding force for stopping, and have low electromagnetic noise. It is used for auto focus and power motors of automobiles.

第14図は従来の超音波モータに用いられている圧電楕
円運動振動子の構造の一例を示す概略図であり、ほぼ正
方形断面を有する金属角柱60aの隣り合う2つの面に、
両面に電極が形成され、厚さ方向に分極された圧電セラ
ミックス薄板61a及び61bが接着されている。圧電セラミ
ックス薄板61a及び61bの表面電極からリード端子62a及
び62bが引出され、金属角柱60aから共通のアース端子63
が引き出されている。金属角柱60aの断面形状がほぼ正
方形をしているので金属角柱60aは互いに直角方向にほ
ぼ同じ共振周波数で屈曲振動する。従って、リード端子
62a−63及び62b−63に夫々周波数が共振周波数に等し
く、位相が(好ましくは90゜)異なる交流電圧を印加す
ると金属角柱60aの両端部は円振動或いは楕円振動す
る。
FIG. 14 is a schematic view showing an example of the structure of a piezoelectric elliptical motion oscillator used in a conventional ultrasonic motor, and two adjacent surfaces of a metal prism 60a having a substantially square cross section are shown in FIG.
Electrodes are formed on both sides, and piezoelectric ceramic thin plates 61a and 61b polarized in the thickness direction are bonded. Lead terminals 62a and 62b are pulled out from the surface electrodes of the piezoelectric ceramic thin plates 61a and 61b, and a common ground terminal 63 is formed from the metal prism 60a.
Has been pulled out. Since the cross-sectional shape of the metal prism 60a is substantially square, the metal prism 60a bends and vibrates in a direction perpendicular to each other at substantially the same resonance frequency. Therefore, the lead terminal
When an AC voltage whose frequency is equal to the resonance frequency and whose phase is different (preferably 90 °) is applied to 62a-63 and 62b-63, both ends of the metal prism 60a vibrate in a circular or elliptical manner.

第15図は第14図に示した金属角柱60aより構成した角
柱楕円運動振動子60を用いた超音波モータの構造例を示
す図である。この角柱楕円運動振動子60の両端部に円板
64a及び64bが装着され、さらに角柱振動子60の振動の節
の位置に、長さ方向の中点に対して対称的に支持ピン65
a及び65bが形成され、角柱振動子60は、支持ピン65a及
び65bにより安定に支持されている。
FIG. 15 is a diagram showing an example of the structure of an ultrasonic motor using a prismatic elliptical motion transducer 60 composed of the metal prism 60a shown in FIG. Discs are provided at both ends of this prismatic elliptical oscillator 60.
64a and 64b are mounted, and furthermore, the supporting pin 65 is symmetrically positioned at the node of the vibration of the prism vibrator 60 with respect to the longitudinal midpoint.
a and 65b are formed, and the prism vibrator 60 is stably supported by the support pins 65a and 65b.

角柱振動子60の両端部に設けられた円板64a及び64b
(図示せず)は、回転自在に回転軸に支持されたカップ
状回転ローラー66a,66bの空洞部内壁に加圧接触されて
いる。従って、角柱振動子60の端部が円振動あるいは楕
円振動した場合に、カップ状回転ローラー66a,66bを回
転させる。
Disks 64a and 64b provided at both ends of the prism 60
(Not shown) is in pressure contact with the inner wall of the cavity of the cup-shaped rotary rollers 66a, 66b rotatably supported on a rotary shaft. Therefore, when the end of the prism vibrator 60 vibrates circularly or elliptically, the cup-shaped rotary rollers 66a and 66b are rotated.

[発明が解決しようとする課題] 第14図に示した従来の角柱状楕円運動振動子において
は、振動子が正方形断面の角柱であるため、互いに直角
な方向の屈曲モードの共振周波数を制度良く一致させる
ために角柱の加工精度を厳しく押さえなければならな
い。また、圧電セラミックス薄板を金属角柱に接着する
ときの接着状態のばらつきが大きく、屈曲モードの共振
周波数のばらつきが大きくなるという欠点を有してい
た。そこで、本発明の技術的課題は、加工精度に影響さ
れず、屈曲モードの共振周波数のばらつきが小さな圧電
楕円運動振動子を提供することにある。
[Problems to be Solved by the Invention] In the conventional prismatic elliptical motion transducer shown in FIG. 14, since the transducer is a prism having a square cross section, the resonance frequencies of bending modes in directions perpendicular to each other are precisely set. In order to match, the processing accuracy of the prism must be strictly suppressed. Further, there is a disadvantage that when the piezoelectric ceramic thin plate is bonded to the metal prism, there is a large variation in the bonding state, and the variation in the resonance frequency in the bending mode becomes large. Therefore, a technical problem of the present invention is to provide a piezoelectric elliptical motion vibrator which is not affected by processing accuracy and has a small variation in resonance frequency of a bending mode.

[課題を解決するための手段] 本発明によれば、圧電セラミックス中空円柱の外周面
の円周を4等分する位置に、該圧電セラミックス中空円
柱の長さ方向に平行な第1、第2、第3及び第4の分割
電極を円周方向に沿って順に施し、互いに対向する前記
第1及び第3の分割電極を第1の接続線で電気的に接続
すると共に、互いに対向する前記第2及び第4の分割電
極を第2の接続線で電気的に接続し、前記第1の接続線
がプラスの極性で、前記第2の接続線がマイナスの極性
となるように直流電圧を印加し、これにより前記圧電セ
ラミックス中空円柱に周に沿って前記第1の分割電極か
ら前記第2及び第4の分割電極の方向に向い、且つ前記
第3の分割電極から前記第2及び第4の分割電極に向う
方向に分極させ、更に互いに隣り合う前記第1及び第4
の分割電極間及び前記第2及び第3の分割電極間に該圧
電セラミックス中空円柱の共振周波数で、且つ第1の位
相を有する第1の交流電圧を印加して、該圧電セラミッ
クス中空円柱に第1の屈曲振動を励振可能とし、一方互
いに隣り合う前記第1及び第2の分割電極間,及び前記
第4及び第3の分割電極間に該圧電セラミックス中空円
柱の共振周波数で且つ第1の位相と異なる第2の位相を
有する第2の交流電圧を印加して該圧電セラミックス中
空円柱に第2の屈曲振動を励振可能とし、前記第1及び
第2の屈曲振動により前記圧電セラミックス円柱の両端
部に楕円振動を励起可能としたことを特徴とする圧電楕
円運動振動子が得られる。
[Means for Solving the Problems] According to the present invention, a first and a second parallel to the longitudinal direction of the piezoelectric ceramic hollow cylinder are provided at positions that divide the circumference of the outer peripheral surface of the piezoelectric ceramic hollow cylinder into four equal parts. , Third and fourth divided electrodes are sequentially applied in the circumferential direction, and the first and third divided electrodes facing each other are electrically connected by a first connection line, and the first and third divided electrodes are opposed to each other. The second and fourth divided electrodes are electrically connected by a second connection line, and a DC voltage is applied so that the first connection line has a positive polarity and the second connection line has a negative polarity. Thereby, the piezoelectric ceramic hollow cylinder is directed along the circumference from the first divided electrode toward the second and fourth divided electrodes, and from the third divided electrode to the second and fourth divided electrodes. Polarized in the direction toward the split electrode, and further 1st and 4th
A first AC voltage having a resonance frequency of the piezoelectric ceramic hollow cylinder and a first phase is applied between the divided electrodes and between the second and third divided electrodes to apply a first AC voltage to the piezoelectric ceramic hollow cylinder. The first bending vibration can be excited, and at the resonance frequency and the first phase of the piezoelectric ceramic hollow cylinder between the first and second divided electrodes adjacent to each other and between the fourth and third divided electrodes. A second alternating voltage having a second phase different from that of the piezoelectric ceramic hollow cylinder to excite a second bending vibration in the piezoelectric ceramic hollow cylinder, and both ends of the piezoelectric ceramic cylinder by the first and second bending vibrations Thus, a piezoelectric elliptical motion vibrator characterized by being capable of exciting elliptical vibration is obtained.

本発明によれば、圧電セラミックス中空円柱の外周面
の円周を4等分する位置に、該圧電セラミックス中空円
柱の長さ方向に平行な第1、第2、第3及び第4の外周
面分割電極を円周方向に沿って順に施し、該圧電セラミ
ックス中空円柱の内周面に前記第1、第2、第3及び第
4の外周面分割電極と夫々対向して第1、第2、第3及
び第4の内周面分割電極を施し、前記第1、第2、第3
及び第4の外周面分割電極と前記第1、第2、第3、及
び第4の内周面分割電極を夫々第1,第2、第3及び第4
の接続線で電気的に接続して、さらに該第1及び第3の
接続線を第1の端子に電気的に接続して、また該第2及
び第4の接続線を第2の端子に電気的に接続して、該第
1及第2の端子間に第1の端子がプラスの極性及び該第
2の端子がマイナスの極性となるように直流電圧を印加
してこれにより前記第1の外周面及び内周面分割電極か
ら前記第2及び第4の外周面及び内周面分割電極の方向
に向い、且つ前記第3の外周面及び内周面分割電極から
前記第2及び第4外周面及び内周面の分割電極に向う方
向に分極させ、更に互いに隣り合う前記第1及び第2の
接続線及び前記第3及び第4の接続線を電気接続して第
3及び第4の端子とし、前記第3及び第4の端子間にこ
の圧電セラミックス中空円柱の共振周波数で、且つ第1
の位相を有する第1の交流電圧を印加して、この圧電セ
ラミック中空円柱に第1の屈曲振動を励振可能とし、一
方互いに隣り合う前記第1及び第4の接続線及び前記第
2及び第3の接続線を電気接続して第5及び第6の端子
とし、前記第5及び第6の端子間にこの圧電セラミック
ス中空円柱の共振周波数で、且つ第1の位相と異なる第
2の位相を有する第2の交流電圧を印加して該圧電セラ
ミックス中空円柱に第2の屈曲振動を励振可能とし、前
記第1及び第2の屈曲振動により前記圧電セラミックス
円柱の両端部に楕円振動を励起可能としたことを特徴と
する圧電楕円運動振動子が得られる。
According to the present invention, the first, second, third, and fourth outer peripheral surfaces parallel to the longitudinal direction of the piezoelectric ceramic hollow cylinder are provided at positions that divide the circumference of the outer peripheral surface of the piezoelectric ceramic hollow cylinder into four equal parts. The divided electrodes are sequentially applied along the circumferential direction, and the first, second, third, and fourth outer peripheral surface divided electrodes are respectively disposed on the inner peripheral surface of the hollow column of the piezoelectric ceramics in opposition to the first, second, and fourth outer peripheral surface divided electrodes. Third and fourth inner circumferential surface splitting electrodes are applied, and the first, second, third
And the fourth outer peripheral surface divided electrode and the first, second, third, and fourth inner peripheral surface divided electrodes are first, second, third, and fourth, respectively.
, The first and third connection lines are electrically connected to a first terminal, and the second and fourth connection lines are connected to a second terminal. And a DC voltage is applied between the first and second terminals so that the first terminal has a positive polarity and the second terminal has a negative polarity. From the outer peripheral surface and the inner peripheral surface divided electrode to the second and fourth outer peripheral surfaces and the inner peripheral surface divided electrode, and from the third outer peripheral surface and the inner peripheral surface divided electrode to the second and fourth electrodes. The first and second connection lines and the third and fourth connection lines adjacent to each other are electrically connected to be polarized in the direction toward the divided electrodes on the outer peripheral surface and the inner peripheral surface. A terminal between the third and fourth terminals at the resonance frequency of the piezoelectric ceramic hollow cylinder;
A first AC voltage having a phase of ??? is applied to the piezoelectric ceramic hollow cylinder so that a first bending vibration can be excited. On the other hand, the first and fourth connection lines adjacent to each other and the second and third Are electrically connected to form fifth and sixth terminals, and have a second phase between the fifth and sixth terminals at the resonance frequency of the piezoelectric ceramic hollow cylinder and different from the first phase. By applying a second AC voltage, a second bending vibration can be excited in the piezoelectric ceramic hollow cylinder, and an elliptical vibration can be excited at both ends of the piezoelectric ceramic cylinder by the first and second bending vibrations. Thus, a piezoelectric elliptical motion oscillator is obtained.

本発明によれば、圧電セラミックス中空円柱の外周面
の円周を4等分する位置に、該圧電セラミックス中空円
柱の長さ方向に平行な第1、第2、第3及び第4の外周
面分割電極を円周方向に順に施し、該圧電セラミックス
中空円柱の内周面で、前記第1及び第2の外周面分割電
極間、前記第2及び第3の外周面分割電極間、前記第3
及び第4の外周面分割電極間、及び前記第4及び第1の
外周面分割電極間に対応する位置に夫々第1、第2、第
3及び第4の浮遊電極を施して、前記第1及び第3の外
周面分割電極を第1の接続線で電気的に接続すると共
に、前記第2及び第4の外周面分割電極を第2の接続線
で電気的に接続し、前記第1の接続線がプラスの極性
で、前記第2の接続線がマイナスの極性となるように直
流電圧を印加し、これにより前記圧電セラミックス中空
円柱の周に沿って前記第1の外周面分割電極から前記第
1の浮遊電極を経て前記第2の外周面分割電極に、及び
前記第1の外周面分割電極から前記第4の浮遊電極を経
て前記第4の外周面分割電極に向い、且つ前記第3の分
割電極から前記第2の浮遊電極経て前記第2の外周面分
割電極に、及び前記第3の外周面分割電極から前記第3
の浮遊電極を経て前記第4の外周面分割電極に向う方向
に分極させ、更に互いに隣り合う前記第1及び第4の外
周面分割電極間、及び前記第2及び第3の外周面分割電
極間に該圧電セラミックス中空円柱の共振周波数で且つ
第1の位相を有する第1の交流電圧を印加して、該圧電
セラミックス中空円柱に第1の屈曲振動を励振可能と
し、一方互いに隣り合う前記第1及び第2の外周面分割
電極間、及び前記第4及び第3の外周面分割電極間に該
圧電セラミックス中空円柱の共振周波数で、且つ前記第
1の位相と異なる第2の位相を有する第2の交流電圧を
印加して、該圧電セラミックス中空円柱に第2の屈曲振
動を励振可能とし、前記第1及び第2の屈曲振動により
前記圧電セラミックス円柱の両端部に楕円振動を励起可
能としたことを特徴とする圧電楕円運動振動子が得られ
る。
According to the present invention, the first, second, third, and fourth outer peripheral surfaces parallel to the longitudinal direction of the piezoelectric ceramic hollow cylinder are provided at positions that divide the circumference of the outer peripheral surface of the piezoelectric ceramic hollow cylinder into four equal parts. The divided electrodes are sequentially applied in the circumferential direction, and the inner peripheral surface of the piezoelectric ceramic hollow cylinder is provided between the first and second outer peripheral surface divided electrodes, between the second and third outer peripheral surface divided electrodes, and the third
The first, second, third, and fourth floating electrodes are respectively provided at positions corresponding to between the first and fourth outer peripheral surface divided electrodes and between the fourth and first outer peripheral surface divided electrodes, and And the third outer peripheral surface division electrode is electrically connected by a first connection line, and the second and fourth outer peripheral surface division electrodes are electrically connected by a second connection line. A DC voltage is applied so that the connection line has a positive polarity and the second connection line has a negative polarity, whereby the first outer peripheral surface divided electrode is extended along the circumference of the piezoelectric ceramic hollow cylinder. The third outer peripheral surface divided electrode passes through the first floating electrode to the second outer peripheral surface divided electrode and from the first outer peripheral surface divided electrode to the fourth outer peripheral surface divided electrode via the fourth floating electrode. From the divided electrode through the second floating electrode to the second outer peripheral surface divided electrode, and The third from the outer peripheral surface divided electrodes
Between the first and fourth outer peripheral surface divided electrodes adjacent to each other, and between the second and third outer peripheral surface divided electrodes. A first alternating voltage having a resonance frequency of the piezoelectric ceramic hollow cylinder and a first phase is applied to the piezoelectric ceramic hollow cylinder so that a first bending vibration can be excited. A second phase having a resonance frequency of the piezoelectric ceramic hollow cylinder and a second phase different from the first phase between the first and second outer peripheral surface divided electrodes and between the fourth and third outer peripheral surface divided electrodes. The second bending vibration can be excited in the piezoelectric ceramic hollow cylinder by applying an AC voltage of, and the elliptical vibration can be excited in both ends of the piezoelectric ceramic cylinder by the first and second bending vibrations. Features The piezoelectric elliptical motion oscillator that is obtained.

本発明によれば、圧電セラミックス中空円柱の外周面
の円周を4等分する位置に、該圧電セラミックス中空円
柱の長さ方向に平行な第1、第2、第3及び第4の外周
面分割電極を円周方向に沿って順に施し、該圧電セラミ
ックス中空円柱の内周面に沿って前記第1、第2、第3
及び第4の外周面分割電極に対向する位置に夫々第1、
第2、第3及び第4の内周面分割電極を施し、前記第
1、第2、第3及び第4の外周面分割電極を第1の接続
線で電気的に接続すると共に、前記第1、第2、第3及
び第4の内周面分割電極を第2の接続線で電気的に接続
し、前記第1の接続線がプラスの極性で、前記第2の接
続線がマイナスの極性となるように直流電圧を印加し、
これにより前記圧電セラミックス中空円柱に前記第1、
第2、第3及び第4の内周面分割電極から夫々前記第
1、第2、第3及び第4の外周面分割電極に向う径方向
の分極処理を施し、更に前記第1の内周面分割電極と前
記第1の外周面分割電極との間、及び前記第3の外周面
分割電極と前記第3の内周面分割電極との間に該圧電セ
ラミックス中空円柱の共振周波数で、且つ第1の位相を
有する第1の交流電圧を印加して該圧電セラミックス中
空円柱に第1の屈曲振動を励振可能とし、前記第2の内
周面分割電極と第2の外周面分割電極との間、及び前記
第4の外周面分割電極と第4の内周面分割電極との間に
該圧電セラミックス中空円柱の共振周波数で、且つ第1
の位相と異なる第2の位相を有する第2の交流電圧を印
加して該圧電セラミックス中空円柱に第2の屈曲振動を
励振可能とし、前記第1の屈曲振動と前記第2の屈曲振
動により前記圧電セラミックス中空円柱の両端部に楕円
運動を励振可能としたことを特徴とする圧電楕円運動振
動子が得られる。
According to the present invention, the first, second, third, and fourth outer peripheral surfaces parallel to the longitudinal direction of the piezoelectric ceramic hollow cylinder are provided at positions that divide the circumference of the outer peripheral surface of the piezoelectric ceramic hollow cylinder into four equal parts. The divided electrodes are sequentially applied along the circumferential direction, and the first, second, and third electrodes are formed along the inner peripheral surface of the hollow column of the piezoelectric ceramic.
And the first and fourth outer peripheral surface split electrodes at respective positions facing the split electrode.
Second, third, and fourth inner peripheral surface division electrodes are applied, and the first, second, third, and fourth outer peripheral surface division electrodes are electrically connected by a first connection line. The first, second, third, and fourth inner circumferential surface division electrodes are electrically connected by a second connection line, the first connection line has a positive polarity, and the second connection line has a negative polarity. Apply a DC voltage so as to be polar,
This allows the piezoelectric ceramic hollow cylinder to have the first,
Performing a radial polarization process from the second, third, and fourth inner peripheral surface division electrodes toward the first, second, third, and fourth outer peripheral surface division electrodes, respectively; At a resonance frequency of the piezoelectric ceramic hollow column between the surface divided electrode and the first outer peripheral surface divided electrode and between the third outer peripheral surface divided electrode and the third inner peripheral surface divided electrode, and A first AC voltage having a first phase is applied to excite a first bending vibration in the piezoelectric ceramic hollow cylinder, and the second inner peripheral surface divided electrode and the second outer peripheral surface divided electrode are excited. At the resonance frequency of the piezoelectric ceramic hollow cylinder between the fourth outer peripheral surface divided electrode and the fourth inner peripheral surface divided electrode, and
A second alternating voltage having a second phase different from the phase of the piezoelectric ceramics is applied to excite a second bending vibration in the piezoelectric ceramic hollow column, and the first bending vibration and the second bending vibration A piezoelectric elliptical oscillator is obtained in which elliptical motion can be excited at both ends of a piezoelectric ceramic hollow cylinder.

[作 用] 本発明においては、圧電セラミックス中空円柱の外周
面の円周を4分割する位置に電極を施したものと、更に
内周面のこれらの電極と対向する位置及びこれらの電極
間に対応する位置のいずれかに電極を施したものよりな
る圧電楕円運動振動子を構成している。これらの電極に
直流電圧を印加して円周方向或いは径方向に分極し、中
心に対して対称的な位置の電極部に、分極方向と同じ方
向及び分極方向と逆方向になるようにこの圧電楕円運動
振動子の共振周波数に等しい第1の交流電圧を印加する
ことによって、分極方向と同じ方向に対しては伸び、及
び分極方向と逆方向に対しては縮みの振動を励起する
と、軸を含む面内でこの圧電セラミックス中空円柱は屈
曲振動を生じる。
[Operation] In the present invention, the piezoelectric ceramic hollow cylinder is provided with electrodes at positions where the circumference of the outer peripheral surface is divided into four parts, the inner peripheral surface is further opposed to these electrodes, and between the electrodes. The piezoelectric elliptical motion vibrator is formed by applying electrodes to any of the corresponding positions. A DC voltage is applied to these electrodes to polarize them in the circumferential or radial direction, and the piezoelectric portions are applied to the electrode portions symmetrical with respect to the center in the same direction as the polarization direction and in the opposite direction to the polarization direction. By applying a first AC voltage equal to the resonance frequency of the elliptical motion oscillator to excite vibrations that elongate in the same direction as the polarization direction and contract in the direction opposite to the polarization direction, the axis is changed. The piezoelectric ceramic hollow cylinder generates bending vibration in the plane including the piezoelectric ceramic.

さらに、これらの電極に対して、周面の90℃回転した
位置にある電極部に同様な共振周波数の第2の交流電圧
を印加すると、軸を含む面内で先の第1の屈曲振動に対
して直交する同様な第2の屈曲振動を励起する。これら
2種の第1及び第2の交流電圧の位相を(好ましくは90
゜)ずらすことにより圧電楕円運動振動子の両端に円を
含む楕円運動を励起することができる。
Furthermore, when a second AC voltage having a similar resonance frequency is applied to the electrode portion at a position rotated by 90 ° C. on the peripheral surface of these electrodes, the first bending vibration occurs in a plane including the axis. A similar second bending vibration orthogonal to the second direction is excited. The phases of these two types of first and second AC voltages (preferably 90
Ii) By displacing, the elliptical motion including a circle at both ends of the piezoelectric elliptical motion oscillator can be excited.

[実施例] 本発明の第1の実施例に係る圧電楕円運動振動子につ
いて、図面を用いて詳しく説明する。
Example A piezoelectric elliptical motion oscillator according to a first example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1の実施例に係る圧電楕円運動振
動子の構造を示す概略図であり、圧電セラミックス中空
円柱10の外周面を4等分する位置に、前記圧電セラミッ
クス中空円柱10の長さ方向に沿って平行に第1、第2、
第3及び第4の分割電極11,12,13,14が順に施されてい
る。
FIG. 1 is a schematic view showing the structure of a piezoelectric elliptical motion oscillator according to a first embodiment of the present invention. The piezoelectric ceramic hollow cylinder 10 is located at a position where the outer peripheral surface of the piezoelectric ceramic hollow cylinder 10 is divided into four equal parts. First, second, parallel along the length direction of
Third and fourth divided electrodes 11, 12, 13, and 14 are sequentially applied.

第2図は第1図に示した圧電セラミックス中空円柱1
の振動の原理の説明に供する横断面図であり、第2図
(a)において、破線の矢印は第1及び第3の分割電極
11,13を第1の接続線15により電気的に接続して+端
子、第2及び第4の分割電極12,14を第2の接続線16に
より電気的に接続して−端子とし、直流電圧を印加して
分極処理を施したときの分極の向きを示している。この
図において、分極方向は圧電セラミックス中空円柱10の
周に沿って第1の分割電極11から第2の分割電極12及び
第4の分割電極14の方向へ向い、第3の分割電極13から
第2の分割電極12及び第4の分割電極14に向う方向であ
る。第2図(b)は第2図(a)のように分極処理され
た圧電セラミックス中空円柱10において、互いに隣り合
う第1及び第2の分割電極11,12を第3の接続線17によ
り電気的に接続し+端子、もう一組の互いに隣り合う第
3及び第4の分割電極13,14を第4の接続線18により電
気的に接続して−端子として直流電圧を印加した場合に
圧電セラミックス中空円柱10の断面方向に発生する歪み
の状態を示している。
FIG. 2 shows the piezoelectric ceramic hollow cylinder 1 shown in FIG.
FIG. 2 is a cross-sectional view for explaining the principle of vibration of FIG. 2A. In FIG. 2A, broken arrows indicate first and third divided electrodes.
11 and 13 are electrically connected by a first connection line 15 to be a + terminal, and the second and fourth divided electrodes 12 and 14 are electrically connected by a second connection line 16 to be a-terminal. It shows the direction of polarization when a voltage is applied to perform polarization processing. In this figure, the polarization direction is from the first split electrode 11 to the second split electrode 12 and the fourth split electrode 14 along the circumference of the piezoelectric ceramic hollow cylinder 10, and from the third split electrode 13 to the third split electrode 13. The direction is toward the second divided electrode 12 and the fourth divided electrode 14. FIG. 2 (b) shows a piezoelectric ceramic hollow cylinder 10 which has been polarized as shown in FIG. 2 (a), in which first and second divided electrodes 11, 12 adjacent to each other are electrically connected by a third connection line 17. When a DC voltage is applied as a negative terminal, the positive and negative terminals are electrically connected to each other via a fourth connection line 18 and the other pair of third and fourth divided electrodes 13 and 14 are electrically connected to each other. 3 shows a state of distortion generated in the cross-sectional direction of the ceramic hollow cylinder 10.

第2図(b)において電界は実線の矢印で示される向
きに印加されるため、第1及び第4の分割電極11と14の
間は分極の向きと電界の向きが同じ向きになり、円周方
向の伸び歪みが発生し、第2及び第3の分割電極12と13
の間は、分極の向きと電界の向きとが逆向きになり、円
周方向の縮み歪みが発生する。その結果として、第2図
(b)において圧電セラミックス中空円柱10は、長さ方
向に下側が膨らむように屈曲する。また、印加電圧の向
きを逆向きにした場合は、屈曲の向きも逆向きになる。
In FIG. 2 (b), the electric field is applied in the direction indicated by the solid arrow, so that the polarization direction and the electric field direction are the same between the first and fourth divided electrodes 11 and 14, and Circumferential elongation strain occurs, and the second and third split electrodes 12 and 13
During the period, the direction of the polarization and the direction of the electric field are opposite to each other, and contraction distortion in the circumferential direction occurs. As a result, in FIG. 2B, the piezoelectric ceramic hollow cylinder 10 bends so that the lower side expands in the length direction. When the direction of the applied voltage is reversed, the direction of the bending is also reversed.

第3図は第2図(a)のように、分極処理された圧電
セラミックス中空円柱10に交流電圧を印加した場合の振
動状態の説明図である。第3図(a)において、第1及
び第4の分割電極11,14間、及び第2及び第3の分割電
極12,13間に夫々圧電セラミックス中空円柱10の屈曲振
動の共振周波数に等しく、また第1の位相を有する第1
の交流電圧を印加すると圧電セラミックス中空円柱10は
第3図(a)の二点鎖線で示すように矢印の方向に屈曲
する第1の屈曲振動を発生する。第3図(a)におい
て、同様にして第1及び第2の分割電極11,12間,及び
第4及び第3の分割電極4,3間を夫々に圧電セラミック
ス中空円柱10の第1の屈曲振動の共振周波数に等しく第
2の位相を有する第2の交流電圧を印加すると圧電セラ
ミックス中空円柱10は第3図(a)に示す矢印の方向と
直角な方向の第2の屈曲振動を発生する。
FIG. 3 is an explanatory view of a vibration state when an AC voltage is applied to the polarized piezoelectric ceramic hollow cylinder 10 as shown in FIG. 2 (a). In FIG. 3A, the resonance frequency of the bending vibration of the piezoelectric ceramic hollow cylinder 10 is equal to between the first and fourth divided electrodes 11 and 14 and between the second and third divided electrodes 12 and 13, respectively. A first phase having a first phase;
When the alternating voltage is applied, the piezoelectric ceramic hollow cylinder 10 generates a first bending vibration that bends in the direction of the arrow as shown by the two-dot chain line in FIG. 3 (a). In FIG. 3 (a), the first bending of the piezoelectric ceramic hollow cylinder 10 is similarly performed between the first and second divided electrodes 11 and 12 and between the fourth and third divided electrodes 4 and 3, respectively. When a second AC voltage having a second phase equal to the resonance frequency of the vibration is applied, the piezoelectric ceramic hollow cylinder 10 generates a second bending vibration in a direction perpendicular to the direction of the arrow shown in FIG. .

第4図は本発明の第1の実施例に係る超音波モータの
交流電圧印加法の具体例を示す図である。この図におい
て、第1の交流電圧はV0sinωtなる交流を第1のトラ
ンスの1次側に入力することにより、2次側の端子21及
び22間,端子23及び24間よりV1sinωtなる交流として
分割して取出され、第2の交流電圧は、第1の交流電圧
と90゜位相の進んだV0cosωtなる交流を第2のトラン
スの1次側に入力することにより、2次側の端子25及び
26間,端子27及び28間よりV1cosωtなる交流として分
割して取出されている。第1のトランスの2次側端子の
符号+,−及び第2のトランスの2次側端子の符号
(+),(−)は夫々同符号により同極性を有すること
を示している。端子21と端子25は第1の分割電極に、端
子23と26は第2の分割電極に、端子24と28は第3の分割
電極、端子22及び27は第4の分割電極に夫々接続されて
いる。
FIG. 4 is a view showing a specific example of an AC voltage application method for the ultrasonic motor according to the first embodiment of the present invention. In this figure, the first AC voltage is divided into an AC of V1sinωt from the terminals 21 and 22 on the secondary side and between terminals 23 and 24 by inputting an AC of V0sinωt to the primary side of the first transformer. The second AC voltage is input to the primary side of the second transformer by inputting an AC of V0cosωt, which is 90 ° in phase with the first AC voltage, to the secondary-side terminal 25 and
It is divided and taken out as an alternating current of V1cosωt from between 26 and between terminals 27 and 28. The signs + and-of the secondary terminals of the first transformer and the signs (+) and (-) of the secondary terminals of the second transformer have the same sign, respectively, indicating that they have the same polarity. Terminals 21 and 25 are connected to the first split electrode, terminals 23 and 26 are connected to the second split electrode, terminals 24 and 28 are connected to the third split electrode, and terminals 22 and 27 are connected to the fourth split electrode, respectively. ing.

従って、前述の二つの方向の第1及び第2の屈曲振動
の位相をずらせることにより、具体的には夫々の屈曲振
動を励振するための第1及び第2の交流駆動電圧の第1
の位相と第2の位相とをずらすことにより(第4図)、
圧電セラミックス中空円柱10の両端部に第3図(b)の
二点鎖線で示すような、円運動あるいは楕円運動を励振
することができる。
Accordingly, by shifting the phases of the first and second bending vibrations in the two directions described above, specifically, the first and second AC drive voltages for exciting the respective bending vibrations are shifted.
And the second phase (FIG. 4),
A circular motion or an elliptical motion as shown by a two-dot chain line in FIG. 3 (b) can be excited at both ends of the piezoelectric ceramic hollow cylinder 10.

次に、本発明の第2の実施例に係る圧電楕円運動振動
子について図面を用いて詳しく説明する。
Next, a piezoelectric elliptical oscillator according to a second embodiment of the present invention will be described in detail with reference to the drawings.

第5図は本発明の第2の実施例に係る圧電楕円運動振
動子の構造を示す概略図である。第6図(a)及び
(b)は圧電楕円運動振動子の歪みの発生状態の説明に
供するための第5図に示した圧電セラミックス中空円柱
30の断面図であり、(a)は圧電セラミックス中空円柱
30の分極のための結線方法を示しており、(b)は圧電
セラミック中空円柱30の駆動のための結線方法を示して
いる。
FIG. 5 is a schematic diagram showing the structure of a piezoelectric elliptical motion oscillator according to a second embodiment of the present invention. 6 (a) and 6 (b) are piezoelectric ceramic hollow cylinders shown in FIG. 5 for explaining the state of occurrence of distortion of the piezoelectric elliptical oscillator.
30 is a cross-sectional view of FIG. 30, (a) is a piezoelectric ceramic hollow cylinder
A connection method for polarization 30 is shown, and (b) shows a connection method for driving the piezoelectric ceramic hollow cylinder 30.

第5図及び第6図(a)及び(b)において、圧電セ
ラミックス中空円柱30の外周面を4等分する位置に、前
記圧電セラミックス中空円柱30の長さ方向と平行な第1,
第2,第3及び第4の外周面分割電極31,32,33,34が周面
に沿ってこの順で形成され、さらに前記圧電セラミック
ス中空円柱30の内周面に夫々の第1,第2,第3及び第4の
外周面分割電極31,32,33,34と対向する位置に第1,第2,
第3及び第4の内周面分割電極31′,32′,33′,34′が
夫々対応して形成されている。
5 and FIGS. 6 (a) and 6 (b), at positions where the outer peripheral surface of the piezoelectric ceramic hollow cylinder 30 is divided into four equal parts, a first and a first cylinders parallel to the longitudinal direction of the piezoelectric ceramic hollow cylinder 30 are arranged.
Second, third, and fourth outer peripheral surface division electrodes 31, 32, 33, and 34 are formed in this order along the peripheral surface, and the first, second, and third electrodes are respectively formed on the inner peripheral surface of the piezoelectric ceramic hollow cylinder 30. 2, the first, second, and third electrodes are located at positions facing the third and fourth outer peripheral surface divided electrodes 31, 32, 33, and 34.
Third and fourth inner peripheral surface division electrodes 31 ', 32', 33 ', and 34' are formed correspondingly.

第6図(a)を参照すると、破線の矢印は第1の外周
面分割電極31と第1の内周面分割電極31′とを第1の接
続線35aで電気的に接続すると共に、第2の外周面分割
電極32と第2の内周面分割電極32′を第2の接続線35b
で、第3の外周面分割電極33と第3の内周面分割電極3
3′を第3の接続線35cで、第4の外周面分割電極34と第
3の内周面分割電極34′を第4の接続線35dで夫々電気
的接続している。そして、第1の接続線35aと第3の接
続線35cとを電気的に接続して第1の端子36aとし、第2
の接続線35bと第4の接続線35dとを電気的に接続して第
2の端子36bとし、第1の端子36aが+端子、第2の端子
36bが一端子となるように直流電圧を印加して分極処理
を施した。このときの分極の向きは、第1の外周面及び
内周面分割電極31及び31′から第2の外周面及び内周面
分割電極32及び32′、及び第1の外周面及び内周面分割
電極31及び31′から第4の外周面及び内周面分割電極34
及び34′と、第3の外周面及び内周面分割電極33及び3
3′から第2の外面面及び内周面分割電極32及び32′、
及び第3の外周面及び内周面分割電極33及び33′から第
4の外周面及び内周面分割電極34及び34′とである。
Referring to FIG. 6 (a), a broken arrow indicates that the first outer peripheral surface divided electrode 31 and the first inner peripheral surface divided electrode 31 'are electrically connected by a first connection line 35a. The second outer peripheral surface divided electrode 32 and the second inner peripheral surface divided electrode 32 'are connected to a second connection line 35b.
Thus, the third outer peripheral surface divided electrode 33 and the third inner peripheral surface divided electrode 3
Reference numeral 3 'denotes a third connection line 35c, and the fourth outer peripheral surface divided electrode 34 and the third inner peripheral surface divided electrode 34' are electrically connected by a fourth connection line 35d. Then, the first connection line 35a and the third connection line 35c are electrically connected to form a first terminal 36a,
And the fourth connection line 35d are electrically connected to form a second terminal 36b. The first terminal 36a is a + terminal, and the second terminal 36b is a second terminal 36b.
Polarization was performed by applying a DC voltage so that 36b became one terminal. The direction of polarization at this time is from the first outer peripheral surface and inner peripheral surface divided electrodes 31 and 31 ′ to the second outer peripheral surface and inner peripheral surface divided electrodes 32 and 32 ′, and the first outer peripheral surface and inner peripheral surface. From the divided electrodes 31 and 31 'to the fourth outer peripheral surface and inner peripheral surface divided electrode 34
And 34 ', and the third outer and inner peripheral surface divided electrodes 33 and 3
3 'to the second outer surface and inner peripheral surface divided electrodes 32 and 32',
And the third outer peripheral surface and inner peripheral surface divided electrodes 33 and 33 'to the fourth outer peripheral surface and inner peripheral surface divided electrodes 34 and 34'.

第6図(b)を参照すると、第6図(a)のように分
極処理された圧電セラミックス中空円柱30において、互
いに隣り合う第1の接続線35aと第2の接続線35bとを接
続して第3の端子37aを形成し、更に互いに隣り合う第
3の接続線35cと第4の接続線35dとを接続して第4の端
子37bを形成して、第3の端子を+端子、第4の端子を
一端子として直流電圧を印加した場合に圧電セラミック
ス中空円柱30の断面方向に発生する歪みの状態を示して
いる。第6図(b)において電界は実線の矢印で示す向
きに印加されるため、第1の外周面及び内周面分割電極
31及び31′と、第4の外周面及び内周面分割電極34及び
34′の間は分極の向きと電界の向きが同じになり、円周
方向の伸び歪みが発生し、第2の外周面及び内周面32及
び32′と第3の外周面及び内周面33及び33′との間は分
極の向きと電界の向きが逆向きになり円周方向の縮み歪
みが発生する。その結果として、第6図(b)において
は圧電セラミックス中空円柱30は長さ方向に下側が膨ら
むように屈曲する。また、印加電圧の方向を逆向きにし
た場合は屈曲の向きも逆向きとなる。
Referring to FIG. 6 (b), in the piezoelectric ceramic hollow cylinder 30 polarized as shown in FIG. 6 (a), the first connection line 35a and the second connection line 35b adjacent to each other are connected. To form a third terminal 37a, further connect the third connection line 35c and the fourth connection line 35d adjacent to each other to form a fourth terminal 37b, and change the third terminal to a + terminal, This figure shows a state of distortion generated in the cross-sectional direction of the hollow column 30 of the piezoelectric ceramic when a DC voltage is applied with the fourth terminal as one terminal. In FIG. 6B, since the electric field is applied in the direction shown by the solid arrow, the first outer peripheral surface and inner peripheral surface split electrode
31 and 31 ′, a fourth outer peripheral surface and an inner peripheral surface divided electrode 34 and
During the period 34 ', the direction of polarization and the direction of the electric field become the same, and a circumferential elongation distortion occurs, and the second outer peripheral surface and the inner peripheral surface 32 and 32' and the third outer peripheral surface and the inner peripheral surface Between 33 and 33 ', the direction of the polarization and the direction of the electric field are opposite to each other, and a contraction strain in the circumferential direction occurs. As a result, in FIG. 6 (b), the piezoelectric ceramic hollow cylinder 30 is bent such that the lower side expands in the length direction. When the direction of the applied voltage is reversed, the direction of the bending is also reversed.

第6図において、第4図に示される本発明の第1の実
施例と同様に第1及び第2のトランスを端子21と端子25
は第1の接続線35aに、端子23と26は第2の接続線35b
に、端子24と28は第3の接続線35cに、端子22及び27は
第4の接続線35dに夫々接続することにより、第1の実
施例と同様に第1及び第2の2種の交流電圧を印加する
ことができる。
In FIG. 6, the first and second transformers are connected to terminals 21 and 25 in the same manner as in the first embodiment of the present invention shown in FIG.
Is the first connection line 35a, and the terminals 23 and 26 are the second connection line 35b.
The terminals 24 and 28 are connected to a third connection line 35c, and the terminals 22 and 27 are connected to a fourth connection line 35d, respectively. An AC voltage can be applied.

第7図は第6図(a)のように、分極処理された圧電
セラミックス中空円柱30に第1の交流電圧を印加した場
合の振動状態の説明図である。
FIG. 7 is an explanatory diagram of a vibration state when a first AC voltage is applied to the piezoelectric ceramic hollow cylinder 30 subjected to the polarization treatment as in FIG. 6 (a).

第7図(a)において、第1の外周面及び内周面分割
電極31及び31′を接続した第1の接続線35aと第4の外
周面及び内周面分割電極34及び34′とを接続した第2の
接続線35d間,及び第2の外周面及び内周面分割電極32
及び32′を接続した第2の接続線35b及び第3の外周面
及び内周面分割電極33及び33′を接続した第3の接続線
35c間に圧電セラミックス中空円柱30の屈曲振動の共振
周波数に等しく、且つ第1の位相を有する第1の交流電
圧を印加すると圧電セラミックス中空円柱30は第7図
(a)の二点鎖線で示すように矢印36の方向に第1の屈
曲振動を発生する。
In FIG. 7 (a), the first connection line 35a connecting the first outer peripheral surface and inner peripheral surface division electrodes 31 and 31 'and the fourth outer peripheral surface and inner peripheral surface division electrodes 34 and 34' are connected. Between the connected second connection lines 35d, and between the second outer peripheral surface and the inner peripheral surface divided electrode 32.
And 32 ', and a third connecting line connecting the third outer and inner circumferential divided electrodes 33 and 33'.
When a first AC voltage having the same phase as the resonance frequency of the bending vibration of the piezoelectric ceramic hollow cylinder 30 and having the first phase is applied between 35c, the piezoelectric ceramic hollow cylinder 30 is shown by a two-dot chain line in FIG. 7 (a). As described above, the first bending vibration is generated in the direction of arrow 36.

第7図(a)において、同様にして第1の外周面及び
内周面分割電極31,31′を接続した第1の接続線35a及び
第2の外周面及び内周面分割電極32,32′を接続した第
2の接続線35b間,及び第4の外周面及び内周面分割電
極34,34′を接続した第4の接続線35d及び第3の外周面
及び内周面分割電極33,33′を接続した第3の接続線35c
間の夫々に圧電セラミックス中空円柱30の屈曲振動の共
振周波数に等しく且つ第2の位相を有する第2の交流電
圧を印加すると圧電セラミックス中空円柱30は第7図
(a)に示す矢印36の方向と直角な方向の第2の屈曲振
動を発生する。
In FIG. 7 (a), a first connection line 35a connecting the first outer peripheral surface and inner peripheral surface divided electrodes 31 and 31 'and a second outer peripheral surface and inner peripheral surface divided electrodes 32 and 32 are similarly connected. ', The fourth connecting line 35d connecting the fourth outer peripheral surface and the inner peripheral surface dividing electrode 34, 34' and the third outer peripheral surface and the inner peripheral surface dividing electrode 33. , 33 'to the third connection line 35c
When a second AC voltage having a second phase equal to the resonance frequency of the bending vibration of the piezoelectric ceramic hollow cylinder 30 and a second phase is applied to the piezoelectric ceramic hollow cylinder 30 in the direction indicated by an arrow 36 in FIG. And a second bending vibration in a direction perpendicular to the second direction is generated.

従って、以上示した互いに垂直な二つの方向の第1及
び第2の屈曲振動の位相をずらせることにより、具体的
には夫々の屈曲振動を励振するための第1及び第2の交
流駆動電圧の第1及び第2の位相をずらせることによ
り、圧電セラミックス中空円柱30の両端部に第7図
(b)の二点鎖線で示すような、円運動を含む楕円運動
を励振することができる。
Accordingly, by shifting the phases of the first and second bending vibrations in the two directions perpendicular to each other as described above, specifically, the first and second AC drive voltages for exciting the respective bending vibrations are provided. By shifting the first and second phases, elliptical motion including circular motion can be excited at both ends of the piezoelectric ceramic hollow cylinder 30 as shown by the two-dot chain line in FIG. 7B. .

次に、本発明の第3の実施例に係る圧電楕円運動振動
子について図面を用いて詳しく説明する。
Next, a piezoelectric elliptical motion oscillator according to a third embodiment of the present invention will be described in detail with reference to the drawings.

第8図は本発明の第3の実施例に係る圧電楕円運動振
動子の構造を示す概略図である。第9図(a)及び
(b)は圧電楕円運動振動子の歪みの発生状態の説明に
供するための第8図に示した圧電セラミックス中空円柱
40の断面図であり,(a)は圧電セラミックス中空円柱
40の分極のための結線方法を示し,(b)は圧電セラミ
ックス中空円柱40の駆動のための結線方法を示してい
る。
FIG. 8 is a schematic view showing the structure of a piezoelectric elliptical motion oscillator according to a third embodiment of the present invention. 9 (a) and 9 (b) are piezoelectric ceramic hollow cylinders shown in FIG. 8 for explaining the state of occurrence of distortion of the piezoelectric elliptical oscillator.
40 is a cross-sectional view of FIG. 40, (a) is a hollow column of piezoelectric ceramics
A connection method for driving the piezoelectric ceramic hollow cylinder 40 is shown in (b) of FIG.

第8図及び第9図(a)及び(b)において、圧電セ
ラミックス中空円柱40の外周面を4等分する位置に、前
記圧電セラミックス中空円柱40の長さ方向と平行に第1,
第2,第3及び第4の外周面分割電極41,42,43,44が順に
形成され、さらに前記圧電セラミックス中空円柱40の内
周面に第1及び第2の外周面分割電極41,42間,第2及
び第3の外周面分割電極42,43間,第3及び第4の外周
面分割電極43,44間,及び第4及び第1の外周面分割電
極44,41間の対応する位置に第1,第2,第3,及び第4の浮
遊電極41′,42′,43′及び44′が夫々施されている。
In FIGS. 8 and 9 (a) and (b), at positions where the outer peripheral surface of the piezoelectric ceramic hollow cylinder 40 is divided into four equal parts, the first and the second are parallel to the longitudinal direction of the piezoelectric ceramic hollow cylinder 40.
Second, third, and fourth outer peripheral surface division electrodes 41, 42, 43, and 44 are formed in order, and first and second outer peripheral surface division electrodes 41, 42 are provided on the inner peripheral surface of the piezoelectric ceramic hollow cylinder 40. , Between the second and third outer peripheral surface divided electrodes 42 and 43, between the third and fourth outer peripheral surface divided electrodes 43 and 44, and between the fourth and first outer peripheral divided electrodes 44 and 41. Positions are provided with first, second, third, and fourth floating electrodes 41 ', 42', 43 ', and 44', respectively.

第9図(a)を参照すると、破線の矢印は第1及び第
3の外周面分割電極41及び43を第1の接続線45aで電気
的に接続すると共に、第2及び第4の外周面分割電極42
及び44を第2の接続線45bで電気的に接続して、第1の
接続線45aを+端子とし第2の接続線45bを−端子として
直流電圧を印加して分極処理を施したときの分極の向き
を示している。
Referring to FIG. 9 (a), broken arrows indicate that the first and third outer peripheral surface divided electrodes 41 and 43 are electrically connected by a first connection line 45a, and that the second and fourth outer peripheral surfaces are separated. Split electrode 42
And 44 are electrically connected by a second connection line 45b, the first connection line 45a is used as a positive terminal, the second connection line 45b is used as a negative terminal, and a DC voltage is applied to perform polarization processing. The direction of polarization is shown.

第9図(a)において、圧電セラミックス中空円柱40
は、第1の外周面分割電極41より第1の浮遊電極41′を
経て第2の外周面分割電極42に至る方向,及び第1の外
周面分割電極41より第4の浮遊電極44′を経て第4の外
周面分割電極44に至る方向に分極処理され、また第3の
外周面分割電極43より第2の浮遊電極42′を経て第2の
外周面分割電極42に至る方向,及び第3の外周面分割電
極43より第3の浮遊電極43′を通り第4の外周面分割電
極44に至る方向に分極処理されている。
In FIG. 9 (a), the piezoelectric ceramic hollow cylinder 40
Indicates the direction from the first outer peripheral surface divided electrode 41 to the second outer peripheral surface divided electrode 42 via the first floating electrode 41 ′, and the first outer peripheral surface divided electrode 41 to the fourth floating electrode 44 ′. Through the second outer peripheral surface divided electrode 43 via the second floating electrode 42 'and the second outer peripheral surface divided electrode 42, and from the third outer peripheral surface divided electrode 43 through the second floating electrode 42'. The polarization is performed in a direction from the third outer peripheral surface divided electrode 43 to the fourth outer peripheral surface divided electrode 44 through the third floating electrode 43 '.

第9図(b)を参照すると、第9図(a)のように分
極処理された圧電セラミックス中空円柱40において、互
いに隣り合う第1及び第2の外周面分割電極41及び42を
第3の接続線46aで接続すると共に、互いに隣り合う第
3及び第4の外周面分割電極43及び44を第4の接続線46
bで接続して、第3の接続線を+端子、第4の接続線を
−端子として直流電圧を印加した場合に圧電セラミック
ス中空円柱40の断面方向に発生する歪みの状態を示して
いる。第9図(b)において電界は、第1の外周面分割
電極41より第4の浮遊電極44′を経て第4の外周面分割
電極44を通る実線の矢印で示す向きに印加されるため、
第1の外周面分割電極41−第4の浮遊電極44′−第4の
外周面分割電極44の間は分極の向きと電界の向きが同じ
になり円周方向の伸び歪みが発生し、一方第3の外周面
分割電極43−第2の浮遊電極42′−第2の外周面分割電
極42の間は分極の向きと電界の向きが逆向きになり、円
周方向の縮み歪みが発生する。その結果として、第9図
(b)において圧電セラミックス中空円柱40は長さ方向
に下側が膨らむように屈曲する。また、印加電圧の向き
を逆向きにした場合は屈曲の向きも逆向きとなる。
Referring to FIG. 9 (b), in the piezoelectric ceramic hollow cylinder 40 polarized as shown in FIG. 9 (a), the first and second outer peripheral surface divided electrodes 41 and 42 adjacent to each other are connected to the third. The third and fourth outer peripheral surface divided electrodes 43 and 44 which are connected by the connection line 46a and which are adjacent to each other are connected to the fourth connection line 46a.
FIG. 3B shows a state of distortion generated in the cross-sectional direction of the hollow column 40 of the piezoelectric ceramics when a DC voltage is applied with the third connection line connected to the positive terminal and the fourth connection line connected to the negative terminal. In FIG. 9 (b), the electric field is applied in the direction shown by the solid arrow from the first outer peripheral surface divided electrode 41 through the fourth outer peripheral surface divided electrode 44 via the fourth floating electrode 44 '.
Between the first outer peripheral surface divided electrode 41-the fourth floating electrode 44'-the fourth outer peripheral surface divided electrode 44, the direction of polarization and the direction of the electric field are the same, and a circumferential elongation distortion occurs. The direction of polarization and the direction of the electric field are reversed between the third outer peripheral surface divided electrode 43 -the second floating electrode 42 ′ -the second outer peripheral surface divided electrode 42, and contraction distortion in the circumferential direction occurs. . As a result, in FIG. 9B, the piezoelectric ceramic hollow cylinder 40 is bent so that the lower side expands in the length direction. When the direction of the applied voltage is reversed, the direction of the bending is also reversed.

第10図は第9図(a)のように、分極処理された圧電
セラミックス中空円柱40に第1及び第2の交流電圧を印
加した場合の振動状態の説明図である。第10図(a)に
おいて、第1及び第4の外周面分割電極41及び44間,及
び第2及び第3の外周面分割電極42及び43間に、圧電セ
ラミックス中空円柱40の屈曲振動の共振周波数に等しく
且つ第1の位相を有する第1の交流電圧を印加すると圧
電セラミックス中空円柱40は第10図(a)の二点鎖線で
示すように矢印47の方向に第1の屈曲振動を発生する。
FIG. 10 is an explanatory view of the vibration state when the first and second AC voltages are applied to the polarized piezoelectric ceramic hollow cylinder 40 as shown in FIG. 9 (a). In FIG. 10 (a), the resonance of the bending vibration of the piezoelectric ceramic hollow cylinder 40 is provided between the first and fourth outer peripheral surface divided electrodes 41 and 44 and between the second and third outer peripheral surface divided electrodes 42 and 43. When a first AC voltage having a frequency and a first phase is applied, the piezoelectric ceramic hollow cylinder 40 generates a first bending vibration in the direction of arrow 47 as shown by a two-dot chain line in FIG. 10 (a). I do.

第10図(a)において、同様にして第1及び第2の外
周面分割電極41及び42間,及び第4及び第3の外周面分
割電極44及び43間に、圧電セラミックス中空円柱21の第
1の屈曲振動の共振周波数に等しく且つ第2の位相を有
する第2の交流電圧を夫々印加すると圧電セラミックス
中空円柱21は第10図(a)に示す矢印47の方向と直角な
方向の第2の屈曲振動を発生する。
In FIG. 10 (a), similarly, between the first and second outer peripheral surface divided electrodes 41 and 42 and between the fourth and third outer peripheral surface divided electrodes 44 and 43, the piezoelectric ceramic hollow cylinder 21 When a second AC voltage having the same phase as the resonance frequency of the bending vibration and having the second phase is applied, the piezoelectric ceramic hollow cylinder 21 is moved in the second direction perpendicular to the direction of the arrow 47 shown in FIG. Generates bending vibration.

第4図に示した交流電源により、第1及び第2の2次
側の端子21と端子25は第1の分割電極に、端子23と26は
第2の分割電極に、端子24と28は第3の分割電極、端子
22及び27は第4の分割電極に夫々接続することにより、
以上示した互いに垂直な二つの方向の第1及び第2の屈
曲振動の位相をずらせることにより、具体的には夫々の
屈曲振動を励振するための第1及び第2の交流駆動電圧
の第1及び第2の位相をずらせる(好ましくは90゜)こ
とにより、圧電セラミックス中空円柱40の両端部に第10
図(b)の二点鎖線で示すような、円を含む楕円運動を
励振することができる。
By the AC power supply shown in FIG. 4, the first and second secondary terminals 21 and 25 are connected to the first split electrode, the terminals 23 and 26 are connected to the second split electrode, and the terminals 24 and 28 are connected to the second split electrode. Third split electrode, terminal
22 and 27 are connected to the fourth divided electrode, respectively,
By shifting the phases of the first and second bending vibrations in the two directions perpendicular to each other as described above, specifically, the first and second AC driving voltages of the first and second AC driving voltages for exciting the respective bending vibrations are shifted. By shifting the first and second phases (preferably 90 °), the 10
An elliptical motion including a circle as shown by a two-dot chain line in FIG.

次に、本発明の第4の実施例に係る圧電楕円運動振動
子について図面を用いて詳しく説明する。
Next, a piezoelectric elliptical oscillator according to a fourth embodiment of the present invention will be described in detail with reference to the drawings.

第11図は本発明の第4の実施例に係る圧電楕円運動振
動子の構造を示し、第4図の本発明の第2の実施例に係
る圧電楕円運動振動子との結線以外は同様の構造を示し
ている。第12図(a)及び(b)は圧電楕円運動振動子
の歪みの発生状態の説明に供するための第11図の圧電セ
ラミックス中空円柱50の断面図であり、(a)は圧電セ
ラミックス中空円柱50の分極のための結線方法を示し、
(b)は圧電セラミックス中空円柱50の駆動のための結
線方法を示している。
FIG. 11 shows the structure of a piezoelectric elliptical oscillator according to a fourth embodiment of the present invention. The same structure as that of the piezoelectric elliptical oscillator according to the second embodiment of the present invention shown in FIG. Shows the structure. 12 (a) and 12 (b) are cross-sectional views of the piezoelectric ceramic hollow cylinder 50 of FIG. 11 for explaining the state of occurrence of distortion of the piezoelectric elliptical oscillator, and FIG. 12 (a) is a piezoelectric ceramic hollow cylinder. Shows the connection method for 50 polarizations,
(B) shows a connection method for driving the piezoelectric ceramic hollow cylinder 50.

第11図及び第12図(a)及び(b)を参照すると、圧
電セラミックス中空円柱50の外周面を4等分する位置
に、前記圧電セラミックス中空円柱50の長さ方向と平行
に円周方向に沿って、第1、第2、第3及び第4の外周
面分割電極51,52,53,54がこの順に形成され、さらに前
記圧電セラミックス中空円柱50の内周面に第1、第2、
第3及び第4の外周面分割電極51,52,53,54に対向する
位置に第1、第2、第3及び第4の内周面分割電極5
1′,52′,53′,54′が対応して夫々施されている。
Referring to FIGS. 11 and 12 (a) and (b), the outer peripheral surface of the piezoelectric ceramic hollow cylinder 50 is divided into four equal parts in a circumferential direction parallel to the length direction of the piezoelectric ceramic hollow cylinder 50. The first, second, third, and fourth outer peripheral surface divided electrodes 51, 52, 53, 54 are formed in this order along the first and second inner peripheral surfaces of the piezoelectric ceramic hollow cylinder 50. ,
The first, second, third and fourth inner peripheral surface divided electrodes 5 are located at positions facing the third and fourth outer peripheral surface divided electrodes 51, 52, 53 and 54.
1 ', 52', 53 ', 54' are provided correspondingly.

第12図(b)を参照すると、破線の矢印は、第1,第2,
第3及び第4の外周面分割電極51,52,53及び54を第1の
接続線55で接続すると共に、第1,第2,第3及び第4の内
周面分割電極51′,52′,53′及び54′を第2の接続線56
で接続して第1の接続線55が+の極性及び第2の接続線
56が−の極性となるように第1及び第2の接続線55,56
間に直流電圧を印加して前記圧電セラミックス中空円柱
50の断面の径方向に分極処理を施したときの分極の向き
を示している。分極方向は、夫々対応する外周面分割電
極から内周面分割電極に向う方向で、圧電セラミックス
中空円柱の中心に向う方向である。
Referring to FIG. 12 (b), the dashed arrows indicate the first, second,
The third and fourth outer peripheral surface division electrodes 51, 52, 53 and 54 are connected by a first connection line 55, and the first, second, third and fourth inner peripheral surface division electrodes 51 ', 52 , 53 'and 54' to the second connecting line 56.
And the first connection line 55 has a positive polarity and the second connection line
First and second connection lines 55 and 56 such that 56 has a negative polarity.
DC voltage is applied between the piezoelectric ceramic hollow cylinder
The direction of polarization when the polarization process is performed in the radial direction of the section 50 is shown. The polarization direction is a direction from the corresponding outer peripheral surface divided electrode to the inner peripheral surface divided electrode, and is a direction toward the center of the piezoelectric ceramic hollow cylinder.

第12図(b)を参照すると、第12図(a)のように分
極処理された圧電セラミックス中空円柱50において、互
いに圧電セラミックス中空円柱50の長さ方向の中心線に
対称な第1の内周面及び第3の外周面分割電極51′及び
53を第3の接続線58で接続すると共に、第1の外周面及
び第3の内周面分割電極51及び53′を第4の接続線59で
接続し、第1の接続線の極性が+及び第3の接続線の極
性が−となるように、直流電圧を印加した場合に圧電セ
ラミックス中空円柱50の断面方向に発生する歪みの状態
を示している。
Referring to FIG. 12 (b), in the piezoelectric ceramic hollow cylinder 50 polarized as shown in FIG. 12 (a), the first inner cylinders symmetrical to each other with respect to the longitudinal center line of the piezoelectric ceramic hollow cylinder 50. Peripheral surface and third outer peripheral surface divided electrode 51 ′;
53 is connected by a third connection line 58, the first outer peripheral surface and the third inner peripheral surface divided electrodes 51 and 53 'are connected by a fourth connection line 59, and the polarity of the first connection line is This shows a state of distortion generated in the cross-sectional direction of the hollow column 50 of the piezoelectric ceramic when a DC voltage is applied so that the polarity of the + and third connection lines becomes-.

第12図(b)において、電界は実線の矢印で示す向き
に印加されるため、第1の外周面分割電極51−第1の内
周面分割電極51′間では分極の向きと電界の向きが逆向
きになるため、厚さ方向の縮み歪みが発生し、第2の外
周面分割電極52−第2の内周面分割電極52′間では分極
の向きと電界の向きが同じになるため、厚さ方向の伸び
歪みが発生する。その結果として、第12図(b)におい
て圧電セラミックス中空円柱50は長さ方向に上側が膨ら
むように屈曲する。また、印加電圧の向きを逆向きにし
た場合は屈曲の向きも逆向きとなる。
In FIG. 12 (b), since the electric field is applied in the direction shown by the solid line arrow, the polarization direction and the electric field direction are between the first outer peripheral surface divided electrode 51 and the first inner peripheral surface divided electrode 51 '. Are reversed, a contraction strain occurs in the thickness direction, and the polarization direction and the electric field direction are the same between the second outer peripheral surface divided electrode 52 and the second inner peripheral surface divided electrode 52 ′. In this case, elongation strain occurs in the thickness direction. As a result, in FIG. 12 (b), the piezoelectric ceramic hollow cylinder 50 is bent so that the upper side expands in the length direction. When the direction of the applied voltage is reversed, the direction of the bending is also reversed.

第13図は第12図(a)のように、分極処理された圧電
セラミックス中空円柱50に交流電圧を印加した場合の振
動状態の説明図である。
FIG. 13 is an explanatory diagram of a vibration state when an AC voltage is applied to the polarized piezoelectric ceramic hollow cylinder 50 as shown in FIG. 12 (a).

第13図(a)において、第1の内周面分割電極51′と
第3の外周面分割電極53を電気的に接続した第3の接続
線58と、第1の外周面分割電極51と第3の内周面分割電
極53′を電気的に接続した第4の接続線59との間に圧電
セラミックス中空円柱50の屈曲振動の共振周波数に等し
い第1の交流電圧を印加すると圧電セラミックス中空円
柱50は第13図(a)の二点鎖線で示すように矢印57の方
向に第1の屈曲振動を発生する。
In FIG. 13 (a), a third connection line 58 that electrically connects the first inner peripheral surface divided electrode 51 'and the third outer peripheral surface divided electrode 53, and a first outer peripheral surface divided electrode 51 are provided. When a first AC voltage equal to the resonance frequency of the bending vibration of the piezoelectric ceramic hollow cylinder 50 is applied between the third inner peripheral surface divided electrode 53 ′ and the fourth connection line 59 electrically connected thereto, the piezoelectric ceramic hollow The cylinder 50 generates the first bending vibration in the direction of the arrow 57 as shown by the two-dot chain line in FIG.

第13図(a)において、同様にして第2の内周面分割
電極52′と第4の外周面分割電極54を電気的に接続した
第5の接続線(図示せず)と、第2の外周面分割電極5
2′と第4の内周面分割電極54を電気的に接続した第6
の接続線(図示せず)の間に圧電セラミックス中空円柱
50の屈曲振動の共振周波数に等しく且つ第2の位相を有
する第2の交流電圧を印加すると圧電セラミックス中空
円柱50は第13図(a)に示す矢印の方向と直角な方向の
屈曲振動を発生する。
In FIG. 13 (a), similarly, a fifth connection line (not shown) electrically connecting the second inner peripheral surface divided electrode 52 'and the fourth outer peripheral surface divided electrode 54, Outer surface divided electrode 5
The sixth embodiment in which the 2 ′ and the fourth inner peripheral surface dividing electrode 54 are electrically connected.
Piezoelectric ceramic hollow cylinder between connecting wires (not shown)
When a second AC voltage having a second phase equal to the resonance frequency of the bending vibration of 50 is applied, the piezoelectric ceramic hollow cylinder 50 generates bending vibration in a direction perpendicular to the direction of the arrow shown in FIG. I do.

従って、以上示した互いに垂直な二つの方向の第1及
び第2の屈曲振動の位相をずらせることにより、具体的
には夫々の屈曲振動を励振するための第1の交流電圧の
第1の位相と第2の交流電圧の第2の位相をずらせるこ
とにより、圧電セラミックス中空円柱50の両端部に第13
図(b)の二点鎖線で示すような、円を含む楕円運動を
励振することができる。
Therefore, by shifting the phases of the first and second bending vibrations in the two directions perpendicular to each other as described above, specifically, the first AC voltage of the first AC voltage for exciting each bending vibration. By shifting the phase and the second phase of the second AC voltage, the thirteenth
An elliptical motion including a circle as shown by a two-dot chain line in FIG.

第12図(b)及び第13図(a)においては、分極方向
が各々の分割電極対の部分ですべて同じ向き(放射方
向)場合について示したが、対向する分割電極対の部分
の分極の向きが逆向き(一方が中心に向い,他方が外
側)の場合は、夫々の分割電極対で分割電極を接続し、
対向する分割電極対を二端子とすれば、同一印加電圧に
対して夫々の分割電極対の部分に発生する歪みが伸び及
び縮みとなり、上記したと同様な屈曲振動が得られる。
FIGS. 12 (b) and 13 (a) show the case where the polarization directions are all the same (radiation direction) in each of the divided electrode pairs. If the directions are opposite (one is toward the center and the other is outside), connect the split electrodes with each split electrode pair,
If the opposing split electrode pairs have two terminals, the strain generated in each split electrode pair portion with respect to the same applied voltage is expanded and contracted, and the same bending vibration as described above is obtained.

[発明の効果] 以上説明したように、本発明によれば、圧電振動子の
形状が単純で、特に断面がリング状となっているため、
高い精度の加工が可能であり、互いに直角な方向の共振
周波数のばらつきの少ない楕円運動振動子が得られる。
また、断面がリング状であることは、例えば14図に示し
たような超音波モータを構成した場合にカップ状回転ロ
ーラーとの接触状態が良く、安定したモーターが得られ
る。
[Effects of the Invention] As described above, according to the present invention, the shape of the piezoelectric vibrator is simple, and in particular, the cross section has a ring shape.
High-precision machining is possible, and an elliptical motion oscillator with little variation in resonance frequency in directions perpendicular to each other can be obtained.
In addition, the fact that the cross-section is ring-shaped means that, when an ultrasonic motor as shown in FIG. 14, for example, is formed, the state of contact with the cup-shaped rotary roller is good, and a stable motor can be obtained.

更に、本発明の圧電楕円運動振動子においては、第14
図に示した従来の圧電運動振動子は、圧電振動子と金属
角柱との接着で用いた接着剤を使用しているが、本発明
は使用しないため、従来のものより接着による特性のば
らつきの少ない楕円運動振動子が得られ、実用的にその
効果が大きい。
Furthermore, in the piezoelectric elliptical motion oscillator of the present invention, the fourteenth
The conventional piezoelectric motion vibrator shown in the figure uses the adhesive used for bonding the piezoelectric vibrator and the metal prism, but since the present invention is not used, the variation in characteristics due to bonding is smaller than the conventional one. A small number of elliptical oscillators can be obtained, and the effect is practically large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例に係る圧電楕円運動振動
子の斜視図、第2図(a)及び(b)は第1図の圧電楕
円運動振動子の歪みの発生状態の説明に供する断面図、
第3図(a)及び(b)は第1図の圧電楕円運動振動子
の振動を示す斜視図、第4図は本発明の第1の実施例に
係る超音波モータの駆動回路の一例を示す図、第5図は
本発明の第2の実施例に係る圧電楕円運動振動子の斜視
図、第6図(a)及び(b)は第5図の圧電楕円運動振
動子の歪みの発生状態の説明に供する図、第7図(a)
及び第7図(b)は第5図の圧電楕円運動振動子の振動
を示す斜視図、第8図は本発明の第3の実施例に係る圧
電楕円運動振動子の斜視図、第9図(a)及び(b)は
第8図の圧電楕円運動振動子の歪みの発生状態の説明に
供する断面図、第10図(a)及び(b)は第8図の圧電
楕円運動振動子の振動を示す斜視図、第11図は本発明の
第4の実施例に係る圧電楕円運動振動子の斜視図、第12
図(a)及び(b)は第11図の圧電楕円運動振動子の歪
みの発生状態の説明に供する断面図、第13図(a)及び
(b)は第11図の圧電楕円運動振動子の振動を示す斜視
図、第14図は従来例に係る圧電楕円運動振動子の動作原
理を示す斜視図、第15図は従来例に係る圧電楕円運動振
動子を使用した超音波モータの構成を示す斜視図であ
る。 図中10は圧電セラミックス中空円柱、12,13,14,15は分
割電極、15,16,17,18は接続線、21,22,23,24,25,26,27,
28は端子、30は圧電セラミックス中空円柱、31,32,33,3
4は外周面分割電極、31′,32′,33′,34′は内周面分割
電極、35a,35b,35c,35d,36a,40は圧電セラミックス中空
円柱、41,42,43,44は外周面分割電極、41′,42′,43′,
44′は浮遊電極、45a,45b,46a,46bは接続線、47は矢
印、50は圧電セラミックス中空円柱、51,52,53,54は分
割電極、51′,52′,53′,54′は分割電極、55,56,58,59
は接続線、57は矢印、60aは金属角柱、61a,61bは圧電セ
ラミックス薄板、62a,62bはリード端子、63はアース端
子、64a,64bは円板、65a及び65bは支持ピン、66a,66bは
カップ状回転ローラーである。
FIG. 1 is a perspective view of a piezoelectric elliptical oscillator according to a first embodiment of the present invention, and FIGS. 2 (a) and 2 (b) illustrate the state of occurrence of distortion of the piezoelectric elliptical oscillator of FIG. Sectional view to be provided for
3 (a) and 3 (b) are perspective views showing vibration of the piezoelectric elliptical oscillator of FIG. 1, and FIG. 4 is an example of a drive circuit of an ultrasonic motor according to the first embodiment of the present invention. FIG. 5 is a perspective view of a piezoelectric elliptical oscillator according to a second embodiment of the present invention, and FIGS. 6 (a) and (b) show the occurrence of distortion of the piezoelectric elliptical oscillator of FIG. FIG. 7 (a) for explaining the state
7 (b) is a perspective view showing the vibration of the piezoelectric elliptical oscillator of FIG. 5, FIG. 8 is a perspective view of the piezoelectric elliptical oscillator according to the third embodiment of the present invention, FIG. (A) and (b) are cross-sectional views for explaining a state of occurrence of distortion of the piezoelectric elliptical oscillator of FIG. 8, and FIGS. 10 (a) and (b) are diagrams of the piezoelectric elliptical oscillator of FIG. FIG. 11 is a perspective view showing a vibration, FIG. 11 is a perspective view of a piezoelectric elliptical motion vibrator according to a fourth embodiment of the present invention, and FIG.
FIGS. 13A and 13B are cross-sectional views for explaining a state of occurrence of distortion of the piezoelectric elliptical oscillator of FIG. 11, and FIGS. 13A and 13B are piezoelectric elliptical oscillators of FIG. FIG. 14 is a perspective view showing the principle of operation of a piezoelectric elliptical oscillator according to the related art, and FIG. 15 is a perspective view showing the configuration of an ultrasonic motor using the piezoelectric elliptical oscillator according to the related art. FIG. In the figure, 10 is a piezoelectric ceramic hollow cylinder, 12, 13, 14, 15 are divided electrodes, 15, 16, 17, 18 are connection wires, 21, 22, 23, 24, 25, 26, 27,
28 is a terminal, 30 is a piezoelectric ceramic hollow cylinder, 31, 32, 33, 3
4 is an outer peripheral surface divided electrode, 31 ', 32', 33 ', 34' are inner peripheral surface divided electrodes, 35a, 35b, 35c, 35d, 36a, 40 are piezoelectric ceramic hollow cylinders, 41, 42, 43, 44 are Outer peripheral surface split electrode, 41 ', 42', 43 ',
44 'is a floating electrode, 45a, 45b, 46a, 46b are connection lines, 47 is an arrow, 50 is a hollow column of piezoelectric ceramics, 51, 52, 53, 54 are split electrodes, 51', 52 ', 53', 54 ' Is a split electrode, 55,56,58,59
Is a connection line, 57 is an arrow, 60a is a metal prism, 61a and 61b are piezoelectric ceramic thin plates, 62a and 62b are lead terminals, 63 is a ground terminal, 64a and 64b are discs, 65a and 65b are support pins, 66a and 66b. Is a cup-shaped rotating roller.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 41/08 L ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 41/08 L

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧電セラミックス中空円柱の外周面の円周
を4等分する位置に、該圧電セラミックス中空円柱の長
さ方向に平行な第1、第2、第3及び第4の分割電極の
円周方向に沿って順に施し、互いに対向する前記第1及
び第3の分割電極を第1の接続線で電気的に接続すると
共に、互いに対向する前記第2及び第4の分割電極を第
2の接続線で電気的に接続し、前記第1の接続線がプラ
スの極性で、前記第2の接続線がマイナスの極性となる
ように直流電圧を印加し、これにより前記圧電セラミッ
クス中空円柱に周に沿って前記第1の分割電極から前記
第2及び第4の分割電極の方向に向い、且つ前記第3の
分割電極から前記第2及び第4の分割電極に向う方向に
分極させ、更に互いに隣り合う前記第1及び第4の分割
電極間及び前記第2及び第3の分割電極間に該圧電セラ
ミックス中空円柱の共振周波数で、且つ第1の位相を有
する第1の交流電圧を印加して、該圧電セラミックス中
空円柱に第1の屈曲振動を励振可能とし、一方互いに隣
り合う前記第1及び第2の分割電極間,及び前記第4及
び第3の分割電極間に該圧電セラミックス中空円柱の共
振周波数で且つ第1の位相と異なる第2の位相を有する
第2の交流電圧を印加して該圧電セラミックス中空円柱
に第2の屈曲振動を励振可能とし、前記第1及び第2の
屈曲振動により前記圧電セラミックス円柱の両端部に楕
円振動を励起可能としたことを特徴とする圧電楕円運動
振動子。
The first, second, third and fourth divided electrodes parallel to the longitudinal direction of the hollow column of the piezoelectric ceramic are located at positions where the circumference of the outer peripheral surface of the hollow column of the piezoelectric ceramic is divided into four equal parts. The first and third divisional electrodes facing each other are electrically connected by a first connection line, and the second and fourth divisional electrodes facing each other are connected to each other in the circumferential direction. And a DC voltage is applied so that the first connection line has a positive polarity and the second connection line has a negative polarity, thereby applying a voltage to the piezoelectric ceramic hollow cylinder. Polarized along the circumference in the direction from the first divided electrode to the second and fourth divided electrodes, and in the direction from the third divided electrode to the second and fourth divided electrodes; Between the first and fourth divided electrodes adjacent to each other and And applying a first AC voltage having a resonance frequency of the piezoelectric ceramic hollow cylinder and a first phase between the third divided electrode and a first bending vibration to the piezoelectric ceramic hollow cylinder. A second phase different from the first phase at the resonance frequency of the piezoelectric ceramic hollow cylinder between the first and second divided electrodes adjacent to each other and between the fourth and third divided electrodes. By applying a second AC voltage, a second bending vibration can be excited in the piezoelectric ceramic hollow cylinder, and an elliptical vibration can be excited at both ends of the piezoelectric ceramic cylinder by the first and second bending vibrations. A piezoelectric elliptical motion vibrator characterized in that:
【請求項2】圧電セラミックス中空円柱の外周面の円周
を4等分する位置に、該圧電セラミックス中空円柱の長
さ方向に平行な第1、第2、第3及び第4の外周面分割
電極を円周方向に沿って順に施し、該圧電セラミックス
中空円柱の内周面に前記第1、第2、第3及び第4の外
周面分割電極と夫々対向して第1、第2、第3及び第4
の内周面分割電極を施し、前記第1、第2、第3及び第
4の外周面分割電極と前記第1、第2、第3、及び第4
の内周面分割電極を夫々第1,第2、第3及び第4の接続
線で電気的に接続して、さらに該第1及び第3の接続線
を第1の端子に電気的に接続して、また該第2及び第4
の接続線を第2の端子に電気的に接続して、該第1及第
2の端子間に第1の端子がプラスの極性及び該第2の端
子がマイナスの極性となるように直流電圧を印加してこ
れにより前記第1の外周面及び内周面分割電極から前記
第2及び第4の外周面及び内周面分割電極の方向に向
い、且つ前記第3の外周面及び内周面分割電極から前記
第2及び第4外周面及び内周面の分割電極に向う方向に
分極させ、更に互いに隣り合う前記第1及び第2の接続
線及び前記第3及び第4の接続線を電気接続して第3及
び第4の端子とし、前記第3及び第4の端子間にこの圧
電セラミックス中空円柱の共振周波数で、且つ第1の位
相を有する第1の交流電圧を印加して、この圧電セラミ
ック中空円柱に第1の屈曲振動を励振可能とし、一方互
いに隣り合う前記第1及び第4の接続線及び前記第2及
び第3の接続線を電気接続して第5及び第6の端子と
し、前記第5及び第6の端子間にこの圧電セラミックス
中空円柱の共振周波数で、且つ第1の位相と異なる第2
の位相を有する第2の交流電圧を印加して該圧電セラミ
ックス中空円柱に第2の屈曲振動を励振可能とし、前記
第1及び第2の屈曲振動により前記圧電セラミックス円
柱の両端部に楕円振動を励起可能としたことを特徴とす
る圧電楕円運動振動子。
2. A first, second, third and fourth outer circumferential surface division parallel to the length direction of the hollow piezoelectric ceramic cylinder at a position where the circumference of the outer peripheral surface of the hollow cylindrical ceramic ceramic is divided into four equal parts. Electrodes are sequentially applied along the circumferential direction, and the first, second, third, and fourth outer peripheral surface split electrodes are respectively opposed to the inner peripheral surface of the piezoelectric ceramic hollow cylinder, and the first, second, and fourth outer peripheral surface divided electrodes are respectively disposed. 3rd and 4th
Of the first, second, third, and fourth outer peripheral surface division electrodes and the first, second, third, and fourth inner peripheral surface division electrodes.
Are electrically connected to first, second, third, and fourth connection lines, respectively, and further, the first and third connection lines are electrically connected to a first terminal. And the second and fourth
Is electrically connected to the second terminal, and a DC voltage is applied between the first and second terminals such that the first terminal has a positive polarity and the second terminal has a negative polarity. To the direction of the second and fourth outer peripheral surfaces and the inner peripheral surface divided electrodes from the first outer peripheral surface and the inner peripheral surface divided electrodes, and the third outer peripheral surface and the inner peripheral surface. Polarization is performed in the direction from the divided electrode to the divided electrodes on the second and fourth outer peripheral surfaces and the inner peripheral surface, and the first and second connection lines and the third and fourth connection lines adjacent to each other are electrically connected. The third and fourth terminals are connected to each other, and a first AC voltage having a resonance frequency of the piezoelectric ceramic hollow cylinder and a first phase is applied between the third and fourth terminals. A first bending vibration can be excited in a piezoelectric ceramic hollow cylinder, and the first bending vibration And the fourth and fourth connection lines and the second and third connection lines are electrically connected to form fifth and sixth terminals, between the fifth and sixth terminals at the resonance frequency of the piezoelectric ceramic hollow cylinder, And a second phase different from the first phase
A second AC voltage having a phase of: is applied to the piezoelectric ceramic hollow cylinder to excite a second bending vibration, and the first and second bending vibrations cause elliptical vibration to be applied to both ends of the piezoelectric ceramic cylinder. A piezoelectric elliptical oscillator that can be excited.
【請求項3】圧電セラミックス中空円柱の外周面の円周
を4等分する位置に、該圧電セラミックス中空円柱の長
さ方向に平行な第1、第2、第3及び第4の外周面分割
電極を円周方向に順に施し、該圧電セラミックス中空円
柱の内周面で、前記第1及び第2の外周面分割電極間、
前記第2及び第3の外周面分割電極間、前記第3及び第
4の外周面分割電極間、及び前記第4及び第1の外周面
分割電極間に対応する位置に夫々第1、第2、第3及び
第4の浮遊電極を施して、前記第1及び第3の外周面分
割電極を第1の接続線で電気的に接続すると共に、前記
第2及び第4の外周面分割電極を第2の接続線で電気的
に接続し、前記第1の接続線がプラスの極性で、前記第
2の接続線がマイナスの極性となるように直流電圧を印
加し、これにより前記圧電セラミックス中空円柱の周に
沿って前記第1の外周面分割電極から前記第1の浮遊電
極を経て前記第2の外周面分割電極に、及び前記第1の
外周面分割電極から前記第4の浮遊電極を経て前記第4
の外周面分割電極に向い、且つ前記第3の分割電極から
前記第2の浮遊電極経て前記第2の外周面分割電極に、
及び前記第3の外周面分割電極から前記第3の浮遊電極
を経て前記第4の外周面分割電極に向う方向に分極さ
せ、更に互いに隣り合う前記第1及び第4の外周面分割
電極間、及び前記第2及び第3の外周面分割電極間に該
圧電セラミックス中空円柱の共振周波数で且つ第1の位
相を有する第1の交流電圧を印加して、該圧電セラミッ
クス中空円柱に第1の屈曲振動を励振可能とし、一方互
いに隣り合う前記第1及び第2の外周面分割電極間、及
び前記第4及び第3の外周面分割電極間に該圧電セラミ
ックス中空円柱の共振周波数で、且つ前記第1の位相と
異なる第2の位相を有する第2の交流電圧を印加して、
該圧電セラミックス中空円柱に第2の屈曲振動を励振可
能とし、前記第1及び第2の屈曲振動により前記圧電セ
ラミックス円柱の両端部に楕円振動を励起可能としたこ
とを特徴とする圧電楕円運動振動子。
3. A first, second, third and fourth outer circumferential surface division parallel to the longitudinal direction of the hollow piezoelectric ceramic hollow column at a position which divides the circumference of the outer peripheral surface of the hollow cylindrical piezoelectric ceramic into four equal portions. Electrodes are sequentially applied in the circumferential direction, and the inner peripheral surface of the piezoelectric ceramic hollow cylinder is disposed between the first and second outer peripheral surface divided electrodes,
The first and second positions are respectively located at positions corresponding to between the second and third outer peripheral surface divided electrodes, between the third and fourth outer peripheral surface divided electrodes, and between the fourth and first outer peripheral surface divided electrodes. Applying third and fourth floating electrodes to electrically connect the first and third outer peripheral surface divided electrodes with a first connection line, and to connect the second and fourth outer peripheral surface divided electrodes to each other. A DC voltage is applied such that the first connection line has a positive polarity and the second connection line has a negative polarity. Along the circumference of the cylinder, the first outer peripheral surface divided electrode passes through the first floating electrode to the second outer peripheral surface divided electrode, and from the first outer peripheral surface divided electrode to the fourth floating electrode. Through the fourth
And from the third divided electrode to the second outer peripheral surface divided electrode via the second floating electrode,
And polarized in a direction from the third outer peripheral surface divided electrode to the fourth outer peripheral surface divided electrode via the third floating electrode, and further, between the first and fourth outer peripheral surface divided electrodes adjacent to each other, And applying a first AC voltage having a resonance frequency of the piezoelectric ceramic hollow cylinder and a first phase between the second and third outer peripheral surface divided electrodes to cause a first bending to the piezoelectric ceramic hollow cylinder. Vibration can be excited, and at the resonance frequency of the piezoelectric ceramic hollow cylinder between the first and second outer peripheral surface divided electrodes adjacent to each other and between the fourth and third outer peripheral surface divided electrodes, and Applying a second AC voltage having a second phase different from the first phase;
A second bending vibration being excitable to the piezoelectric ceramic hollow cylinder, and an elliptical vibration being able to be excited at both ends of the piezoelectric ceramic cylinder by the first and second bending vibrations. Child.
【請求項4】圧電セラミックス中空円柱の外周面の円周
を4等分する位置に、該圧電セラミックス中空円柱の長
さ方向に平行な第1、第2、第3及び第4の外周面分割
電極を円周方向に沿って順に施し、該圧電セラミックス
中空円柱の内周面に沿って前記第1、第2、第3及び第
4の外周面分割電極に対向する位置に夫々第1、第2、
第3及び第4の内周面分割電極を施し、前記第1、第
2、第3及び第4の外周面分割電極を第1の接続線で電
気的に接続すると共に、前記第1、第2、第3及び第4
の内周面分割電極を第2の接続線で電気的に接続し、前
記第1の接続線がプラスの極性で、前記第2の接続線が
マイナスの極性となるように直流電圧を印加し、これに
より前記圧電セラミックス中空円柱に前記第1、第2、
第3及び第4の内周面分割電極から夫々前記第1、第
2、第3及び第4の外周面分割電極に向う径方向の分極
処理を施し、更に前記第1の内周面分割電極と前記第1
の外周面分割電極との間、及び前記第3の外周面分割電
極と前記第3の内周面分割電極との間に該圧電セラミッ
クス中空円柱の共振周波数で、且つ第1の位相を有する
第1の交流電圧を印加して該圧電セラミックス中空円柱
に第1の屈曲振動を励振可能とし、前記第2の内周面分
割電極と第2の外周面分割電極との間、及び前記第4の
外周面分割電極と第4の内周面分割電極との間に該圧電
セラミックス中空円柱の共振周波数で、且つ第1の位相
と異なる第2の位相を有する第2の交流電圧を印加して
該圧電セラミックス中空円柱に第2の屈曲振動を励振可
能とし、前記第1の屈曲振動と前記第2の屈曲振動によ
り前記圧電セラミックス中空円柱の両端部に楕円運動を
励振可能としたことを特徴とする圧電楕円運動振動子。
4. A first, second, third and fourth outer circumferential surface division parallel to the length direction of the hollow piezoelectric ceramic cylinder at a position where the circumference of the outer peripheral surface of the hollow cylindrical piezoelectric ceramic is divided into four equal parts. Electrodes are sequentially applied along the circumferential direction, and the first and second electrodes are respectively positioned along the inner peripheral surface of the hollow column of the piezoelectric ceramic at positions opposed to the first, second, third, and fourth outer peripheral surface divided electrodes. 2,
Third and fourth inner peripheral surface division electrodes are provided, and the first, second, third and fourth outer peripheral surface division electrodes are electrically connected by a first connection line, and the first and second inner peripheral surface division electrodes are connected to each other. 2, 3rd and 4th
Are electrically connected by a second connection line, and a DC voltage is applied so that the first connection line has a positive polarity and the second connection line has a negative polarity. Thereby, the first, second,
Performing a polarization process in a radial direction from the third and fourth inner peripheral surface division electrodes to the first, second, third and fourth outer peripheral surface division electrodes, respectively, and further performing the first inner peripheral surface division electrode; And the first
At the resonance frequency of the piezoelectric ceramic hollow cylinder and at the first phase between the outer peripheral surface divided electrode and the third outer peripheral surface divided electrode and the third inner peripheral surface divided electrode. (1) applying a first AC voltage to the piezoelectric ceramic hollow cylinder so as to excite the first bending vibration between the second inner peripheral surface divided electrode and the second outer peripheral surface divided electrode; and A second AC voltage having a resonance frequency of the piezoelectric ceramic hollow cylinder and a second phase different from the first phase is applied between the outer peripheral surface divided electrode and the fourth inner peripheral surface divided electrode. A second bending vibration can be excited in the piezoelectric ceramic hollow cylinder, and an elliptical motion can be excited in both ends of the piezoelectric ceramic hollow cylinder by the first bending vibration and the second bending vibration. Piezoelectric elliptical motion oscillator.
JP63311844A 1988-12-12 1988-12-12 Piezoelectric elliptical oscillator Expired - Fee Related JP2961545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63311844A JP2961545B2 (en) 1988-12-12 1988-12-12 Piezoelectric elliptical oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311844A JP2961545B2 (en) 1988-12-12 1988-12-12 Piezoelectric elliptical oscillator

Publications (2)

Publication Number Publication Date
JPH0316188A JPH0316188A (en) 1991-01-24
JP2961545B2 true JP2961545B2 (en) 1999-10-12

Family

ID=18022085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311844A Expired - Fee Related JP2961545B2 (en) 1988-12-12 1988-12-12 Piezoelectric elliptical oscillator

Country Status (1)

Country Link
JP (1) JP2961545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531948B2 (en) 2006-05-15 2009-05-12 Canon Kabushiki Kaisha Stacked piezoelectric element, manufacturing method thereof and vibration wave driving apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519207B2 (en) 2015-02-02 2019-05-29 セイコーエプソン株式会社 Piezoelectric element drive circuit and robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531948B2 (en) 2006-05-15 2009-05-12 Canon Kabushiki Kaisha Stacked piezoelectric element, manufacturing method thereof and vibration wave driving apparatus
US8371005B2 (en) 2006-05-15 2013-02-12 Canon Kabushiki Kaisha Stacked piezoelectric element, manufacturing method thereof and vibration wave driving apparatus

Also Published As

Publication number Publication date
JPH0316188A (en) 1991-01-24

Similar Documents

Publication Publication Date Title
US5008581A (en) Piezoelectric revolving resonator and single-phase ultrasonic motor
WO1987005166A1 (en) Ultrasonic motor
JPS60257777A (en) Twisting vibrator
JP2961545B2 (en) Piezoelectric elliptical oscillator
JPH074074B2 (en) Ultrasonic motor
JP2847758B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JP2532425B2 (en) Ultrasonic motor
JPH072229B2 (en) Piezoelectric elliptical motion oscillator
JPS62247770A (en) Ultrasonic motor
JPH0236772A (en) Piezoelectric elliptical motion vibrator
JP2729828B2 (en) Ultrasonic motor
JP2995665B2 (en) Ultrasonic motor
JPH0799945B2 (en) Piezoelectric elliptical motion oscillator
JP3168430B2 (en) Ultrasonic motor
JP3122881B2 (en) Ultrasonic motor
JPH02164285A (en) Ultrasonic motor
JPH0322876A (en) Ultrasonic motor
JP3432056B2 (en) Laminated piezoelectric element, method of manufacturing laminated piezoelectric element, vibration device using laminated piezoelectric element, and driving device using the same
JPH01274675A (en) Ultrasonic motor
JPH08163879A (en) Ultrasonic oscillator and ultrasonic motor
JPH02119584A (en) Ultrasonic motor
JPH072033B2 (en) Ultrasonic motor
JPH0132748Y2 (en)
JPH0340765A (en) Ultrasonic motor
JPS63283472A (en) Ultrasonic motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees