JPH03182104A - Tuning type oscillator - Google Patents

Tuning type oscillator

Info

Publication number
JPH03182104A
JPH03182104A JP32178389A JP32178389A JPH03182104A JP H03182104 A JPH03182104 A JP H03182104A JP 32178389 A JP32178389 A JP 32178389A JP 32178389 A JP32178389 A JP 32178389A JP H03182104 A JPH03182104 A JP H03182104A
Authority
JP
Japan
Prior art keywords
oscillation
frequency
tunable
tuning type
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32178389A
Other languages
Japanese (ja)
Inventor
Hideki Asao
英喜 浅尾
Osami Ishida
石田 修己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32178389A priority Critical patent/JPH03182104A/en
Publication of JPH03182104A publication Critical patent/JPH03182104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

PURPOSE:To suppress the temperature change of an oscillation frequency over a wide temperature range by constituting the oscillator of a first tuning type oscillating element, second tuning type oscillating element and mixer, as elements equipped with three fundamental functions. CONSTITUTION:First and second tuning type oscillating elements 12 and 13 respectively output oscillation signals so that the absolute value of difference between the oscillation frequency at a specified temperature and the oscillation frequency at an arbitrary temperature can be equal and that the code of this difference can obtain a reverse relation. A mixer 17 mixes the first oscillation signal outputted form the first tuning type oscillating element 12 and the second oscillation signal outputted from the second tuning type oscillating element 13 and generates an oscillation output signal with the frequency of a sum for the frequency of the first oscillation signal and the frequency of the second oscillation signal. Thus, a tuning type oscillator can be obtained while reducing the temperature change of the oscillation frequency over the wide temperature range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は例えばマイクロ波を発生する同調形見振器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a tunable token vibrator that generates microwaves, for example.

〔従来の技術〕[Conventional technology]

従来、この種の同調形見振器として、第5図に示すよう
なものがあった。この第5図は中野、他により’ 13
 G Hz帯YIG薄膜同調発振器」(昭和63年電子
情報通信学会春季全国大会、C671)に示された構成
に基づくもので、1はヨーク、2はコイル、3は永久磁
石、4はヨーク1、コイル2.永久磁石3より成る磁気
回路、5は高周波回路部である。第6図は第5図の高周
波回路5を上から見た図であり、6はフェリ磁性体薄膜
共振器、7はフェリ磁性体薄膜6を製作するのに用い保
持するため用いられる誘電体基板、8はFET(li界
効果トランジスタ)などの能動素子、9はストリップ導
体、10はストリップ導体9で構成される整合回路、1
1は高周波回路部5を保持するための基板である。
Conventionally, as this type of synchronized keepsake, there has been one as shown in FIG. This figure 5 is by Nakano et al.'13
It is based on the configuration shown in ``GHz Band YIG Thin Film Tuned Oscillator'' (1988 Institute of Electronics, Information and Communication Engineers Spring National Conference, C671), where 1 is a yoke, 2 is a coil, 3 is a permanent magnet, 4 is a yoke 1, Coil 2. A magnetic circuit includes a permanent magnet 3, and 5 is a high frequency circuit section. FIG. 6 is a top view of the high frequency circuit 5 shown in FIG. 5, where 6 is a ferrimagnetic thin film resonator, and 7 is a dielectric substrate used to manufacture and hold the ferrimagnetic thin film 6. , 8 is an active element such as an FET (Li field effect transistor), 9 is a strip conductor, 10 is a matching circuit composed of the strip conductor 9, 1
1 is a substrate for holding the high frequency circuit section 5;

次にこの従来例の動作について説明する。Next, the operation of this conventional example will be explained.

フェリ磁性体薄膜共振器6には磁気回路1により膜面に
垂直に磁界HOが印加され、はぼ次式で表される周波数
fT:磁気共鳴により共振する。
A magnetic field HO is applied perpendicularly to the film surface by the magnetic circuit 1 to the ferrimagnetic thin film resonator 6, and the resonator resonates at a frequency fT: magnetic resonance expressed by the following equation.

r=r  (Ho−N・4πM)・・・山(1)ここで
Tは磁気回転比、Nは反磁界係数、4πMはフェリ磁性
体薄膜の飽和磁化量である。第6図のAよりフェリ磁性
体i1膜共振器6を見た共振周波数近傍の入力インピー
ダンス軌跡は第7図のスミス図で示される。第7図中の
Bは共振点を示す。
r=r (Ho-N·4πM)...Mountain (1) Here, T is the gyromagnetic ratio, N is the demagnetizing field coefficient, and 4πM is the saturation magnetization amount of the ferrimagnetic thin film. The input impedance locus near the resonance frequency when looking at the ferrimagnetic i1 film resonator 6 from A in FIG. 6 is shown by the Smith diagram in FIG. B in FIG. 7 indicates a resonance point.

共振周波数近傍以外の周波数では入力インピーダンスは
共振点Bとは位相角が180”ずれた位置に存在する。
At frequencies other than the vicinity of the resonance frequency, the input impedance exists at a position deviated from the resonance point B by a phase angle of 180''.

入力インピーダンスから換算される複素反射係数をr’
rとする。またAより能動素子側を見た複素反射係数を
raとする0次式の条件を満たすように整合回路10の
ストリップ導体9の寸法を調整すると、発振が開始する
The complex reflection coefficient converted from the input impedance is r'
Let it be r. Moreover, when the dimensions of the strip conductor 9 of the matching circuit 10 are adjusted so as to satisfy the condition of the zero-order equation in which ra is the complex reflection coefficient viewed from the active element side than A, oscillation starts.

I r rl、I r al ?l、 Zr r +−
1r a =o−・・−+(2同調形発振器ではフェリ
磁性体薄膜共振器6の所要共振周波数近傍で上式(2)
を満たすように整合回路10が調整され、共振周波数を
磁界Hoで可変にできることから発振周波数をHoで制
御することができる。
I r rl, I r al? l, Zr r +-
1r a =o-...-+ (For a two-tuned oscillator, the above formula (2) is applied near the required resonance frequency of the ferrimagnetic thin film resonator 6.
The matching circuit 10 is adjusted so as to satisfy the condition, and since the resonant frequency can be varied by the magnetic field Ho, the oscillation frequency can be controlled by Ho.

同調形発振器の発振周波数の温度特性は式(1)に示す
ようにHoと4πMの温度特性に依存する。
The temperature characteristics of the oscillation frequency of the tunable oscillator depend on the temperature characteristics of Ho and 4πM, as shown in equation (1).

従来の同調形発振器ではフェリ磁性体薄膜共振器6の4
πMの温度変化を永久磁石3の材質と寸法によるH o
の温度変化により相殺して、発振周波数の温度変化を小
さくしていた。
In the conventional tunable oscillator, 4 of the ferrimagnetic thin film resonators 6
The temperature change of πM is determined by the material and dimensions of the permanent magnet 3.
The temperature change in the oscillation frequency was offset by the temperature change, thereby reducing the temperature change in the oscillation frequency.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の同調形発振器は、フェリ磁性体薄膜共振器6の4
πMの温度変化と、永久磁石3の材質と寸法によるH 
oの温度変化とを用いて、発振周波数の温度変化を小さ
くしようとしていたため、広い温度範囲において温度変
化を精度良く相殺できるフェリ磁性体薄膜共振器6の4
πMと永久磁石3の材質と寸法の選択には限界があった
A conventional tunable oscillator has four ferrimagnetic thin film resonators 6.
H due to the temperature change of πM and the material and dimensions of the permanent magnet 3
Since we were trying to reduce the temperature change in the oscillation frequency by using the temperature change in
There are limits to the selection of materials and dimensions for πM and the permanent magnet 3.

この発明は上記のような課題点を解消するためになされ
たもので、例えばフェリ磁性体薄膜共振器の飽和磁化量
ρ4πMの温度変化量と永久磁石による磁界Hoの温度
変化量が大きく異なっている場合でも広い温度範囲にお
いて発振周波数の温度変化の小さい同調形発振器を得る
ことを目的とする。
This invention was made to solve the above-mentioned problems, and for example, the amount of temperature change in the saturation magnetization ρ4πM of the ferrimagnetic thin film resonator is significantly different from the amount of temperature change in the magnetic field Ho caused by the permanent magnet. The object of the present invention is to obtain a tunable oscillator in which the oscillation frequency changes little with temperature over a wide temperature range.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る同調形発振器は、特定の温度における発
振周波数と任意の温度における発振周波数との差の絶対
値が等しくかつ上記差の符号が逆の関係にある発振信号
をそれぞれ発生する第1゜第2の同調形発振素子12.
13と、上記第1の同調形発振素子12から出力された
第1の発振信号と上記第2の同調形発振素子13から出
力された第2の発振信号とを混合して第1の発振信号の
周波数r、と第2の発振信号の周波数f2との和の周波
数fの発振出力信号を作成するミキサ17とを備えるこ
とを特徴とするものである。
The tunable oscillator according to the present invention has a first oscillator that generates oscillation signals in which the absolute value of the difference between the oscillation frequency at a specific temperature and the oscillation frequency at an arbitrary temperature is equal and the sign of the difference is opposite. Second tunable oscillation element 12.
13, the first oscillation signal output from the first tunable oscillation element 12 and the second oscillation signal output from the second tunable oscillation element 13 are mixed to produce a first oscillation signal. The second oscillation signal has a mixer 17 that generates an oscillation output signal having a frequency f which is the sum of the frequency r of the second oscillation signal and the frequency f2 of the second oscillation signal.

〔作用〕[Effect]

第1.第2の同調形発振素子12.13は特定の温度に
おける発振周波数と任意の温度における発振周波数との
差の絶対値が等しくかつ上記差の符号が逆の関係にある
発振信号をそれぞれ発生する。ミキサ17は、第1の同
調形発振素子12から出力された第1の発振信号と第2
の同調形発振素子13から出力された第2の発振信号と
を混合して第1の発振信号の周波数f、と第2の発振信
号の周波数f、との和の周波数fの発振出力信号を作成
する。
1st. The second tunable oscillation elements 12 and 13 generate oscillation signals in which the absolute value of the difference between the oscillation frequency at a specific temperature and the oscillation frequency at an arbitrary temperature is equal and the sign of the difference is opposite. The mixer 17 mixes the first oscillation signal output from the first tunable oscillation element 12 and the second oscillation signal.
is mixed with the second oscillation signal output from the tunable oscillation element 13 to produce an oscillation output signal with a frequency f, which is the sum of the frequency f of the first oscillation signal and the frequency f of the second oscillation signal. create.

〔実施例〕〔Example〕

第1図はこの発明の一実施例に係る同調形発振器の構成
国である。また、第2図にこの実施例の同調形発振器を
構成している3つの基本的機能をもつ素子すなわち第1
の同調形発振素子と第2の同調形発振素子とミキサとの
接続関係を示し、更に第3図にこの実施例の同調形発振
器の電気的な等価回路を示す。
FIG. 1 shows the components of a tunable oscillator according to an embodiment of the present invention. In addition, FIG.
The connection relationship between the tunable oscillator, the second tunable oscillator, and the mixer is shown, and FIG. 3 shows an electrical equivalent circuit of the tunable oscillator of this embodiment.

第1図において、1〜11は第5図及び第6図に示した
構成要素に対応するものである。第1図〜第3図におい
て、12.13は特定の温度における発振周波数と・任
意の温度における発振周波数との差の絶対値が等しくか
つ上記差の符号が逆の関係にある発振信号をそれぞれ発
生する第1.第2の同調形発振素子である。第1.第2
の同調形発振素子12.13は主にフェリ磁性体薄膜共
振器6と能動素子8と整合回路10とから構成される。
In FIG. 1, numerals 1 to 11 correspond to the components shown in FIGS. 5 and 6. In Figures 1 to 3, 12.13 represents an oscillation signal in which the absolute value of the difference between the oscillation frequency at a specific temperature and the oscillation frequency at an arbitrary temperature is equal and the sign of the difference is opposite. The first thing that occurs. This is a second tunable oscillation element. 1st. Second
The tuned oscillation elements 12 and 13 are mainly composed of a ferrimagnetic thin film resonator 6, an active element 8, and a matching circuit 10.

そのフェリ磁性体薄膜共振器6は抵抗とコイルとコンデ
ンサとの並列′接続回路として表わされる。17は第1
の同調形発振素子12から出力された第1の発振信号と
第2の同調形発振素子13から出力された第2の発振信
号とを混合して第1の発振信号の周波数f、と第2の発
振信号の周波数f2との和の周波数fの発振出力信号を
作成するミキサである。このミキサ17は主にスロット
線路14とダイオード15とマイクロストリップ線路1
6と変成器21.22とから構成される。
The ferrimagnetic thin film resonator 6 is represented as a circuit connected in parallel with a resistor, a coil, and a capacitor. 17 is the first
The first oscillation signal output from the tunable oscillation element 12 and the second oscillation signal output from the second tunable oscillation element 13 are mixed to obtain the frequency f of the first oscillation signal and the second oscillation signal. This is a mixer that creates an oscillation output signal with a frequency f that is the sum of the oscillation signal frequency f2 and the oscillation signal frequency f2. This mixer 17 mainly consists of a slot line 14, a diode 15, and a microstrip line 1.
6 and transformers 21 and 22.

18はミキサ17のRF端子、19はミキサ17のLO
端子、20ミキサ17のIF端子である。
18 is the RF terminal of mixer 17, 19 is the LO of mixer 17
This is the IF terminal of the 20 mixer 17.

上記変成器21.22はスロット線路14とマイクロス
トリップ線路16との結合部を等価的に示したものであ
る。第1の同調形発振素子12の出力端子はRF端子1
8に接続され、第2の同調形発振素子13の出力端子は
LO端子19に接続されている。ミキサ17のIF端子
20がこの実施例による同調形見振器の出力端子になっ
ている。
The transformers 21 and 22 are equivalent representations of the coupling portion between the slot line 14 and the microstrip line 16. The output terminal of the first tunable oscillation element 12 is the RF terminal 1
8, and the output terminal of the second tunable oscillation element 13 is connected to the LO terminal 19. The IF terminal 20 of the mixer 17 serves as the output terminal of the tuned vibrator according to this embodiment.

なお、この実施例の場合、フェリ磁性体薄膜共振器6の
形状は静磁前進体積波、静磁後進体積波、及び静磁表面
波がフェリ磁性体薄膜の端で反射され共振が起きやすい
ように矩形としている。
In the case of this embodiment, the shape of the ferrimagnetic thin film resonator 6 is such that magnetostatic forward volume waves, magnetostatic backward volume waves, and magnetostatic surface waves are reflected at the edges of the ferrimagnetic thin film and resonance is likely to occur. It is rectangular.

次にこの実施例の動作について説明する。なお、ミキサ
17の動作説明はS tephen  A 、 Mau
sのMicrowave  Mixers  (Art
ech )louse、  Inc、)などで述べられ
ているので、ここでは省略する。
Next, the operation of this embodiment will be explained. The operation of the mixer 17 is explained by Stephen A.
Microwave Mixers (Art
ech) louse, Inc.), so it will be omitted here.

第1の同調形発振素子12では従来と同様にフェリ磁性
体’iil膜共振器6の薄膜に垂直に磁界が加えられ静
磁前進体積波モードの共振が起きる。第2の同調形発振
素子13ではフェリ磁性体薄膜共振器6の薄膜に平行に
磁界が加えられ静磁後進体積波モードの共振が起きる。
In the first tunable oscillation element 12, a magnetic field is applied perpendicularly to the thin film of the ferrimagnetic film resonator 6, and resonance in the magnetostatic forward volume wave mode occurs, as in the conventional case. In the second tunable oscillation element 13, a magnetic field is applied in parallel to the thin film of the ferrimagnetic thin film resonator 6, causing resonance in the magnetostatic backward volume wave mode.

個々の同調形発振素子12.13における基本的な発振
動作の説明については従来装置と同様であるため省略す
る。
A description of the basic oscillation operations of the individual tunable oscillation elements 12 and 13 will be omitted since it is the same as that of the conventional device.

第1の同調形発振素子12の静磁前進体積波モードの共
振による発振周波数f、と第2の同調形発振素子13の
静磁後進体積波モードの共振による発振周波数12とは
次式で示される。
The oscillation frequency f due to the resonance of the magnetostatic forward volume wave mode of the first tuned oscillation element 12 and the oscillation frequency 12 due to the resonance of the magnetostatic backward volume wave mode of the second tuned oscillation element 13 are expressed by the following equation. It will be done.

(r =r (Hpl +ΔIIp+(T)+)I。(r = r (Hpl + ΔIIp + (T) +) I.

N・(4πM、十Δ4πM、(T)) )・・・・・・
(3)f2 ==γ   ・   +  π  8+ 
  π  まただし、H= Hpz +ΔHpz(T)
+H2であり、)(>>4πM2+Δ4πMz(T)の
場合には式(4)は、近似的に次式で表される。
N・(4πM, 1Δ4πM, (T)) )・・・・・・
(3) f2 ==γ ・ + π 8+
π Matadashi, H= Hpz +ΔHpz(T)
+H2, and )(>>4πM2+Δ4πMz(T), equation (4) can be approximately expressed by the following equation.

f z ニア ()I + (4KM、 +Δ4πM2
(T)l /2)・・・・・・(4′)したがって、ミ
キサ17より取り出される発振出力信号の周波数fはf
lとf2の和となり次式%式% () (5) ここで、Hp+、Hl)zは第1.第2の同調形発振素
子12.13の室温における永久磁石3による磁界、Δ
Hp+(T)、ΔHpt(T)は第1.第2の同調形発
振素子12.13の温度Tにおける永久磁石3の磁界変
化量、H+、Hzは第1.第2の同調形発振素子12.
13のコイル2による・・・・・・(4) 磁界、Δ4πM、(T)、 Δ4πM z (T )は
第1゜第2の同調形発振素子12.13のフェリ磁性体
薄膜6の温度Tにおける飽和磁化変化量である。
f z near ()I + (4KM, +Δ4πM2
(T)l/2)...(4') Therefore, the frequency f of the oscillation output signal taken out from the mixer 17 is f
The sum of l and f2 is the following formula % formula % () (5) Here, Hp+, Hl)z is the first. The magnetic field caused by the permanent magnet 3 of the second tunable oscillation element 12.13 at room temperature, Δ
Hp+(T) and ΔHpt(T) are the first. The magnetic field variation, H+, Hz of the permanent magnet 3 at the temperature T of the second tunable oscillation element 12.13 is the first. Second tunable oscillation element 12.
(4) Magnetic field, Δ4πM, (T), Δ4πM z (T) is the temperature T of the ferrimagnetic thin film 6 of the 1st and second tunable oscillation elements 12 and 13. is the amount of change in saturation magnetization at .

式(5)において、温度に依存するのはΔHp+(T)
十Δl1pz(T)  N・Δ4πM、(T)+Δ4π
M。
In equation (5), ΔHp+(T) depends on temperature.
1Δl1pz(T) N・Δ4πM, (T)+Δ4π
M.

(T)/ 2である。(T)/2.

永久磁石3を用いない場合はΔHfl+(T)=ΔII
 p z(T) = 0であり、N・Δ4πM、(T)
=Δ4πMz(T)/2となる2種類のフェリ磁性体薄
膜共振器6を選べば良い、Δ4πM (T)は例えばフ
ェリ磁性体薄膜としてイツトリウム・鉄ガーネット(Y
 I G)単結晶ia膜の鉄イオンをガリウムイオンで
置換することにより変化できることが知られている。
When permanent magnet 3 is not used, ΔHfl+(T)=ΔII
p z (T) = 0, and N・Δ4πM, (T)
It is sufficient to select two types of ferrimagnetic thin film resonators 6 such that =Δ4πMz(T)/2.Δ4πM(T) is, for example, yttrium iron garnet (Y
IG) It is known that changes can be made by replacing iron ions in a single crystal IA film with gallium ions.

また、コイル2に消費される電力を小さくするため図示
のようにあらかじめ特定の磁界を永久磁石3にて与え、
周波数を可変にする磁界のみをコイル2により与えよう
とする場合には、フェリ磁性体薄膜と永久磁石3の材質
や寸法の選択によりΔHp+(T)N・Δ4′πM、(
T)とΔHPz(T)+Δ4πM!(T)/2との和を
小さくできる。
In addition, in order to reduce the power consumed by the coil 2, a specific magnetic field is applied in advance by the permanent magnet 3 as shown in the figure.
When applying only the magnetic field that makes the frequency variable by the coil 2, by selecting the materials and dimensions of the ferrimagnetic thin film and the permanent magnet 3, ΔHp+(T)N・Δ4′πM, (
T) and ΔHPz(T)+Δ4πM! (T)/2 can be made smaller.

例えば、第1.第2の同調形発振素子12゜13をとも
に純粋なYrG単結晶薄膜の共振器、および同じ特性の
永久磁石3を用いて構成するとする。Nは約1.4πM
は1760ガウス、Δ4πMは約−3,65ガウス/℃
であるとすると、ΔHp +  +ΔIIpt=  1
.83工ルステツド/℃となる磁気回路4を設計するこ
とになる。Hpt=Hp tとし磁気回路4の温度係数
を一〇。02%とすると、Hp+−Hpz=4575エ
ルステッドとなり、コイル電流を流さないときに室温で
は第1゜第2の同調形発振素子12.13の発振周波数
r、、r、はそれぞれ7.9 GHz、  15.1 
GHzとなり、発振器出力信号の周波数は23GHzと
なる。
For example, 1st. It is assumed that the second tunable oscillation elements 12 and 13 are both constructed using pure YrG single crystal thin film resonators and permanent magnets 3 having the same characteristics. N is approximately 1.4πM
is 1760 Gauss, Δ4πM is approximately -3,65 Gauss/℃
, then ΔHp + +ΔIIpt= 1
.. The magnetic circuit 4 will be designed to have a temperature of 83 degrees per degree Celsius. Let Hpt=Hpt and the temperature coefficient of the magnetic circuit 4 is 10. 02%, Hp+-Hpz=4575 Oersteds, and when no coil current is flowing, the oscillation frequencies r, , and r of the 1° and second tunable oscillation elements 12.13 are 7.9 GHz, respectively, at room temperature. 15.1
GHz, and the frequency of the oscillator output signal is 23 GHz.

第4図は、第1.第2の同調形発振素子12゜13の磁
気回路4を共通にした場合の構成図であり、第2の同調
形発振素子13のフェリ磁性体薄膜共振器6は、薄膜面
が磁界に平行になるように配置される。また、磁気回路
4を共通にしたことにより、同調形発振器全体の小形化
が図れる。
Figure 4 shows the 1. This is a configuration diagram when the magnetic circuit 4 of the second tunable oscillation element 12 13 is shared, and the ferrimagnetic thin film resonator 6 of the second tunable oscillation element 13 has a thin film surface parallel to the magnetic field. are arranged so that Further, by making the magnetic circuit 4 common, the entire tunable oscillator can be made smaller.

このように第4図に示すような他の実施例として、第1
.第2の同調形発振素子12.13の磁気回路4を共通
にし、第1の同調形発振素子12のフェリ磁性体薄膜共
振器6では上記磁気回路4によりフェリ磁性体薄膜に垂
直に磁界を加え、第2の同調形発振素子13のフェリ磁
性体薄膜共振器6では上記磁気回路4によりフェリ磁性
体薄膜に平行に磁界を加えるように構成すれば、更に発
振周波数が安定する。
In this way, as another embodiment as shown in FIG.
.. The magnetic circuit 4 of the second tunable oscillation element 12 and 13 is shared, and in the ferrimagnetic thin film resonator 6 of the first tunable oscillation element 12, a magnetic field is applied perpendicularly to the ferrimagnetic thin film by the magnetic circuit 4. In the ferrimagnetic thin film resonator 6 of the second tuned oscillation element 13, the oscillation frequency can be further stabilized by configuring the magnetic circuit 4 to apply a magnetic field in parallel to the ferrimagnetic thin film.

なお、上記実施例では同調形発振素子として磁性体共振
器を用いた場合を示したが、これに限らず、文献J、D
、Ada(他による’ The  S tatus o
f  MaBnetostatic  Devices
」(I E E ETrans、 on  Magne
tics、 vol、  MAG −17゜k 6 、
 Noves+ber 1981 )に示された静磁波
遅延線路を用いた場合にも同様の効果がある。
In addition, although the above embodiment shows a case where a magnetic resonator is used as the tuned oscillation element, the present invention is not limited to this.
'The Status o' by Ada (et al.)
f MaBnetostatic Devices
” (IEE E Trans, on Magne
tics, vol, MAG-17゜k6,
A similar effect can be obtained when using the magnetostatic delay line shown in Noves+ber 1981).

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、特定の温度における発振
周波数と任意の温度における発振周波数との差の絶対値
が等しくかつ上記差の符号が逆の関係にある発振信号を
それぞれ発生する第1.第2の同調形発振素子と、上記
第1の同調形発振素子の発振周波数と上記第2の同調形
発振素子の発振周波数との和の周波数の発振出力信号を
作成するミキサとを備え構成したので、発振周波数にお
ける温度変化成分が相殺され、例えばフェリ磁性体薄膜
共振器の飽和磁化I4πMの温度変化量と永久磁石によ
る磁界Hoの温度変化量が大きく異なっている場合でも
広い温度範囲において発振周波数の温度変化を極力抑え
ることができ、信頼性が向上するという効果が得られる
As described above, according to the present invention, the first oscillation signal that generates the oscillation signals in which the absolute value of the difference between the oscillation frequency at a specific temperature and the oscillation frequency at an arbitrary temperature is equal and the sign of the difference is opposite to each other. .. A second tunable oscillation element, and a mixer for creating an oscillation output signal having a frequency that is the sum of the oscillation frequency of the first tunable oscillation element and the oscillation frequency of the second tunable oscillation element. Therefore, the temperature change component in the oscillation frequency is canceled out, and even if, for example, the amount of temperature change in the saturation magnetization I4πM of the ferrimagnetic thin film resonator and the amount of temperature change in the magnetic field Ho caused by the permanent magnet are significantly different, the oscillation frequency remains constant over a wide temperature range. This has the effect of suppressing temperature changes as much as possible and improving reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る同調形発振4図は他
の実施例に係る同調形見振器の構成図、第5図及び第6
図は従来の同調形見振器の構成図、第7図は従来の同調
形見振器の動作を説明するためのスミス図である。 12・・・・・・第1の同調形発振素子、13・・・・
・・第2の同調形発振素子、17・・・・・・ミキサ。
FIG. 1 shows a tuned oscillation according to one embodiment of the present invention. FIG. 4 is a configuration diagram of a tuned vibrator according to another embodiment, and FIGS.
The figure is a configuration diagram of a conventional tuned token vibrator, and FIG. 7 is a Smith diagram for explaining the operation of the conventional tuned token vibrator. 12...First tunable oscillation element, 13...
...Second tunable oscillation element, 17...Mixer.

Claims (1)

【特許請求の範囲】[Claims] 特定の温度における発振周波数と任意の温度における発
振周波数との差の絶対値が等しくかつ上記差の符号が逆
の関係にある発振信号をそれぞれ発生する第1、第2の
同調形発振素子と、上記第1の同調形発振素子から出力
された第1の発振信号と上記第2の同調形発振素子から
出力された第2の発振信号とを混合して第1の発振信号
の周波数と第2の発振信号の周波数との和の周波数の発
振出力信号を作成するミキサとを備えたことを特徴とす
る同調形発振器。
first and second tunable oscillation elements that respectively generate oscillation signals in which the absolute value of the difference between the oscillation frequency at a specific temperature and the oscillation frequency at an arbitrary temperature is equal and the sign of the difference is opposite; The first oscillation signal output from the first tunable oscillation element and the second oscillation signal output from the second tunable oscillation element are mixed to produce a frequency of the first oscillation signal and a second oscillation signal. A tunable oscillator comprising: a mixer for creating an oscillation output signal having a frequency equal to the frequency of the oscillation signal;
JP32178389A 1989-12-11 1989-12-11 Tuning type oscillator Pending JPH03182104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32178389A JPH03182104A (en) 1989-12-11 1989-12-11 Tuning type oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32178389A JPH03182104A (en) 1989-12-11 1989-12-11 Tuning type oscillator

Publications (1)

Publication Number Publication Date
JPH03182104A true JPH03182104A (en) 1991-08-08

Family

ID=18136378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32178389A Pending JPH03182104A (en) 1989-12-11 1989-12-11 Tuning type oscillator

Country Status (1)

Country Link
JP (1) JPH03182104A (en)

Similar Documents

Publication Publication Date Title
EP0164684B1 (en) Tuned oscillator
KR940000431B1 (en) Signal transformer
Du et al. A magnetically tunable bandpass filter with high out-of-band suppression
Lu et al. Planar millimeter wave band-stop filters based on the excitation of confined magnetostatic waves in barium hexagonal ferrite thin film strips
JPH01236724A (en) Chip for magnetostatic wave element and magnetostatic wave element
JPH03182104A (en) Tuning type oscillator
US4983936A (en) Ferromagnetic resonance device
KR100296472B1 (en) Magnetostatic wave device
JP2522579B2 (en) Magnetostatic microwave oscillator for PLL control
JPH03178207A (en) Tuning oscillator
Shirazi et al. Non-reciprocal bandpass filter with tunable center frequency and constant fractional bandwidth
JPS62224101A (en) Magnetostatic wave filter bank
KR960006463B1 (en) Ferromagnetic resonance device and filter device
Kinoshita et al. Planar resonator and integrated oscillator using magnetostatic waves
JPS6211302A (en) Yig thin film microwave device
JP2910015B2 (en) Microwave oscillator
JP2517913B2 (en) Ferromagnetic resonance device
JP2508424B2 (en) Ferromagnetic resonance device
JPH061886B2 (en) Receiving machine
JPS6019161B2 (en) Ferrimagnetic circuit element
JPH0265308A (en) Garnet film for magnetostatic wave device
Booth et al. Frequency tuning of microstrip TRAPATT oscillators
JPH0265307A (en) Magnetostatic wave device
JPH0794920A (en) Ferromagnetic magnetic resonance device
JP4001027B2 (en) Non-reciprocal circuit device and wireless device