JP2910015B2 - Microwave oscillator - Google Patents

Microwave oscillator

Info

Publication number
JP2910015B2
JP2910015B2 JP63014390A JP1439088A JP2910015B2 JP 2910015 B2 JP2910015 B2 JP 2910015B2 JP 63014390 A JP63014390 A JP 63014390A JP 1439088 A JP1439088 A JP 1439088A JP 2910015 B2 JP2910015 B2 JP 2910015B2
Authority
JP
Japan
Prior art keywords
frequency
microwave
temperature
permanent magnet
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63014390A
Other languages
Japanese (ja)
Other versions
JPH01191504A (en
Inventor
康平 伊藤
茂 武田
康昭 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11859732&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2910015(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP63014390A priority Critical patent/JP2910015B2/en
Publication of JPH01191504A publication Critical patent/JPH01191504A/en
Application granted granted Critical
Publication of JP2910015B2 publication Critical patent/JP2910015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、YIGの磁気スピン共鳴を利用した可変周波
数静磁波発振器に係わり、温度変化に対し高安定な可変
周波数マイクロ波発振器を実現するものである。
The present invention relates to a variable frequency magnetostatic oscillator using YIG magnetic spin resonance, and realizes a variable frequency microwave oscillator highly stable against temperature changes. It is.

〔従来の技術〕[Conventional technology]

GGG(ガドリニウム・ガリウム・ガーネット)非磁性
基板上に、液相エピタキシャル成長させたYIG(イット
リウム・鉄・ガーネット)薄膜を所要の形状に加工し、
マイクロストリップライン等によりマイクロ波にて磁性
膜に静磁波を励起、伝搬、共振させる各種のマイクロ波
素子が提案されている。
A liquid phase epitaxially grown YIG (yttrium, iron, garnet) thin film is processed into the required shape on a GGG (gadolinium, gallium, garnet) non-magnetic substrate.
Various types of microwave devices that excite, propagate, and resonate a magnetostatic wave in a magnetic film using a microwave by a microstrip line or the like have been proposed.

このようなマイクロ波素子は非常に高い選択性(Q)
を持つ特徴があり、またバイアス磁場の強さを変えるこ
とにより共振周波数を幅広く変えられる特徴がある。
Such a microwave device has very high selectivity (Q)
There is a feature that the resonance frequency can be changed widely by changing the intensity of the bias magnetic field.

高い選択性を持つマイクロ波素子としては、YIG単結
晶球のスピン共鳴を使った素子が従来使われてきたが、
周囲温度が低くなると共鳴点が消失する欠点があり、恒
温槽に置き温度の低下を防ぐなどの必要があり実用上大
きな障害になっていた。
As a microwave device with high selectivity, a device using spin resonance of a YIG single crystal sphere has been used conventionally,
When the ambient temperature is lowered, there is a disadvantage that the resonance point disappears, and it is necessary to prevent the temperature from being lowered by placing it in a thermostat, which has been a serious obstacle in practical use.

また、YIG単結晶を球形に加工することは難しく加工
費が高価になる問題もあり実用分野は限られていた。
Further, it was difficult to process a YIG single crystal into a spherical shape, and the processing cost was high, so that the practical field was limited.

一方、YIG薄膜を使う静磁波素子は、その共鳴の機構
から低温でも使用可能であり、写真蝕刻技術により素子
を作製するため比較的安価にできる可能性がある。
On the other hand, a magnetostatic wave device using a YIG thin film can be used even at a low temperature due to its resonance mechanism, and may be relatively inexpensive because the device is manufactured by a photolithography technique.

このように静磁波マイクロ波素子は優れた特性を持つ
が、一方よく知られるように、温度に対する共鳴周波数
の変化が大きく、バイアス磁場発生のための永久磁石、
あるいは磁気回路の温度特性を合わせることにより補償
を行なっていた。
As described above, the magnetostatic microwave element has excellent characteristics. On the other hand, as is well known, a change in resonance frequency with respect to temperature is large, and a permanent magnet for generating a bias magnetic field is used.
Alternatively, compensation is performed by adjusting the temperature characteristics of the magnetic circuit.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、実際問題として、工業的に得られる永
久磁石材料の種類は限られており、両者の温度特性を広
い範囲にわたって精密に合わせることはきわめて困難で
あった。このため静磁波素子の温度特性を十分補正する
ことができず、発振周波数の長期間安定性の点で不足が
あった。
However, as a practical problem, the types of permanent magnet materials obtained industrially are limited, and it has been extremely difficult to precisely match the temperature characteristics of both materials over a wide range. For this reason, the temperature characteristics of the magnetostatic wave element cannot be sufficiently corrected, and there has been a shortage in terms of long-term stability of the oscillation frequency.

例えば、3GHz帯の発振器の場合、室温付近で発振周波
数の温度に対する変化は、概略+0.37%/℃となり、こ
れを打ち消すために負の温度係数を持つ永久磁石として
例えばネオジム鉄ボロン磁石を使った場合、室温付近で
の発振周波数の温度係数は+0.05%/℃に留どまるが、
発振周波数の温度係数と磁石の温度係数の第二次項が異
なるため広い温度範囲で効果的な補償をすることは困難
であった。
For example, in the case of a 3 GHz band oscillator, the change in the oscillation frequency with respect to temperature near room temperature is approximately + 0.37% / ° C. To cancel this, a neodymium iron boron magnet is used as a permanent magnet with a negative temperature coefficient. In this case, the temperature coefficient of the oscillation frequency near room temperature remains at + 0.05% / ° C,
Since the temperature coefficient of the oscillation frequency and the second order term of the temperature coefficient of the magnet are different, it has been difficult to effectively compensate over a wide temperature range.

本発明の目的は、広い温度範囲にわたって安定した発
振周波数を得ることができるマイクロ波発振器を提供す
ることである。
An object of the present invention is to provide a microwave oscillator that can obtain a stable oscillation frequency over a wide temperature range.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記目的を達成するために、永久磁石の温
度特性による温度補償手段ならびに、高安定な周波数源
を基準にして発振器の出力と比較し、発振周波数を補正
する実際的な手段を備えたものである。
In order to achieve the above object, the present invention comprises a temperature compensating means based on the temperature characteristics of the permanent magnet, and a practical means for comparing the output of the oscillator with reference to a highly stable frequency source and correcting the oscillation frequency. It is a thing.

すなわち、本願発明のマイクロ波発振器は、非磁性体
基板上の磁性薄膜を有する静磁波素子と、軟磁性体のヨ
ーク、前記静磁波素子にバイアス磁界を印加するために
用いられ、固定磁界を印加する永久磁石及び可変磁界を
印加する前記ヨークに巻回したコイルと、このコイルの
電流を制御する手段と、該静磁波素子に接続してマイク
ロ波を発振する可変周波数の高周波回路とを有するマイ
クロ波発振器であって、上記可変周波数のマイクロ波発
振器の発振周波数の温度特性を補償する手段が、第1、
第2の両手段で構成され、上記第1の手段は、永久磁石
の飽和磁化の温度特性による温度補償手段であり、前記
永久磁石を飽和磁化の温度特性が負の温度係数を有する
永久磁石とし、上記第2の手段は、分周器で低下させた
上記マイクロ波の周波数と水晶発振器の周波数とをFM復
調回路で比較し、その誤差信号に応じた電流を前記コイ
ルにフィードバックし、前記静磁波素子に印加するバイ
アス磁界を補正する手段であり、かつ上記マイクロ波発
振器の発振周波数の設定手段は、上記分周器の分周率の
選定であることを特徴とする。
That is, the microwave oscillator of the present invention is used to apply a bias magnetic field to a magnetostatic wave element having a magnetic thin film on a non-magnetic substrate, a yoke of a soft magnetic material, and the magnetostatic wave element, and apply a fixed magnetic field. A permanent magnet to be applied and a coil wound around the yoke for applying a variable magnetic field; means for controlling the current of the coil; and a variable frequency high frequency circuit connected to the magnetostatic wave element and oscillating a microwave. Means for compensating the temperature characteristic of the oscillation frequency of the variable frequency microwave oscillator,
The first means is a temperature compensating means based on the temperature characteristic of the saturation magnetization of the permanent magnet, and the first means is a permanent magnet whose temperature characteristic of the saturation magnetization has a negative temperature coefficient. The second means compares the frequency of the microwave reduced by the frequency divider with the frequency of the crystal oscillator by an FM demodulation circuit, feeds back a current corresponding to the error signal to the coil, and It is a means for correcting a bias magnetic field applied to the magnetic wave element, and the means for setting the oscillation frequency of the microwave oscillator is a selection of a frequency division ratio of the frequency divider.

〔実施例1〕 以下に実施例を示しながら本発明の説明を行なう。Embodiment 1 The present invention will be described below with reference to embodiments.

第1図の(a)は本発明による実施例の構成を示す
図、第1図(c)は従来技術による構成を示す図であ
る。
FIG. 1A is a diagram showing a configuration of an embodiment according to the present invention, and FIG. 1C is a diagram showing a configuration according to a conventional technique.

コの字型をしたヨーク3の両端に永久磁石2が設置さ
れ、永久磁石の間に空隙に、GGG基板上にLPEにて形成さ
れたYIG薄膜およびマイクロ波を出入りさせるストリッ
プラインと共振構造を有する静磁波素子1が置かれてい
る。チップの出力は高周波増幅器6にて接続されマイク
ロ波電力が増幅器6の出力端から取り出される。コイル
4はコイル電源5から流す電流の大きさにより、発振周
波数を可変とするためのものである。
Permanent magnets 2 are installed at both ends of a U-shaped yoke 3. A gap between the permanent magnets is used to form a YIG thin film formed on a GGG substrate by LPE and a strip line and a resonance structure for letting microwaves in and out. The magnetostatic wave element 1 is placed. The output of the chip is connected to the high-frequency amplifier 6, and microwave power is extracted from the output terminal of the amplifier 6. The coil 4 is for varying the oscillation frequency depending on the magnitude of the current flowing from the coil power supply 5.

上記第1図の(a)に示す本発明の実施例では、マイ
クロ波電力の一部は周波数分周器7を経て周波数比較器
8にて水晶からなる基準周波数源9からの周波数と比較
され、その誤差信号に比例した電流がコイル電源5から
コイル4に出力される。
In the embodiment of the present invention shown in FIG. 1A, a part of the microwave power is compared with a frequency from a reference frequency source 9 made of quartz by a frequency comparator 8 through a frequency divider 7. , A current proportional to the error signal is output from the coil power supply 5 to the coil 4.

室温にて飽和磁化が1750ガウスであったYIG薄膜を使
い、ネオジム鉄ボロン磁石により概略2800ガウスの磁場
が空隙部に発生するようにしておき、さらに空隙の距離
を調節して発振周波数が3GHzとなるようにした。周囲温
度を室温より10℃上げたときの従来技術による発振周波
数fの時間tによる変化を第2図(a)に示す。
Using a YIG thin film with a saturation magnetization of 1750 gauss at room temperature, a magnetic field of about 2800 gauss is generated in the gap by a neodymium iron boron magnet, and the oscillation frequency is adjusted to 3 GHz by further adjusting the gap distance. I made it. FIG. 2A shows a change in the oscillation frequency f according to the time t according to the prior art when the ambient temperature is raised by 10 ° C. from the room temperature.

次に、1/1000の分周数を持つ周波数分周器7にマイク
ロ波出力の一部を入力し、実質的にはFM復調器である周
波数比較器8により水晶振動子を基準とする基準周波数
発振器9からの周波数と比較され、その差に比例した誤
差信号によりコイル電流源5を制御するようにした。
Next, a part of the microwave output is inputted to a frequency divider 7 having a frequency division number of 1/1000, and a frequency comparator 8 which is an FM demodulator is used as a reference based on a quartz oscillator. The coil current source 5 is controlled by an error signal which is compared with the frequency from the frequency oscillator 9 and is proportional to the difference.

同様に周囲温度を室温から10℃上げたときの発振周波
数fの時期tによる変化を第2図(b)に示す。
Similarly, FIG. 2B shows a change in the oscillation frequency f at the time t when the ambient temperature is raised by 10 ° C. from the room temperature.

また、第3図(a)、(b)は−30℃から+60℃まで
周囲温度T(℃)を変えたとき各温度で安定した発振周
波数f(MHz)をそれぞれ示したものである。温度変化
に対する安定性は著しく向上したことが分かる。
FIGS. 3 (a) and 3 (b) show stable oscillation frequencies f (MHz) at each temperature when the ambient temperature T (° C.) is changed from −30 ° C. to + 60 ° C. It can be seen that the stability against temperature changes has been significantly improved.

〔実施例2〕 次の例は、第1図(b)に示したように、第1図
(a)で示した実施例1の構成に位相遅れ回路10を加
え、周波数比較器8の出力に誤差信号の時間積分を加え
たものである。これにより第2図(c)、第3図(c)
に示すように発振周波数f(MHz)の安定性はさらに改
善された。
[Embodiment 2] In the following example, as shown in FIG. 1 (b), a phase delay circuit 10 is added to the configuration of the embodiment 1 shown in FIG. And the time integral of the error signal. 2 (c) and FIG. 3 (c)
As shown in (1), the stability of the oscillation frequency f (MHz) was further improved.

周波数の比較器として位相検波器を用い、低域波器
を結合した場合も、この例と同様の結果が得られたこと
は、容易に理解されよう。
It can be easily understood that the same result as in this example was obtained when a phase detector was used as a frequency comparator and a low-pass wave was coupled.

本発明によって得られた周囲温度に対する安定性は、
はじめに設定した3GHzの周波数においてのみ達成される
のではなく、周波数分周器の分周数を選ぶことによりコ
イルおよび永久磁石の達成可能な磁場に対応した周波数
の範囲で任意に設定可能である周波数においても達成さ
れることはいうまでもない。
The stability to ambient temperature obtained by the present invention is:
A frequency that can be set arbitrarily within the frequency range corresponding to the achievable magnetic field of the coil and permanent magnet by selecting the frequency divider of the frequency divider, not only at the initially set frequency of 3 GHz Needless to say, this is also achieved in

〔発明の効果〕〔The invention's effect〕

本発明によれば、性磁波素子を用いたマイクロ波発振
器において、発振周波数の温度安定性を簡明な回路構成
で安価に水晶などの基準発信源とほぼ同程度にすること
ができ、高信頼性でかつ高安定の可変周波数のマイクロ
波発振器を実現することができる。
ADVANTAGE OF THE INVENTION According to the present invention, in a microwave oscillator using a sex magnetic wave element, the temperature stability of the oscillating frequency can be made approximately the same as that of a reference source such as crystal with a simple circuit configuration at low cost, and high reliability is achieved. And a highly stable microwave oscillator having a variable frequency can be realized.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)および(b)は本発明による構成図、第1
図(c)は従来技術による構成図、第2図(a)は従来
技術の温度変化に対する周波数の時間による変化を示す
図、第2図(b)および(c)は本発明による周波数の
時間による変化を示す図、第3図(a)は従来技術の温
度に対する周波数変化を示す図、第3図(b)、(c)
は本発明による温度に対する周波数変化を示す図であ
る。 1:静磁波素子、2:永久磁石、3:ヨーク、4:コイル、5:コ
イル電流源、6:高周波発振回路、7:周波数分周器、8:周
波数比較器、9:基準周波数源、10:位相遅れ回路
FIGS. 1 (a) and 1 (b) show a configuration according to the present invention, and FIG.
FIG. 2 (c) is a configuration diagram according to the prior art, FIG. 2 (a) is a diagram showing a change in frequency with time with respect to a temperature change in the prior art, and FIGS. 2 (b) and 2 (c) are time diagrams of the frequency according to the present invention. FIG. 3 (a) is a diagram showing a change in frequency with respect to temperature in the prior art, and FIGS. 3 (b) and 3 (c).
FIG. 4 is a diagram showing a frequency change with respect to temperature according to the present invention. 1: magnetostatic wave element, 2: permanent magnet, 3: yoke, 4: coil, 5: coil current source, 6: high frequency oscillation circuit, 7: frequency divider, 8: frequency comparator, 9: reference frequency source, 10: Phase delay circuit

フロントページの続き (72)発明者 武田 茂 埼玉県熊谷市三ケ尻5200番地 日立金属 株式会社磁性材料研究所内 (72)発明者 木下 康昭 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭62−11303(JP,A) 特開 昭53−83560(JP,A) 特公 昭56−26163(JP,B2) 特公 昭42−9603(JP,B1)Continuing from the front page (72) Inventor Shigeru Takeda 5200 Mikajiri, Kumagaya-shi, Saitama Hitachi Metals, Ltd. 56) References JP-A-62-11303 (JP, A) JP-A-53-83560 (JP, A) JP-B-56-26163 (JP, B2) JP-B-42-9603 (JP, B1)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非磁性体基板上の磁性薄膜を有する静磁波
素子と、軟磁性体のヨーク、前記静磁波素子にバイアス
磁界を印加するために用いられ、固定磁界を印加する永
久磁石及び可変磁界を印加する前記ヨークに巻回したコ
イルと、このコイルの電流を制御する手段と、該静磁波
素子に接続してマイクロ波を発振する可変周波数の高周
波回路とを有するマイクロ波発振器であって、上記可変
周波数のマイクロ波発振器の発振周波数の温度特性を補
償する手段が、第1、第2の両手段で構成され、上記第
1の手段は、永久磁石の飽和磁化の温度特性による温度
補償手段であり、前記永久磁石を飽和磁化の温度特性が
負の温度係数を有する永久磁石とし、上記第2の手段
は、分周器で低下させた上記マイクロ波の周波数と水晶
発振器の周波数とをFM復調回路で比較し、その誤差信号
に応じた電流を前記コイルにフィードバックし、前記静
磁波素子に印加するバイアス磁界を補正する手段であ
り、かつ上記マイクロ波発振器の発振周波数の設定手段
は、上記分周器の分周率の選定であることを特徴とする
マイクロ波発振器。
A magnetostatic wave element having a magnetic thin film on a nonmagnetic substrate, a soft magnetic yoke, a permanent magnet used to apply a bias magnetic field to the magnetostatic wave element, and applying a fixed magnetic field; A microwave oscillator comprising: a coil wound around the yoke for applying a magnetic field; means for controlling a current of the coil; and a variable-frequency high-frequency circuit connected to the magnetostatic wave element to oscillate a microwave. The means for compensating the temperature characteristic of the oscillation frequency of the variable frequency microwave oscillator comprises first and second means, and the first means comprises a temperature compensator based on the temperature characteristic of the saturation magnetization of the permanent magnet. Means, wherein the permanent magnet is a permanent magnet having a temperature characteristic of saturation magnetization having a negative temperature coefficient, and the second means is configured to reduce a frequency of the microwave reduced by a frequency divider and a frequency of a crystal oscillator. F Comparing with the M demodulation circuit, a current corresponding to the error signal is fed back to the coil, a means for correcting the bias magnetic field applied to the magnetostatic wave element, and a means for setting the oscillation frequency of the microwave oscillator, A microwave oscillator, wherein a frequency division ratio of the frequency divider is selected.
JP63014390A 1988-01-27 1988-01-27 Microwave oscillator Expired - Lifetime JP2910015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63014390A JP2910015B2 (en) 1988-01-27 1988-01-27 Microwave oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63014390A JP2910015B2 (en) 1988-01-27 1988-01-27 Microwave oscillator

Publications (2)

Publication Number Publication Date
JPH01191504A JPH01191504A (en) 1989-08-01
JP2910015B2 true JP2910015B2 (en) 1999-06-23

Family

ID=11859732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63014390A Expired - Lifetime JP2910015B2 (en) 1988-01-27 1988-01-27 Microwave oscillator

Country Status (1)

Country Link
JP (1) JP2910015B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262301A (en) * 1990-03-13 1991-11-22 Hitachi Metals Ltd Microwave equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383560A (en) * 1976-12-29 1978-07-24 Fujitsu Ltd Input follow-up type oscillator circuit
US4232053A (en) * 1979-05-31 1980-11-04 General Mills, Inc. Cooked comestible base containing citrus juice vesicles and method of preparation
JPH0738528B2 (en) * 1985-07-09 1995-04-26 ソニー株式会社 YIG thin film microwave device

Also Published As

Publication number Publication date
JPH01191504A (en) 1989-08-01

Similar Documents

Publication Publication Date Title
KR940000431B1 (en) Signal transformer
US4873496A (en) Tuned oscillator
CA1276697C (en) Ferromagnetic resonator having temperature compensation means using pre-coded compensation data
JP2910015B2 (en) Microwave oscillator
US5601935A (en) Surface magnetostatic wave device
US4701729A (en) Magnetic apparatus including thin film YIG resonator
JP2694440B2 (en) Magnetic device
JP2522579B2 (en) Magnetostatic microwave oscillator for PLL control
CA1266100A (en) Yig thin film microwave apparatus
JPH03262301A (en) Microwave equipment
US4745380A (en) YIG thin film microwave apparatus
JP2672434B2 (en) Magnetic device
JP2723374B2 (en) Magnetostatic wave element
JP2872497B2 (en) Magnetostatic wave element
JPH07112121B2 (en) Microwave equipment
JP2667523B2 (en) Microwave equipment
Okwit A coincidence region power limiter using monocrystal lithium ferrite at 6500 Mc/s
JPH07202517A (en) Variable band pass filter
JPH0265308A (en) Garnet film for magnetostatic wave device
JPS5963579A (en) Magnetostatic wave magnetometer
JP2723375B2 (en) Magnetic device
JP2001274624A (en) Microwave oscillator
JPH07105648B2 (en) YIG thin film microwave device
JPH03182104A (en) Tuning type oscillator
JPS588762B2 (en) Circulator and isolator