JPH03182051A - Battery - Google Patents

Battery

Info

Publication number
JPH03182051A
JPH03182051A JP1322190A JP32219089A JPH03182051A JP H03182051 A JPH03182051 A JP H03182051A JP 1322190 A JP1322190 A JP 1322190A JP 32219089 A JP32219089 A JP 32219089A JP H03182051 A JPH03182051 A JP H03182051A
Authority
JP
Japan
Prior art keywords
battery
polyaniline
compounds
batteries
polyanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1322190A
Other languages
Japanese (ja)
Inventor
Kenji Shinozaki
研二 篠崎
Yukio Tomizuka
冨塚 行雄
Katsuhei Tanemura
種村 勝平
Fumio Umemura
文夫 梅村
Yasushi Watanabe
恭史 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Furukawa Electric Co Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tokyo Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP1322190A priority Critical patent/JPH03182051A/en
Publication of JPH03182051A publication Critical patent/JPH03182051A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To decrease the reduction of a discharge capacity and enables the lengthening of a service life, by containing specific compounds in battery constitution materials in a battery using polyanine as a main electrode active substance for at least one of the two electrodes. CONSTITUTION:A battery, using polyanine as a main electrode active substance for at least one of the two electrodes, contains benzimidazole compounds in battery constitution materials, which compounds are expressed by formulas. For the compounds expressed by formulas, 2-mercapto benzimidazole, 2- mercaptomethyl benzimidazole, zinc salt made therefrom, etc. This decreases the reduction of the discharge capacity under repeated charge and discharge and enables the lengthening of the polyanine battery service life.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電池、特にポリアニリン電池の改良に関し、充
電可能で、重量エネルギー密度及び容積エネルギー密度
が高く且つサイクル充Ni電特性に優れた電池に関する
ものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to improvements in batteries, particularly polyaniline batteries, and relates to batteries that are rechargeable, have high gravimetric energy density and volumetric energy density, and have excellent cycle charging characteristics. It is something.

(従来の技術) 近年、電子機器の普及に伴ってより小型で軽量な電池が
種々の用途に用いられるようになってきた。特に電池に
リチウムを使用した電池は高いエネルギー密度を有する
ため、最近その需要は急激に増大している。これに伴っ
て、従来−次電池であったリチウム電池を二次電池化す
ることも強く要望されている。
(Prior Art) In recent years, with the spread of electronic devices, smaller and lighter batteries have come to be used for various purposes. In particular, since batteries using lithium have a high energy density, the demand for them has increased rapidly recently. Along with this, there is a strong demand for converting lithium batteries, which have conventionally been secondary batteries, into secondary batteries.

そこで最近は、正極の活物質としてポリアセチレン、ポ
リアニリン、ポリピロールなどのような有機高分子材料
を使用することにより、軽量で充電可能な電池を得るこ
とも開発されている。これらの有機高分子材料のうち、
ポリアニリンを使用した場合は優れた電池特性を示すこ
とが明確化されている。特に正極にポリアニリンを、負
極にリチウムを使用した場合は、高エネルギー密度の特
性を有する二次電池を得ることが確認されている。
Therefore, recently, it has been developed to obtain lightweight and rechargeable batteries by using organic polymer materials such as polyacetylene, polyaniline, polypyrrole, etc. as the active material of the positive electrode. Among these organic polymer materials,
It has been clarified that polyaniline exhibits excellent battery characteristics. In particular, it has been confirmed that when polyaniline is used for the positive electrode and lithium is used for the negative electrode, a secondary battery with high energy density characteristics can be obtained.

(発明が解決しようとする課題) しかしながら、前記電池は電池として要求される性能の
うち重要な性能とされるサイクル充放電特性、すなわち
繰返し充放電に対する耐久性の点においてまだ不十分で
あった6例えば正極としてポリアニリンを使用した電池
において、単位重量(k g)あたり120〜140A
hの電気容量の充電及び放電を繰返した場合、約200
サイクルで放電容量が初期の約50%となり、著しく低
下する。
(Problems to be Solved by the Invention) However, the above-mentioned batteries were still insufficient in terms of cycle charge/discharge characteristics, which are considered to be an important performance among the performances required for batteries, that is, durability against repeated charging and discharging6. For example, in a battery using polyaniline as the positive electrode, the power consumption is 120 to 140 A per unit weight (kg).
When repeatedly charging and discharging a capacitance of 200 h,
During the cycle, the discharge capacity becomes about 50% of the initial value, which is a significant decrease.

従ってポリアニリン電池は未だ実用化の段階に至ってお
らず、サイクル充放電特性の改善が早急に要望されてい
る。
Therefore, polyaniline batteries have not yet reached the stage of practical use, and there is an urgent need to improve their cycle charge and discharge characteristics.

(発明の目的) 本発明の目的は充放電を多数回の繰返しても放電容量の
低下が少なく、長寿命化に耐え得るポリアニリン電池を
提供することにある。
(Objective of the Invention) An object of the present invention is to provide a polyaniline battery that exhibits little decrease in discharge capacity even after repeated charging and discharging many times and can withstand a long service life.

(課題を解決するための手段) 本件発明者らはかかる要望に応じて鋭意研究を重ねた結
果、ポリアニリン電池の放電容量の低下が、充放電の繰
返しによってポリアニリンが電気化学的に酸化し、ポリ
アニリン内にポーラロンまたはバイポーラロンを生成し
、これが電解液中の溶媒分子または電解質分子と反応す
ることによって低分子化することに基因することをつき
とめた。しがち前記反応は下記の一般式(1)(2)で
表される化合物(抗酸化剤)を共存させることにより抑
制することができることも解明した。
(Means for Solving the Problem) As a result of intensive research in response to such requests, the present inventors have found that the decrease in the discharge capacity of polyaniline batteries is caused by electrochemical oxidation of polyaniline due to repeated charging and discharging. They found that this is due to the fact that polarons or bipolarons are produced within the electrolyte, and this is reduced in molecular weight by reacting with solvent molecules or electrolyte molecules in the electrolyte. It has also been found that the above-mentioned reaction, which tends to occur, can be suppressed by the coexistence of compounds (antioxidants) represented by the following general formulas (1) and (2).

本発明の電池は前記知見に基づいて開発されたちのであ
り、二つの電極のうち少なくとも一方の電極の主な電極
活物質としてポリアニリンを用いて形成した電池におい
て、該電池の構成材料内に下記一般式(1)または(2
)にて表される化合物を含有せしめたことを特徴とする
6のである。
The battery of the present invention was developed based on the above knowledge, and in a battery formed using polyaniline as the main electrode active material of at least one of the two electrodes, the following general materials are included in the constituent materials of the battery: Formula (1) or (2
) is characterized in that it contains the compound represented by.

本発明において抗酸化剤として用いられる上記一般式(
1)(2)で示される化合物としては2−メルカプトベ
ンツイミダゾール、2−メルカプトメチルベンツイミダ
ゾール、これらの亜鉛塩を挙げることができる。
The above general formula (
Examples of the compounds represented by 1) and (2) include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, and zinc salts thereof.

これらの抗酸化剤を電池内に含有せしめる方法は特に限
定される6のではなく、例えば電池の電解液中に添加せ
しめるか、或はポリアニリン電極内に混入せしめればよ
いが、特に好ましい方法はポリアニリンを電解合成法に
よって製造する際にその電析液中に上記抗酸化剤を混入
せしめるか、或はポリアニリン粉末に同抗酸化剤を混合
せしめた後、これを電極として成形するか、または同抗
酸化剤の溶液中にポリアニリン電極を浸漬せしめた後乾
燥せしめる方法などである。
There are no particular limitations on the method of incorporating these antioxidants into the battery, and for example, they may be added to the electrolyte of the battery or mixed into the polyaniline electrode, but particularly preferred methods include When producing polyaniline by electrolytic synthesis, the above-mentioned antioxidant is mixed into the electrodeposited solution, or after the antioxidant is mixed with polyaniline powder, it is molded into an electrode, or the same is used. This method involves immersing a polyaniline electrode in an antioxidant solution and then drying it.

なお、ポリアニリンはアニリンを適当な電気化学的また
は化学的な方法によって重合させて得るものであり、ア
ニリンがどの位置に結合してもよい。
Note that polyaniline is obtained by polymerizing aniline by an appropriate electrochemical or chemical method, and aniline may be bonded to any position.

また、本発明では二つの電極のうち少なくとち一方の電
極にポリアニリンを使用するが、高エネルギー密度の電
池を得るにはポリアニリンを正極活物質とし、負極活物
質にはリチウムを用いるのが好ましい、この場合、W解
質としては過塩素酸リチウム、四フッ化ホウ酸リチウム
、トリフルオロメタンスルホン酸リチウム及びこれらの
混合物が好ましく、溶媒としてはジメトキシエタン、プ
ロピレンカーボネート、エチレンカーボネート。
Furthermore, in the present invention, polyaniline is used for at least one of the two electrodes, but in order to obtain a battery with high energy density, it is preferable to use polyaniline as the positive electrode active material and lithium as the negative electrode active material. In this case, the W solute is preferably lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, or a mixture thereof, and the solvent is dimethoxyethane, propylene carbonate, or ethylene carbonate.

テトラヒドロフラン、スルフオラン、ガンマブチロラク
トンまたはこれらの混合物が好ましい。
Tetrahydrofuran, sulfuran, gamma butyrolactone or mixtures thereof are preferred.

(発明の作用) 本発明の電池はその組成材料に抗酸化剤が使用されてい
るので、充放電を繰返してもポリアニリンが酸化しにく
くなり、放電容量が低下しにくくなる。ちなみに、負極
活物質にリチウムを用いた場合にはエネルギー密度45
Wh/kg以上が得られ、100%の放電深度で500
回のサイクル充放電を行わせても放電容量の低下は約2
0%に留まっていた。
(Effect of the Invention) Since the battery of the present invention contains an antioxidant in its constituent materials, the polyaniline is less likely to be oxidized even after repeated charging and discharging, and the discharge capacity is less likely to decrease. By the way, when lithium is used as the negative electrode active material, the energy density is 45
Wh/kg or more can be obtained, and 500 at 100% depth of discharge.
Even after repeated charge and discharge cycles, the discharge capacity decreases by approximately 2 times.
It remained at 0%.

(実施例1) A、ポリアニリン電極の製作 水100cc中に過塩素酸を0.2Mの濃度に溶解し、
これにアニリンを0.1Mの濃度に添加して電析液とし
、次いでこの溶液中にIOXIOcmの大きさのニッケ
ルメツシュ板を2枚対向させて設置し、一方をアノード
とし、これを飽和甘こう電極に対して700mVの電位
に設定してアノード酸化を10時間行なってアノード側
に202gのポリアニリンを析出させた。このポリアニ
リンを取出し、これを純水中にて24時間洗浄し1次い
で80℃にて24時間乾燥した後、粉砕し100メツシ
ユ以下の微粉末とした。
(Example 1) A. Production of polyaniline electrode Perchloric acid was dissolved in 100 cc of water to a concentration of 0.2 M.
Aniline was added to this to a concentration of 0.1M to prepare an electrodeposition solution, and then two nickel mesh plates with a size of IOXIOcm were placed facing each other in this solution, one of which was used as an anode, and a saturated sweetener was added to this solution. Anodic oxidation was carried out for 10 hours by setting a potential of 700 mV with respect to the electrode, and 202 g of polyaniline was deposited on the anode side. This polyaniline was taken out, washed in pure water for 24 hours, then dried at 80° C. for 24 hours, and then ground into a fine powder of 100 mesh or less.

このようにして合成したポリアニリン粉末2gに2−メ
ルカプトベンツイミダゾールの粉末0゜1gを添加混合
した活物質を、厚さ0.05mmで巾4cm、長さ5.
6cmのステンレス製エキスバンドメタルに圧着してポ
リアニリンのみの重量が1.8gであるポリアニリン電
極を得た。
An active material prepared by adding and mixing 0.1 g of 2-mercaptobenzimidazole powder to 2 g of the polyaniline powder synthesized in this way was mixed to a thickness of 0.05 mm, a width of 4 cm, and a length of 5.0 cm.
A polyaniline electrode containing 1.8 g of polyaniline alone was obtained by pressure bonding to a 6 cm stainless steel expanded metal.

B、ポリアニリン電池の製作 斬くしで得たポリアニリン電極を正極とし、厚さ0.2
mmのリチウム板を負極とし、その間に厚さ0.3mm
のポリプロピレンの不織布からなるセパレータを介在せ
しめて渦巻状に巻き付けたものを金属製の単III型電
池容器内に装填し、電解液として四フッ化ホウ酸リチウ
ムをプロピレンカーボネートとジメトキシエタンの1=
1混合溶媒中に2.5Mの濃度で溶解せしめたちのを3
.2cc注入し、公知の方法により正負電極部より夫々
リードを取出し、蓋をして本発明の電池を得た。
B. Production of polyaniline battery The polyaniline electrode obtained by cutting is used as the positive electrode, and the thickness is 0.2
A lithium plate with a thickness of 0.3 mm is used as the negative electrode, and a 0.3 mm thick
A polypropylene non-woven fabric separator interposed therebetween was wound into a spiral shape, and the resulting product was loaded into a metal type III battery container.
1 dissolved in a mixed solvent at a concentration of 2.5M.
.. 2 cc was injected, leads were taken out from the positive and negative electrode parts by a known method, and the lid was closed to obtain a battery of the present invention.

この電池の重量は13g、体積は8.3ccであり、ニ
ッケルカドミウム電池に比して約1/2の軽量であった
。この電池についてその特性を測定するため4.0−2
.OVの電圧範囲にて10mAの定電流にて充放電した
ところ197mAhの容量が得られ、平均放電電圧は約
3.5Vであった。従ってこの電池の重量エネルギー密
度は53Wh/kgであり、容量エネルギー密度は83
.1Wh/g、であった、これらの値はニッケルーカド
ミウム電池に比していずれも大なる値を示した。また、
500サイクル後の放電容量を測定したところ155m
Ahであり、容量低下率は約21%であった。
This battery weighed 13 g and had a volume of 8.3 cc, which was about 1/2 lighter than a nickel cadmium battery. 4.0-2 to measure the characteristics of this battery
.. When charged and discharged at a constant current of 10 mA in the voltage range of OV, a capacity of 197 mAh was obtained, and the average discharge voltage was about 3.5V. Therefore, the gravimetric energy density of this battery is 53 Wh/kg, and the capacitive energy density is 83 Wh/kg.
.. 1Wh/g, and these values were all larger than those of the nickel-cadmium battery. Also,
When the discharge capacity was measured after 500 cycles, it was 155 m.
Ah, and the capacity reduction rate was about 21%.

(実施例2) A、ポリアニリン電極の製作 水100ccに過塩素酸を0.2Mの濃度にて溶解し、
これにアニリンを0.1Mの濃度にて添加して電析液と
し、次いで前記実流例1と同様にしてエキスバンドメタ
ル上にポリアニリンの活物質を析出せしめて作ったポリ
アニリン電極を実施例1と同様の条件にて単III型電
池容器に装填した0次いで同容器内に四フッ化ホウ酸リ
チウム及び酸化剤として2−メルカプトメチルベンツイ
ミダゾールを夫々2.5M及び0.OIMの濃度でプロ
ピレンカーボネートとジメトキシエタンの1:lの混合
溶媒に溶解させた電解液を3cc注入し1本発明の単■
!型電池を得た。
(Example 2) A. Production of polyaniline electrode Perchloric acid was dissolved in 100 cc of water at a concentration of 0.2 M.
Example 1 A polyaniline electrode was prepared by adding aniline at a concentration of 0.1M to prepare an electrodeposition solution, and then depositing a polyaniline active material on expanded metal in the same manner as in Actual Example 1 above. Lithium tetrafluoroborate and 2-mercaptomethylbenzimidazole as an oxidizing agent were charged at 2.5M and 0.0M respectively in the same container under the same conditions as above. 3 cc of an electrolyte dissolved in a 1:l mixed solvent of propylene carbonate and dimethoxyethane at a concentration of OIM was injected to form a monomer of the present invention.
! Obtained a model battery.

この電池について前記実施例1と同様の条件にて試験を
行った結果、エネルギー密度は51Wh/ k gであ
り、500サイクル後の放電容量の低下率は22.3%
であった。
As a result of testing this battery under the same conditions as in Example 1, the energy density was 51 Wh/kg, and the rate of decrease in discharge capacity after 500 cycles was 22.3%.
Met.

(比較例) 実施例2において電解液中にポリアニリンを添加しない
以外はすべて前記実施例2と同様にして比較例電池を得
た。
(Comparative Example) A comparative battery was obtained in the same manner as in Example 2 except that polyaniline was not added to the electrolyte.

この電池について500サイクル後の容量低下率を測定
した結果は88%であった。
The capacity reduction rate of this battery after 500 cycles was measured and was 88%.

(発明の効果) 本発明の電池は100%の放電深度で500回のサイク
ル充放電を行わせても、放電容量の低下は約20%と優
れたサイクル充放電特性を有し、寿命が長く、工業的に
極めて有用である。
(Effects of the Invention) The battery of the present invention has excellent cycle charging and discharging characteristics, with a decrease in discharge capacity of about 20% even after 500 cycles of charging and discharging at 100% depth of discharge, and has a long life. , is extremely useful industrially.

また1本発明の電池の性能は従来の鉛電池やニッケルー
カドミウム電池を凌いでおり、その工業的価値は極めて
大なるものがある。
Furthermore, the performance of the battery of the present invention exceeds that of conventional lead batteries and nickel-cadmium batteries, and its industrial value is extremely great.

Claims (1)

【特許請求の範囲】  二つの電極のうち少なくとも一方の電極の主な電極活
物質にポリアニリンを用いてなる電池において、その構
成材料内に下記一般式(1)または(2)にて表される
ベンツイミダゾール系化合物が含有されてなることを特
徴とする電池。 ▲数式、化学式、表等があります▼(1)(Rはアルキ
ル基) ▲数式、化学式、表等があります▼(2)(Rはアルキ
ル基)
[Claims] A battery in which polyaniline is used as the main electrode active material of at least one of the two electrodes, in which the constituent materials are represented by the following general formula (1) or (2). A battery characterized by containing a benzimidazole compound. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(1) (R is an alkyl group) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(2) (R is an alkyl group)
JP1322190A 1989-12-12 1989-12-12 Battery Pending JPH03182051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1322190A JPH03182051A (en) 1989-12-12 1989-12-12 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1322190A JPH03182051A (en) 1989-12-12 1989-12-12 Battery

Publications (1)

Publication Number Publication Date
JPH03182051A true JPH03182051A (en) 1991-08-08

Family

ID=18140949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322190A Pending JPH03182051A (en) 1989-12-12 1989-12-12 Battery

Country Status (1)

Country Link
JP (1) JPH03182051A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141067A (en) * 2000-10-31 2002-05-17 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
US7309544B2 (en) * 2002-08-05 2007-12-18 Nec Tokin Corporation Cell electrode and electrochemical cell therewith

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141067A (en) * 2000-10-31 2002-05-17 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP4734705B2 (en) * 2000-10-31 2011-07-27 三菱化学株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US7309544B2 (en) * 2002-08-05 2007-12-18 Nec Tokin Corporation Cell electrode and electrochemical cell therewith

Similar Documents

Publication Publication Date Title
US20100181527A1 (en) Nitroxide containing electrode materials for secondary batteries
JP2011113839A (en) Electrode active material and secondary battery
US4803138A (en) Nonaqueous secondary battery
JP2002313344A (en) Electrode binder, and electrode and battery manufactured by using it
JPS6355868A (en) Operation of secondary cell
JPH03182051A (en) Battery
JP4139960B2 (en) Electricity storage device
JPH038273A (en) Battery
JPH044561A (en) Battery
JPH02256176A (en) Battery
US20160359168A1 (en) High voltage organic materials for energy storage applications
JPH0734367B2 (en) Non-aqueous electrolyte secondary battery
JPH01132045A (en) Battery
JPH02244566A (en) Battery
Singh et al. VOLUME CONTRACTIBLE ANTIMONY-BROMIDE AS PROMISING NEGATIVE ELECTRODE FOR LIBs
JPH0660906A (en) Organic compound battery
JPH01651A (en) Active materials for batteries
JPH0355760A (en) Polyaniline compound
JPH0660907A (en) Organic compound battery
JPH06283175A (en) Reversible electrode
JPS62157678A (en) Secondary battery
JPH0384871A (en) Secondary cell
JPH0330256A (en) Manufacture of secondary battery electrode material, secondary battery electrode material, and secondary battery
JPS6380474A (en) Manufacture of electrode for cell
JPS61260543A (en) Electrode