JPS62157678A - Secondary battery - Google Patents
Secondary batteryInfo
- Publication number
- JPS62157678A JPS62157678A JP60293475A JP29347585A JPS62157678A JP S62157678 A JPS62157678 A JP S62157678A JP 60293475 A JP60293475 A JP 60293475A JP 29347585 A JP29347585 A JP 29347585A JP S62157678 A JPS62157678 A JP S62157678A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- polyaniline
- battery
- derivative
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、エネルギー密度が高く、自己放電が小さく、
サイクル寿命が長く、かつ充・放電効率(クーロン効率
)の良好な非水二次電池に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention has high energy density, low self-discharge,
The present invention relates to a non-aqueous secondary battery that has a long cycle life and good charge/discharge efficiency (Coulombic efficiency).
現在、汎用されている二次電池には鉛蓄電池、Ni/C
d%池等がある。これらの二次電池は単セルの電池電圧
がせいぜい2.0V程度であシ、一般には水浴液系電池
である。近年、電池電圧を高くとチー1− L−04?
−−檜仙L「イ T署ルる緬f田りた二次電池化の研究
が盛んに行なわれている。Currently, the commonly used secondary batteries are lead acid batteries, Ni/C
There are d% ponds, etc. These secondary batteries have a single cell battery voltage of about 2.0 V at most, and are generally water bath type batteries. In recent years, when the battery voltage is increased, Qi 1-L-04?
--Hisen L: ``Research into secondary batteries is being actively conducted.
Lltl−電極に用いた場合には、水とLiとの高い反
応性のため、電解液としては非水系を用いることが必要
である。When used in an Lltl-electrode, it is necessary to use a non-aqueous electrolyte because of the high reactivity between water and Li.
この場合、正極活物質として優れた性能を有するものと
して最近注目されだしたものに導電性高分子の一種であ
るポリアニリンがある。ポリアニリンは単位重量当りの
電気容量密度が非常に優れており、正極としての充放電
の可逆性も極めて優秀な性能を有している。また負極に
L1金属を用いて電池全構成した場合は、高いエネルギ
ー密度を発揮することができると考えられる。In this case, polyaniline, which is a type of conductive polymer, has recently attracted attention as having excellent performance as a positive electrode active material. Polyaniline has an extremely high capacitance density per unit weight, and also has extremely excellent reversibility of charging and discharging as a positive electrode. Furthermore, when the entire battery is constructed using L1 metal for the negative electrode, it is considered that a high energy density can be exhibited.
しかし、負他活#物質にLl金属を用いた場合、その電
極反応電位が非常に低い念め、正極ポリアニリンと組み
合せて可逆的に電池反応を継続しうる電解液がない。ま
た、光電時にL1極側にデンドライトが生じ、充放電効
率の低下及び正・負極の短絡等の問題がある。デンドラ
イトを防止する方法としては、負極のLLを他の金属、
例えばAt等と合金化させることによシ、L4+の電析
電位を高くしてデンドライトを防止する方法があるが、
電解液との副反応を防止するには不充分である。その次
め、電解液中に副反応防止用インヒビター、例えばヘキ
サメチレンホスホルアミドやポリエチレンオキサイド等
を微量添加して負極と電解液界面にイオン導電性の保護
皮膜を形成させ、電解液との副反応を防止する試みもあ
るが、保獲皮農で完全に覆うことが難しく、またインヒ
ビター自身の安定性等の問題も新たに生じ、実用上問題
がある。However, when Ll metal is used as the negative active # material, the electrode reaction potential is very low, and there is no electrolytic solution that can reversibly continue the battery reaction in combination with the positive electrode polyaniline. Furthermore, dendrites are formed on the L1 electrode side during photovoltaic charging, resulting in problems such as a decrease in charging and discharging efficiency and a short circuit between the positive and negative electrodes. As a method to prevent dendrites, the LL of the negative electrode is made of other metals,
For example, there is a method to prevent dendrites by increasing the electrodeposition potential of L4+ by alloying it with At or the like.
This is insufficient to prevent side reactions with the electrolyte. Next, a small amount of an inhibitor for preventing side reactions, such as hexamethylene phosphoramide or polyethylene oxide, is added to the electrolyte to form an ion-conductive protective film at the interface between the negative electrode and the electrolyte, thereby preventing side reactions from occurring between the electrolyte and the electrolyte. Although there have been attempts to prevent the reaction, it is difficult to completely cover the inhibitor with retained skin farming, and new problems such as the stability of the inhibitor itself have arisen, which poses practical problems.
本発明の目的は、上記従来技術の問題点を解決し、ひい
ては、エネルギー密度が高く、自己放電が小さく、サイ
クル寿命が長く、かつ充・放電効率(クーロン効率)の
良好な非水二次電池を提供するにある。The purpose of the present invention is to solve the problems of the prior art described above, and to provide a non-aqueous secondary battery with high energy density, low self-discharge, long cycle life, and good charge/discharge efficiency (Coulombic efficiency). is to provide.
本発明者らは、前記従来技術の問題点を解決すべく鋭意
検討した結果、負極活物質としては、アルカリ金属イオ
ンをダストイオンとして多く収電でき、公知の非水電解
液中で安定的に可逆反応が行える電極反応電位を有する
α型三酸化第二鉄(α−F6□03)を用い、正極には
、正極としての電極性能が優れたボリア= IJンまた
はその誘導体を用いて電池を構成することによって上記
目的が達成されることを見出し次。As a result of intensive studies to solve the problems of the prior art, the present inventors found that the negative electrode active material is capable of collecting a large amount of electricity as alkali metal ions as dust ions, and is stable in known non-aqueous electrolytes. The battery is constructed using α-type ferric trioxide (α-F6□03), which has an electrode reaction potential that allows reversible reactions, and boria or its derivatives, which have excellent electrode performance as a positive electrode. It is found that the above purpose is achieved by configuring the following.
本発明の非水溶媒系二次電池は、負極がα型三酸化第二
鉄からなシ、正極がポリアニリンまたはその誘導体から
なることをl!!f徴とする。In the non-aqueous solvent secondary battery of the present invention, the negative electrode is not made of α-type ferric trioxide, and the positive electrode is made of polyaniline or a derivative thereof! ! It is assumed to be f-symptom.
本発明で使用するポリアニリンまたはその誘導体とは下
記の一般式(1)で示される七ツマ−の重合体を指す。The polyaniline or its derivative used in the present invention refers to a heptad polymer represented by the following general formula (1).
(式中、R1,R2,R,およびR4は異っていても同
一でもよく、水t、原子、炭素数が1〜10のアルキル
基ま之は炭素数が1〜1oのアルコキシ基である。)上
記一般式〇)で表わされる化合物の代表例としては、ア
ニリン、オルトまたはメタトルイジン、キシリジン、オ
ルトまたはメタアニシジン。(In the formula, R1, R2, R, and R4 may be different or the same, and water, an atom, and an alkyl group having 1 to 10 carbon atoms are an alkoxy group having 1 to 1 carbon atoms.) ) Typical examples of the compound represented by the above general formula 〇) include aniline, ortho- or meta-toluidine, xylidine, ortho- or meta-anisidine.
2.5−−/メトキシアニリン、2.5−ジェトキシア
ニリン、3,5−ジメトキシアニリン#2,6−シメト
キシアニリン等が挙げられる。これらのうち、エネルギ
ー密度の良好な二次電池を得る点からアニリンが最も好
ましい。Examples thereof include 2.5-/methoxyaniline, 2.5-jethoxyaniline, 3,5-dimethoxyaniline #2,6-simethoxyaniline, and the like. Among these, aniline is most preferred from the viewpoint of obtaining a secondary battery with good energy density.
本発明の電池の電解液としては、アルカリ金属塩を電解
質として用い、溶媒には正極及び負極と反応しにくい安
定な有機溶媒を用いる必要がある。For the electrolytic solution of the battery of the present invention, it is necessary to use an alkali metal salt as the electrolyte, and as the solvent, it is necessary to use a stable organic solvent that does not easily react with the positive electrode and the negative electrode.
アルカリ金属塩の具体例としては、LiC4O4tLi
BF 、LiPF6*LiAsF6.LiBPh4.L
iBBu4tLiBPh3Bu、LtBEt3Bu等の
リチウム塩や上記Liの代わりにNaやKを用いたナト
リウム塩、カリウム塩を用いることができる。Specific examples of alkali metal salts include LiC4O4tLi
BF, LiPF6*LiAsF6. LiBPh4. L
Lithium salts such as iBBu4tLiBPh3Bu and LtBEt3Bu, and sodium salts and potassium salts using Na or K instead of Li can be used.
また、適当な有機溶媒としては・プロピレンカーテネ−
)やエチレンカーブネート等のカーボネート類、トリメ
チルホスフェートやトリエチルホスフェート等のリン酸
エステル類、テトラヒドロフラン、1.2−ジメトキシ
エタン等のエーテル類、スルホラジ、3−メチルースル
ホラン等のスルホラン類、γ−ブチロラクトンやδ−ブ
チロラクトン等のラクトン類があるが、一般的にはプロ
ピレンカーゴネートまたはプロピレンカーゴネートとエ
ーテルとの混合溶媒が用いられる。In addition, as a suitable organic solvent, propylene carbonate is used.
) and carbonates such as ethylene carbinate, phosphoric acid esters such as trimethyl phosphate and triethyl phosphate, ethers such as tetrahydrofuran and 1,2-dimethoxyethane, sulfolanes such as sulfoladi and 3-methyl-sulfolane, γ-butyrolactone There are lactones such as and δ-butyrolactone, but propylene cargoonate or a mixed solvent of propylene cargoonate and ether is generally used.
正極破りアニリンまたはその誘導体は、電気化学的重合
法および化学的重合法のいずれによって製造しても良い
・例見ば、電気化学的重合法の一例としては、日本化学
会誌A11.1801頁(1984年)が知られておシ
、また化学的重合法の一例としては、エイ・ジー・グリ
ーン及びエイ・イー・ウッドヘッド、ジャーナル・オプ
・デ・ケミカル・ソサイアティ、、第2388頁。The cathode-broken aniline or its derivatives may be produced by either an electrochemical polymerization method or a chemical polymerization method.For example, as an example of an electrochemical polymerization method, see Journal of the Chemical Society of Japan A11, p. 1801 (1984 An example of a chemical polymerization method is A. G. Green and A. E. Woodhead, Journal of the Chemical Society, p. 2388.
1910年(A、GmGraen and A*E*W
oodhead。1910 (A, Gm Graen and A*E*W
oodhead.
J、Chem、Soc、、2388(1910))が知
られている。J. Chem. Soc., 2388 (1910)).
合成されたポリアニリン捷を之はその誘導体を正極とし
て使用可能な形態にするには、一般にはポリアニリン粉
末に導電剤としてカーデンブラック当を混ぜ、さらに結
着剤としてテトラフルオロエチレン等を混ぜて集電体に
塗布または加圧成型する。電気化学的に合成したポリア
ニリンまたはその誘導体を正極に用いるには、集電体を
基板として前記一般式(I)で表わされる化合物を集電
体上で酸化重台させて、そのまま電極として用いても差
支えない。また、ポリアニリンまたはその誘導体の電気
容1密度を向上させるために、合成されたポリアニリン
またはその誘導体をアルカリ処理またはヒドラジン等で
還元処理してから用いることもできる。In order to make the synthesized polyaniline powder, or its derivative, into a form that can be used as a positive electrode, it is generally necessary to mix polyaniline powder with carden black as a conductive agent, and further mix tetrafluoroethylene or the like as a binder to collect current. Apply or pressure mold on the body. In order to use electrochemically synthesized polyaniline or a derivative thereof as a positive electrode, a current collector is used as a substrate, and a compound represented by the general formula (I) is oxidized on the current collector and used as an electrode as it is. There is no problem. Further, in order to improve the electric capacity 1 density of polyaniline or its derivative, the synthesized polyaniline or its derivative can be used after being treated with alkali or reduced with hydrazine or the like.
負極に用いるα型三豪化第二鉄電極は、市販品グレード
のα型三酸化第二鉄に導電助材及び高比表面積化剤とし
て高比表面、債を有するカーゲンブラックを数チル数1
・0%混ぜ、さらに結着剤としてポリエチレンやポリプ
ロピレン等を数チル数10%混ぜて、成型して作製する
ことができる。The α-type ferric trioxide electrode used for the negative electrode is a commercial grade α-type ferric trioxide mixed with several layers of Kagen black, which has a high specific surface and bond, as a conductive additive and a high specific surface area agent. 1
・It can be made by mixing 0%, then adding a few 10% of polyethylene, polypropylene, etc. as a binder and molding.
また、集電材の表面”にα型三酸化第二鉄を塗布するか
、鉄電極を化学的または電気化学的に表面処理するか、
または、加熱処理してα型三酸化第二鉄電極を作製する
こともできる。In addition, it is possible to apply α-type ferric trioxide to the surface of the current collector, or to surface-treat the iron electrode chemically or electrochemically.
Alternatively, an α-type ferric trioxide electrode can also be produced by heat treatment.
しかしながら、正極および負極の製造方法は、上記方法
に限定されるものではなく、いかなる製造方法を用いて
も差支えない。However, the method for manufacturing the positive electrode and the negative electrode is not limited to the above method, and any manufacturing method may be used.
本発明の電池は、一般的に電池に用いられる有機溶媒中
で安定した充放電を行うことができ、既存のNi/Cd
電池や鉛蓄電池に比べてエネルギー密度が高く、かつ自
己放電率が極めて低く、高性能の電池特性を示す。The battery of the present invention can be stably charged and discharged in organic solvents commonly used in batteries, and the battery of the present invention
Compared to batteries and lead-acid batteries, they have a higher energy density and an extremely low self-discharge rate, demonstrating high-performance battery characteristics.
以下、実施例について本発明をさらに詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.
実施例1
〔ポリアニリンの製造〕
アニリン濃度が0.2モル/ノのlN−HBF4の水溶
液10oCC中において、白金極(15g+φ、直径0
.5wφのリード線付き)の面上で一定電流密度1、0
mA7’cm2にて電解重合を行なりた。この場合、
対極には上記と同径の白金板を用い、参照極にAI!、
’へg、ct極を用いた。Example 1 [Manufacture of polyaniline] A platinum electrode (15 g + φ, diameter 0
.. Constant current density 1, 0 on the surface (with lead wire of 5wφ)
Electrolytic polymerization was performed at mA 7'cm2. in this case,
A platinum plate with the same diameter as above was used as the counter electrode, and AI! was used as the reference electrode. ,
'Heg, CT pole was used.
電解重合電気量が20クーロンに達したときに重合を停
止させたところ、白金板の両面に総重量が9.6■の深
緑色のフィブリルが絡み合った形のフィルム状ポリアニ
リンが得られた。平均重合電位はAg/AgCL参照極
に対し0.74Vであった。When the electrolytic polymerization electricity amount reached 20 coulombs, the polymerization was stopped, and a film-like polyaniline having a total weight of 9.6 cm and dark green fibrils entwined on both sides of the platinum plate was obtained. The average polymerization potential was 0.74 V vs. Ag/AgCL reference electrode.
次いで、このポリアニリンを白金板ごと、28重量%濃
度のアンモニア水中に約一時間浸漬した。Next, this polyaniline together with the platinum plate was immersed in ammonia water having a concentration of 28% by weight for about one hour.
アンモニア水に浸漬中、約1分間の超音波を与えたO
次いで、白金板ごとポリアユ1.1ンを蒸留水で約1時
間洗浄したところ、洗浄水の−は7.2であったO
次いで、上記処理したポリアニリンを白金基板から剥が
し、それを100℃で15時間減圧乾燥を行なったO
〔正極の作製〕
上記処理を施したポリアニリン粉末に、導電助剤として
比表面積が1000m A1以上のファーネスブラック
(商品名ブラック・ぐ−ル)を10重量%と結着剤とし
てテフロンノ9ウダーf:10重量%混ぜ、よく混合し
た後、直径10瓢φに切シ抜いた白金金網上に上記混合
物10.0M9’を加圧成型し、直径10mφの電極を
作製した。While immersed in ammonia water, ultrasonic waves were applied for about 1 minute.Next, when the polyurethane 1.1 with the platinum plate was washed with distilled water for about 1 hour, the - of the washing water was 7.2. The above-treated polyaniline was peeled off from the platinum substrate and dried under reduced pressure at 100°C for 15 hours. Mix 10% by weight of black (trade name: Black Gour) with 10% by weight of Teflon No. .0M9' was pressure molded to produce an electrode with a diameter of 10 mφ.
市販品の酸化第二鉄を650℃で1時間熱処理したもの
にファーネスプラ、りを10重量%と結着剤としてポリ
エチレンを10重量%とを加え、良く混合した後、直径
10肩φに切シ抜いたニッケル金網上に上記混合物8.
0■を加圧成型し、直径10論φの電極を作成した。こ
の電極を第1図に示す実験セルを用い、アルゴン雰囲気
下で間にガラス製七ノ臂レータ−を挾んで、対極に10
1m1Iφに切り抜いたLi金属を用い、電解液として
1モル/Z濃度になるようLiBF4t一体積比が1:
1のプロピレンカーボネートと1,2−ソメトキシエタ
ンの混合溶媒に溶かしたものを用いて、電池を構成した
。Commercially available ferric oxide was heat-treated at 650°C for 1 hour, and 10% by weight of furnace plastic and 10% by weight of polyethylene as a binder were added, mixed well, and then cut into 10-shoulder diameter pieces. 8. Place the above mixture on a punched nickel wire mesh.
0cm was pressure molded to create an electrode with a diameter of 100mm. This electrode was placed in the experimental cell shown in Figure 1, with a glass seven-arm plate placed between them in an argon atmosphere, and a
Using a Li metal cut out to 1 m 1 Iφ, the LiBF4t volume ratio was 1:1 so that the electrolyte had a concentration of 1 mol/Z.
A battery was constructed using 1 dissolved in a mixed solvent of propylene carbonate and 1,2-somethoxyethane.
この系で、酸化鉄側にLi+が還元される方向に0.2
5mA/−の電流密度で電流を流し、電気量が12クー
ロンになったとき通電を停止した。In this system, the direction in which Li+ is reduced to the iron oxide side is 0.2
A current was applied at a current density of 5 mA/-, and the current was stopped when the amount of electricity reached 12 coulombs.
第1図に示す構造を有する実験セルを用いて、上記方法
で作製したポリアニリン正極及びLiと反応させた酸化
第二鉄負極を網が露出している側を集電体側にして、間
に1モル/l濃度のLiBF4を溶かしたプロピレンカ
ーボネートと1.2−ジメトキシエタン電解液を含んだ
1.Om厚のガラス製多孔質七ノ2レータ−を挾んで、
さらに電解液を電極及びセパレーターの窒孔内に完全に
入るように加えて電池を構成した。Using an experimental cell having the structure shown in FIG. 1, the polyaniline positive electrode prepared by the above method and the ferric oxide negative electrode reacted with Li were placed with the side where the mesh was exposed facing the current collector, and a 1. Containing propylene carbonate and 1,2-dimethoxyethane electrolyte in which LiBF4 at a concentration of mol/l was dissolved. Holding a glass porous layer with a thickness of 0m,
Further, an electrolytic solution was added so as to completely enter the nitrogen pores of the electrodes and separator to construct a battery.
この電池を3.0−ψ−2の一定電流密度で、′電気量
が5.3クーロンになるまで充電したところ、充電後の
開放電圧は2.6vを示した。次いで、3.0mA/6
w?の一定電流密度で、電池電圧が1.OVに低下する
まで放電を行ない、再び、5,3クーロンの電気量を光
電し、1.0’/まで放電する充放電の繰シ返し試験を
行なった。When this battery was charged at a constant current density of 3.0-ψ-2 until the amount of electricity reached 5.3 coulombs, the open-circuit voltage after charging was 2.6V. Then 3.0mA/6
Lol? At a constant current density of , the battery voltage is 1. A repeated test of charging and discharging was performed by discharging until the voltage dropped to OV, photoelectrically applying an amount of electricity of 5.3 coulombs again, and discharging to 1.0'/.
また、充放電の繰シ返し回数20日間の充電終了後、電
池系を開回路にして30日間の自己放電試験を行なった
。その結果、この電池は初期数サイクルは充放電効率が
90チ以下であったが、その後はほぼ100%を維持し
、再び充放電効率が低下し、50%になるまでの繰り返
し寿命は565回を記録した。この電池の30日間にお
ける自己放電率は12%で、側柵重量当りのエネルギー
密度は171 wh/logであった。なお、繰返し回
数10回目の放′成カーブは第2図(−)の様になった
。In addition, after completing 20 days of repeated charging and discharging, a self-discharge test was conducted for 30 days with the battery system open circuit. As a result, the charge/discharge efficiency of this battery was less than 90% for the first few cycles, but after that it maintained almost 100%, and the charge/discharge efficiency decreased again, and the cycle life was 565 cycles until it reached 50%. was recorded. The self-discharge rate of this battery over 30 days was 12%, and the energy density per side rail weight was 171 wh/log. The radiation generation curve after the 10th repetition was as shown in FIG. 2 (-).
比較例1
負極に実施例で用い念酸化第二鉄の代わシに直径10+
wφに切シ抜いたリチウム金N8.Ovを用いた以外は
、正極、電解液とも全〈実施例と同様のものを用いて第
1図に示す構造を有する実験セルを構成した。この電池
を充電方向から5.3クーロンになるまで充電したとこ
ろ、開回路電圧は3.6vを示したが、以下、放電・充
電の繰シ返し試験を行なったところ、17サイクル目に
充放電効率が50%に低下してしまい、良い電池性能は
得られなかった。なお、繰返し回数1o回目の放電カー
ブは第2図6)のようになった。Comparative Example 1 A negative electrode with a diameter of 10+ was used in place of the ferric oxide used in the example.
Lithium gold N8 cut out to wφ. An experimental cell having the structure shown in FIG. 1 was constructed using the same positive electrode and electrolyte as in the example except that Ov was used. When this battery was charged until it reached 5.3 coulombs in the charging direction, the open circuit voltage showed 3.6V. However, when a repeated discharge/charge test was performed, the 17th cycle The efficiency decreased to 50%, and good battery performance could not be obtained. The discharge curve after the 10th repetition was as shown in FIG. 2 (6).
実施例2
〔正極ポリアニリンの作製〕
アニリン濃度が0.22モル/!の1規定塩酸水溶液1
00ccをマグネットスターラーで攪拌しながら、これ
に酸化剤として0.25モル/l相当の(NH4)2S
20a e添加し、アニリンを化学重合させた・得られ
たポリアニリンは粉体状でありた。Example 2 [Preparation of positive electrode polyaniline] Aniline concentration is 0.22 mol/! 1 N hydrochloric acid aqueous solution 1
While stirring 00cc with a magnetic stirrer, add (NH4)2S equivalent to 0.25 mol/l as an oxidizing agent.
20a e was added and aniline was chemically polymerized. The obtained polyaniline was in the form of powder.
このポリアニリンを蒸留水で洗浄後、28重債チのアン
モニア水で洗浄処理し、さらに蒸留水で数回洗浄した後
、100℃で減圧乾燥を15時間行なった。This polyaniline was washed with distilled water, then washed with 28% ammonia water, further washed several times with distilled water, and then dried under reduced pressure at 100° C. for 15 hours.
次いで、上記処理を施したポリアニリンのうち、7、0
■を取り出し、さらに結潰剤テフロンノ臂ウダー〇、5
〜と導電助剤として7アーネスブラツク0.5■を配合
して、総量8.0■の粉体を良く混合した。この混合物
を実施例1と同様に直径10+mの白金金網上に加圧成
型し、電極を作製した。Next, out of the polyaniline treated above, 7.0
Take out the ■, and add the crushing agent
- and 0.5 µm of 7 Arness Black as a conductive additive were mixed well in a total amount of 8.0 µm of powder. This mixture was pressure-molded onto a platinum wire mesh having a diameter of 10+ m in the same manner as in Example 1 to produce an electrode.
実施例1と同様に処理した酸化第二鉄10■にカーボン
ブラック2m9とポリアニリン正極1,5■を加え、良
く混合した後、直径10mφに成型して電極を作製し、
第1図に示すセルを用いて実施例1と同様にあらかじめ
酸化第二鉄とLiを反応させておい念ものを負極に用い
た。Add 2m9 of carbon black and 1.5cm of polyaniline positive electrode to 10cm of ferric oxide treated in the same manner as in Example 1, mix well, and then mold to a diameter of 10mφ to prepare an electrode.
Using the cell shown in FIG. 1, ferric oxide and Li were reacted in advance in the same manner as in Example 1, and the cell was used as a negative electrode.
実施例1と同様に第1図に示す実験セルを用い、電解液
には1.5モル/1IIk度のしIC104を溶かした
プロピレンカーゴネート液を用いて電池を作成した。A battery was prepared in the same manner as in Example 1 using the experimental cell shown in FIG. 1 and using a propylene cargo solution in which 1.5 mol/1IIk degree IC104 was dissolved as an electrolyte.
この電池を充電方向からポリアニリンの繰り返し単位当
り55モル%(分子量91として計算)になるまでの電
気量を5. OtydV’cmの一定電流密度で充電し
た。この゛電池の充電後の開放電圧は2.7Vであった
。The amount of electricity required to charge this battery from the charging direction to 55 mol% per repeating unit of polyaniline (calculated assuming a molecular weight of 91) is 5. It was charged at a constant current density of OtydV'cm. The open circuit voltage of this battery after charging was 2.7V.
次いで、5.0 mA7cm2の電密で電池電圧が1.
Ovになるまで放電した。次いで、5. OrFIA/
cvr2の電流密度で電池電圧が4.21VKなるまで
充電し、4.2■に電圧が達成したら4,2vの定電圧
充電に切シ換え、定電流での充電開始から充電時間が1
時間経過するまで充電を続けた。次いで、5.0 mA
7’cm2の電流密度で電池電圧が1.Ovになるまで
放電し、次いで、4.2vまでの定電流及び4.2vで
の定電圧充電を1時間行なう充放電の繰り返し試験を行
密度が半減するまでの繰り返し寿命は963回を記録し
た。Then, the battery voltage was increased to 1.0 mA with a current density of 7 cm2.
It was discharged until it reached Ov. Next, 5. OrFIA/
Charge the battery at a current density of cvr2 until the battery voltage reaches 4.21VK, and when the voltage reaches 4.2V, switch to constant voltage charging of 4.2V, and the charging time is 1 from the start of constant current charging.
Charging continued until the time elapsed. Then 5.0 mA
At a current density of 7'cm2, the battery voltage is 1. A repeated charging/discharging test was performed in which the battery was discharged until it reached Ov, and then charged at a constant current of up to 4.2V and a constant voltage of 4.2V for 1 hour.The cycle life was recorded at 963 times until the row density was halved. .
実施例3
〔正極の作製〕
実施例1で正極に用い之ボリア= IJンの代わりにオ
ルトトルイジンを電気化学的に酸化重合したアニリン誘
導体を正極に用いた以外は重合物の後処理及び結着剤、
導電助材の混合比等は実施例1と全く同様にして正極を
作製した。Example 3 [Preparation of positive electrode] Post-treatment and binding of the polymer except that an aniline derivative obtained by electrochemically oxidatively polymerizing orthotoluidine was used instead of the boria IJ used for the positive electrode in Example 1. agent,
A positive electrode was prepared in exactly the same manner as in Example 1, including the mixing ratio of the conductive auxiliary material.
負極、電解液、実験セル等は実施例1と全く同様なもの
を用い、実施例1と全く同様の方法で、電池の性能を調
べた。The negative electrode, electrolyte, experimental cell, etc. used were exactly the same as in Example 1, and the performance of the battery was examined in the same manner as in Example 1.
その結果、充放電効率が50%になるまでの繰返し寿命
は485回であり、この電池の30日間における自己放
電率は15%で、両極重景当pのエネルギー密度は14
7w−hAであった。As a result, the cycle life until the charge/discharge efficiency reached 50% was 485 times, the self-discharge rate of this battery in 30 days was 15%, and the energy density at both extremes was 14
It was 7w-hA.
第1図は本発明の二次電池の構成の一例を示す断面図で
ある。第2図は放電時間(分)と放電電圧(V)との関
係を示すグラフである(図中、カーブ(、)は本発明の
電池、カーブ(b)は比較例の電池の特性を示す。)。
第1図中の参照数字は以下のとおシである。
1:負極用リード線、2:パイトン製0リング、3:負
極用集電体、4:負極、5:多孔質隔膜、6:正極、7
:正極用集電体、8:正極用リード線、9:テフロン製
容器。
−痕FIG. 1 is a sectional view showing an example of the configuration of a secondary battery of the present invention. Figure 2 is a graph showing the relationship between discharge time (minutes) and discharge voltage (V) (in the figure, the curve (,) shows the characteristics of the battery of the present invention, and the curve (b) shows the characteristics of the battery of the comparative example. ). Reference numbers in FIG. 1 are as follows. 1: Negative electrode lead wire, 2: Piton O-ring, 3: Negative electrode current collector, 4: Negative electrode, 5: Porous diaphragm, 6: Positive electrode, 7
: Current collector for positive electrode, 8: Lead wire for positive electrode, 9: Teflon container. -marks
Claims (1)
またはその誘導体からなることを特徴とする非水溶媒系
二次電池A non-aqueous solvent secondary battery characterized in that the negative electrode is made of α-type ferric trioxide and the positive electrode is made of polyaniline or a derivative thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60293475A JPS62157678A (en) | 1985-12-28 | 1985-12-28 | Secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60293475A JPS62157678A (en) | 1985-12-28 | 1985-12-28 | Secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62157678A true JPS62157678A (en) | 1987-07-13 |
Family
ID=17795220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60293475A Pending JPS62157678A (en) | 1985-12-28 | 1985-12-28 | Secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62157678A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014077225A1 (en) * | 2012-11-13 | 2014-05-22 | 日東電工株式会社 | Active material particles, positive electrode for capacitor device, and manufacturing method for capacitor device and active material particles |
CN109546091A (en) * | 2018-11-07 | 2019-03-29 | 超威电源有限公司 | A kind of high-energy-density zinc-nickel cell anode preparation method |
-
1985
- 1985-12-28 JP JP60293475A patent/JPS62157678A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014077225A1 (en) * | 2012-11-13 | 2014-05-22 | 日東電工株式会社 | Active material particles, positive electrode for capacitor device, and manufacturing method for capacitor device and active material particles |
US9882208B2 (en) | 2012-11-13 | 2018-01-30 | Nitto Denko Corporation | Particulate active material, power storage device positive electrode, power storage device, and production method for particulate active material |
US10734645B2 (en) | 2012-11-13 | 2020-08-04 | Nitto Denko Corporation | Particulate active material, power storage device positive electrode, power storage device, and production method for particulate active material |
CN109546091A (en) * | 2018-11-07 | 2019-03-29 | 超威电源有限公司 | A kind of high-energy-density zinc-nickel cell anode preparation method |
CN109546091B (en) * | 2018-11-07 | 2021-10-26 | 超威电源集团有限公司 | Preparation method of high-specific-energy zinc-nickel battery positive electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110176591B (en) | Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material | |
CN110048174B (en) | Gel battery electrolyte membrane and preparation method and application thereof | |
US11211635B2 (en) | Battery, battery pack, and uninterruptible power supply | |
JP2003242964A (en) | Non-aqueous electrolyte secondary battery | |
JPS6286673A (en) | Electrolyte for lithium secondary battery | |
JPH03129679A (en) | Polyaniline battery and manufacture of polyaniline powder using in this battery | |
JPS62100948A (en) | Secondary battery | |
JPS6355868A (en) | Operation of secondary cell | |
CN109980226B (en) | Zinc cathode with polyamide brightener layer and preparation method and application thereof | |
JPS62157678A (en) | Secondary battery | |
JPS61227377A (en) | Nonaqueous secondary battery | |
JP2822659B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4156495B2 (en) | Gel electrolyte, its production method and its use | |
JPS62150657A (en) | Secondary cell | |
JPS6376274A (en) | Secondary battery | |
JPH01292753A (en) | Secondary battery | |
JPS6273559A (en) | Nonaqueous system secondary cell | |
JPS63136476A (en) | Manufacture of conductive polymer battery | |
JPS62100951A (en) | Secondary battery | |
JP3344152B2 (en) | Manufacturing method of electrode plate for lead-acid battery | |
JP2830479B2 (en) | Non-aqueous electrolyte secondary battery | |
JPS62219466A (en) | Secondary cell | |
JPS62100950A (en) | Secondary battery | |
JPH0660907A (en) | Organic compound battery | |
JPS62186474A (en) | Nonaqueous secondary cell |