JPH0318033Y2 - - Google Patents

Info

Publication number
JPH0318033Y2
JPH0318033Y2 JP17342986U JP17342986U JPH0318033Y2 JP H0318033 Y2 JPH0318033 Y2 JP H0318033Y2 JP 17342986 U JP17342986 U JP 17342986U JP 17342986 U JP17342986 U JP 17342986U JP H0318033 Y2 JPH0318033 Y2 JP H0318033Y2
Authority
JP
Japan
Prior art keywords
mold
ingot
continuous casting
molten metal
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17342986U
Other languages
Japanese (ja)
Other versions
JPS6380057U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17342986U priority Critical patent/JPH0318033Y2/ja
Publication of JPS6380057U publication Critical patent/JPS6380057U/ja
Application granted granted Critical
Publication of JPH0318033Y2 publication Critical patent/JPH0318033Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は連続鋳造に用いる加熱鋳型に関し、特
に鋳型の寿命を延長させ、長時間安定した鋳造作
業を可能としたものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a heating mold used for continuous casting, and in particular extends the life of the mold and enables stable casting work over a long period of time.

〔従来の技術〕[Conventional technology]

最近、加熱鋳型を用いた連続鋳造法が盛んに行
なわれている。この鋳造法は溶湯保持炉に鋳造金
属の融点以上に加熱した鋳型を該鋳型の一部が炉
中に突出するように取付け、鋳型内に溶湯を供給
し、他方即ち鋳型出口より引き出す鋳塊を直接水
冷して、鋳型内で鋳塊と接する溶湯を連続的に凝
固させるものであり、この場合溶湯の凝固は通常
の冷却鋳型を用いたときのように外側表面から進
行するのではなく、内側から始まり、鋳塊表面が
最終凝固部となるため、内部及び表面の品質の優
れた一方向凝固組織の鋳塊が得られる。
Recently, continuous casting methods using heated molds have been widely used. In this casting method, a mold heated above the melting point of the cast metal is installed in a molten metal holding furnace so that a part of the mold protrudes into the furnace, and the molten metal is supplied into the mold while the ingot is drawn out from the mold outlet. This method uses direct water cooling to continuously solidify the molten metal in contact with the ingot within the mold.In this case, the molten metal solidifies not from the outside surface as when using a normal cooling mold, but from the inside. Since the ingot surface becomes the final solidified part, an ingot with a unidirectionally solidified structure with excellent internal and surface quality can be obtained.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

上記連続鋳造法は、溶湯の鋳型接触面から凝固
が開始するのを防止するため、鋳型内面を鋳造金
属の融点以上に加熱することが重要な要件となつ
ている。従つて鋳型内面は常に溶湯と接触するこ
とになり、鋳型に要求される特性としては耐熱性
及び金属溶湯に対して不活性なことが必須であ
る。このため銅及び銅合金の連続鋳造には黒鉛製
の鋳型が用いられている。
In the above-mentioned continuous casting method, an important requirement is to heat the inner surface of the mold to a temperature higher than the melting point of the cast metal in order to prevent the molten metal from solidifying from the contact surface of the mold. Therefore, the inner surface of the mold is always in contact with the molten metal, and properties required of the mold include heat resistance and inertness to the molten metal. For this reason, graphite molds are used for continuous casting of copper and copper alloys.

しかしながら一般に加熱鋳型の鋳塊引き出し側
は断熱フエルトで被覆されているだけであるの
で、外気が浸透して加熱鋳型と接触するのを完全
に防ぐことはできない。一方銅及び銅合金の鋳造
の場合、鋳型は常時1200℃以上の高温に保持され
ているため、浸透する外気により黒鉛が酸素と反
応して酸化損耗し、鋳型の鋳塊引き出し側より
徐々に長さが短くなり、4〜6時間で鋳型として
の機能を失つてしまう。
However, since the ingot drawer side of the heating mold is generally only covered with a heat insulating felt, it is not possible to completely prevent outside air from penetrating into the heating mold and coming into contact with the heating mold. On the other hand, in the case of casting copper and copper alloys, the mold is always kept at a high temperature of 1200℃ or higher, so the graphite reacts with oxygen due to the penetrating outside air and is oxidized and worn out. The mold becomes short and loses its function as a mold within 4 to 6 hours.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、鋳型の寿
命は鋳型の酸化損耗の進行によることから、鋳型
材料に黒鉛よりも耐高温酸化性に優れたセラミツ
ク、例えばSiCを用い、鋳型内面の表面粗度を適
正にし、鋳造条件を適正とすることにより、黒鉛
鋳型と同等の品質を有する鋳塊の得られることを
知見した。しかし、SiC等のセラミツクは高価で
あり、また鋳型の酸化損耗は鋳型の引き出し側よ
り進行するところから、さらに検討の結果、鋳塊
を長時間安定して製造することができる加熱鋳型
を開発したもので、内面を鋳造金属の融点以上に
加熱した鋳型内に、一方より鋳造金属の溶湯を連
続して供給し、他方より引き出す鋳塊を直接水冷
して、鋳型内で鋳塊と接する溶湯を凝固させ連続
的に鋳塊を製造する加熱鋳型において、該鋳型の
少なくとも内面側を長手方向で分割し、溶湯供給
側の内面側を黒鉛で形成し、かつ鋳塊引き出し側
の内面側をセラミツクで形成することを特徴とす
るものである。
In view of this, as a result of various studies, the present invention found that the lifespan of a mold depends on the progress of oxidation wear and tear of the mold, so we used ceramic, such as SiC, which has better high-temperature oxidation resistance than graphite as the mold material, and created a mold with a rough surface on its inner surface. It was discovered that by adjusting the temperature and casting conditions appropriately, an ingot having the same quality as a graphite mold can be obtained. However, ceramics such as SiC are expensive, and the oxidative wear and tear of the mold progresses from the drawer side of the mold, so after further study, we developed a heated mold that can stably produce ingots over a long period of time. The molten metal is continuously supplied from one side into a mold whose inner surface is heated above the melting point of the cast metal, and the ingot drawn from the other side is directly cooled with water to cool the molten metal in contact with the ingot in the mold. In a heating mold for solidifying and continuously producing an ingot, at least the inner surface of the mold is divided in the longitudinal direction, the inner surface on the molten metal supply side is made of graphite, and the inner surface on the ingot withdrawal side is made of ceramic. It is characterized by forming.

さらにセラミツクとしてSiCを用いることは鋳
型の酸化損耗の防止にとつて一層効果的である。
また、本考案において、上記鋳型の外面を耐火セ
メントで覆い、それを耐火性のチユーブ、例えば
Al2O3製チユーブ内に装着することは、鋳型の接
合部の補強と黒鉛の酸化防止のため、さらに有効
である。
Furthermore, using SiC as the ceramic is more effective in preventing oxidative wear of the mold.
In addition, in the present invention, the outer surface of the mold is covered with refractory cement, and then a refractory tube, e.g.
Installing it in an Al 2 O 3 tube is more effective because it strengthens the mold joint and prevents graphite from oxidizing.

〔実施例及び作用〕[Examples and effects]

第1図〜第3図はそれぞれ本発明による加熱用
鋳型の実施例を示すもので、いずれも鋳型を長手
方向で分割し、図に示すように一方をSiC1で形
成して鋳塊の引き出し側とし、他の一方を黒鉛2
で形成して溶湯の供給側とした構成である。
Figures 1 to 3 each show an embodiment of the heating mold according to the present invention. In each case, the mold is divided in the longitudinal direction, and as shown in the figure, one side is made of SiC1 and the ingot is pulled out. and the other side is graphite 2
The structure is such that it is formed on the molten metal supply side.

なおSiC1と黒鉛2の接合部は図に示すような
形状での組み合せに限定されるものでないことは
もちろん、SiC1と黒鉛2の長さの比率も特に限
定はしない。
Note that the joint portion of SiC 1 and graphite 2 is not limited to the combination in the shape shown in the figure, and the ratio of the lengths of SiC 1 and graphite 2 is also not particularly limited.

次に第1図〜第3図にそれぞれ示すようなSiC
と黒鉛の分割鋳型において、寸法が内径20mm、長
さ75mmのものをそれぞれ製作して組み合せ加熱鋳
型とした。この鋳型を黒鉛側が溶湯保持炉の内部
に突出するように取り付け、炉内に無酸素銅の溶
湯を送入し、鋳型を1200℃に加熱した。その後鋳
塊の引き出し口より無酸素銅の鋳塊を200mm/
minの速さで引き出し、100時間連続鋳造を行な
つた後、鋳型の損耗程度を調査したが、使用上の
問題はなかつた。これに対し、すべて黒鉛からな
る従来の鋳型で、寸法が内径20mm、長さ150mmの
ものを溶湯保持炉に取り付けて、上記と同一条件
で無酸素銅の連続鋳造を行なつたが、約5時間で
鋳型が損耗し、その後の連続使用は不可能となつ
た。
Next, SiC as shown in Figures 1 to 3, respectively.
Separate molds of 20 mm in inner diameter and 75 mm in length were made from graphite and 20 mm in inner diameter, and were combined into a heating mold. This mold was attached so that the graphite side protruded into the interior of the molten metal holding furnace, molten oxygen-free copper was introduced into the furnace, and the mold was heated to 1200°C. After that, 200mm of oxygen-free copper ingot was removed from the ingot outlet.
After continuous casting for 100 hours by drawing at a speed of min., the degree of wear and tear on the mold was investigated, and no problems were found in use. In contrast, continuous casting of oxygen-free copper was carried out under the same conditions as above using a conventional mold made entirely of graphite with dimensions of 20 mm inner diameter and 150 mm length in a molten metal holding furnace. The mold was worn out over time, and continued use was no longer possible.

なお、第4図に示すように、鋳型内面を長手方
向で分割し、溶湯供給側を黒鉛2で形成し、引き
出し側をSiC1で形成する鋳型の外面を耐火セメ
ント層4で覆い、さらにこれをAl2O3等耐火性の
チユーブ3内に装着するような構成にすることも
良い。
As shown in Fig. 4, the inner surface of the mold is divided in the longitudinal direction, the molten metal supply side is made of graphite 2, and the drawer side is made of SiC 1.The outer surface of the mold is covered with a refractory cement layer 4, and this is further It may also be configured such that it is installed in a refractory tube 3 made of Al 2 O 3 or the like.

〔考案の効果〕[Effect of idea]

このように本考案により加熱鋳型の大幅な長寿
命化が図れ、従つて長時間の安定した連続鋳造が
可能となり、生産性の向上等工業上顕著な効果を
奏するものである。
As described above, the present invention makes it possible to significantly extend the life of the heating mold, thereby making stable continuous casting possible over a long period of time, and producing significant industrial effects such as improved productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はそれぞれ本考案の分割鋳型の
一実施例を表わす側断面図、第4図は本考案の他
の一実施例を表わす側断面図である。 1……SiC、2……黒鉛、3……Al2O3、4…
…耐火セメント。
1 to 3 are side sectional views showing one embodiment of the split mold of the present invention, and FIG. 4 is a side sectional view showing another embodiment of the present invention. 1...SiC, 2...graphite, 3...Al 2 O 3 , 4...
...Fireproof cement.

Claims (1)

【実用新案登録請求の範囲】 (1) 内面を鋳造金属の融点以上に加熱した鋳型内
に、一方より鋳造金属の溶湯を連続して供給
し、他方より引き出す鋳塊を直接水冷して、鋳
型内で鋳塊と接する溶湯を凝固させ、連続的に
鋳塊を製造する加熱鋳型において、該鋳型の少
なくとも内面側を長手方向で分割し、溶湯供給
側の内面側を黒鉛で形成し、かつ鋳塊引き出し
側の内面側をセラミツクで形成することを特徴
とする連続鋳造用加熱鋳型。 (2) 鋳塊引き出し側の内面側をSiCで形成する実
用新案登録請求の範囲第1項記載の連続鋳造用
加熱鋳型。 (3) 鋳型の外面を耐火セメント層で覆い、それを
耐火性チユーブ内に装着する実用新案登録請求
の範囲第1項又は第2項記載の連続鋳造用加熱
鋳型。 (4) 耐火性チユーブとしてAl2O3製チユーブを用
いる実用新案登録請求の範囲第3項記載の連続
鋳造用加熱鋳型。
[Scope of Claim for Utility Model Registration] (1) Molten casting metal is continuously supplied from one side into a mold whose inner surface is heated above the melting point of the cast metal, and an ingot drawn from the other side is directly cooled with water. In a heating mold for continuously producing an ingot by solidifying the molten metal in contact with the ingot, at least the inner surface of the mold is divided in the longitudinal direction, the inner surface on the molten metal supply side is made of graphite, and A heating mold for continuous casting, characterized in that the inner surface of the lump drawer side is made of ceramic. (2) The heating mold for continuous casting according to claim 1, wherein the inner surface of the ingot drawer side is formed of SiC. (3) The heating mold for continuous casting according to claim 1 or 2, wherein the outer surface of the mold is covered with a refractory cement layer and the same is installed in a refractory tube. (4) The heating mold for continuous casting according to claim 3, which uses an Al 2 O 3 tube as the refractory tube.
JP17342986U 1986-11-12 1986-11-12 Expired JPH0318033Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17342986U JPH0318033Y2 (en) 1986-11-12 1986-11-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17342986U JPH0318033Y2 (en) 1986-11-12 1986-11-12

Publications (2)

Publication Number Publication Date
JPS6380057U JPS6380057U (en) 1988-05-26
JPH0318033Y2 true JPH0318033Y2 (en) 1991-04-16

Family

ID=31110879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17342986U Expired JPH0318033Y2 (en) 1986-11-12 1986-11-12

Country Status (1)

Country Link
JP (1) JPH0318033Y2 (en)

Also Published As

Publication number Publication date
JPS6380057U (en) 1988-05-26

Similar Documents

Publication Publication Date Title
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
JPH0318033Y2 (en)
JPS63273553A (en) Method and apparatus for producing hollow billet
JP3393829B2 (en) Immersion nozzle
JP2541341B2 (en) Precision casting method and precision casting apparatus for Ti and Ti alloy
US5127462A (en) Side wall construction for continuous belt caster
SU738760A1 (en) Method of making castings of graphitized steel
JPH0318032Y2 (en)
CN104889351A (en) Casting method and casting mould for casting
US1570802A (en) Means for preventing adherence of cast metal to the mold
JPS57160555A (en) Mold for casting used for purification of metal
JPS5829546A (en) Production of large sized steel ingot having no segregation
JP3061794B1 (en) Mold for horizontal continuous casting of hypoeutectic cast iron and horizontal continuous casting method
JPS59120349A (en) Casting mold for continuous casting of copper or copper alloy
JPS5935311B2 (en) Manufacturing method of cooling mold for continuous casting
SU1452654A1 (en) Method of producing bimetallic billet
JPS60137551A (en) Method and mold for horizontal and continuous casting
JPH0123656Y2 (en)
JPS61193743A (en) Continuous casting device
JPS61169139A (en) Continuous casting device
JPS6045974B2 (en) Casting method for titanium products
JPH0724921B2 (en) Subsurface solidification casting method in continuous casting
SU1703243A1 (en) Ingot head warmth keeping method
JPH04197555A (en) Mold for horizontal continuous casting having excellent wear resistance
JPH0117407Y2 (en)