JPH0317819B2 - - Google Patents

Info

Publication number
JPH0317819B2
JPH0317819B2 JP182087A JP182087A JPH0317819B2 JP H0317819 B2 JPH0317819 B2 JP H0317819B2 JP 182087 A JP182087 A JP 182087A JP 182087 A JP182087 A JP 182087A JP H0317819 B2 JPH0317819 B2 JP H0317819B2
Authority
JP
Japan
Prior art keywords
reaction
ceric
naphthoquinone
aqueous solution
nitronaphthalene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP182087A
Other languages
Japanese (ja)
Other versions
JPS63170340A (en
Inventor
Noriaki Ikeda
Noboru Sugishima
Yasushi Fujii
Shinji Ikuta
Akira Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP182087A priority Critical patent/JPS63170340A/en
Publication of JPS63170340A publication Critical patent/JPS63170340A/en
Publication of JPH0317819B2 publication Critical patent/JPH0317819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1−ニトロナフタリンを原料とする新
規な5−ニトロ−1,4−ナフトキノンの製造法
に関するものである。5−ニトロ−1,4−ナフ
トキノンは染料の原料等として工業的に有用であ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a novel method for producing 5-nitro-1,4-naphthoquinone using 1-nitronaphthalene as a raw material. 5-Nitro-1,4-naphthoquinone is industrially useful as a raw material for dyes, etc.

[従来の技術] 一般的に第2セリウムイオンを含む酸性水溶液
(以下、「第2セリウムイオン−酸性水溶液」とい
う)を用いて芳香族化合物を液相酸化し、対応す
るキノン類を得る方法は知られている。例えば、
水と混和しない有機溶媒に溶解したナフタリン
を第2セリウムイオン−酸性水溶液を用いて酸化
し、1,4ナフトキノンを製造する方法((特公
昭49−34978号公報)、粉末状のナフタリンを分
散剤によつて第2セリウム塩の水溶液中に懸濁さ
せることを特徴とする1,4−ナフトキノンの製
造方法(特開昭56−61321号公報)等がある。こ
れら酸化反応に用いられる第2セリウムイオン−
酸性水溶液としては硝酸第2セリウムアンモニウ
ム−硝酸水溶液や硫酸第2セリウム−硫酸水溶液
が一般的に用いられる。
[Prior Art] Generally, there is a method for liquid-phase oxidation of aromatic compounds using an acidic aqueous solution containing ceric ions (hereinafter referred to as "ceric ion-acidic aqueous solution") to obtain the corresponding quinones. Are known. for example,
A method for producing 1,4 naphthoquinone by oxidizing naphthalene dissolved in an organic solvent that is immiscible with water using a ceric ion-acidic aqueous solution ((Japanese Patent Publication No. 49-34978), using powdered naphthalene as a dispersant. There is a method for producing 1,4-naphthoquinone characterized by suspending it in an aqueous solution of ceric salt (Japanese Unexamined Patent Publication No. 1983-61321), etc. Ceric used in these oxidation reactions ion-
As the acidic aqueous solution, a ceric ammonium nitrate-nitric acid aqueous solution and a ceric sulfate-sulfuric acid aqueous solution are generally used.

[発明が解決しようとする問題点] 第2セリウムイオン−酸性水溶液を用いて1−
ニトロナフタリンを液相酸化する5−ニトロ−
1,4−ナフトキノンの製造方法では、通常第2
セリウムイオン−酸性水溶液中の第2セリウムイ
オンの濃度が高濃度であるほど、あるいは酸化反
応温度が高温であるほど反応速度が大きく単位時
間当りの目的の生成物の収量の面で有利である反
面、目的生成物の選択性の面からは第2セリウム
イオン−酸性水溶液中の第2セリウムイオンの濃
度が低濃度であるほど、あるいは酸化反応温度が
低温であるほど有利である。第2セリウムイオン
−酸性水溶液が硝酸第2セリウムアンモニウム−
硝酸水溶液である場合には第2セリウムイオン濃
度を高濃度に保持できるが、高濃度すぎると3−
ニトロフタル酸、o−ニトロ安息香酸等の副生物
が生成するため第2セリウムイオン濃度を高める
にも限度がある。選択性をよくするため反応温度
を低くするにも温度による反応速度の低下と限ら
れた第2セリウムイオン濃度による反応速度の限
界とがあり、選択性をよくするか生産性を高める
か各々の妥協したところで条件設定することとな
る。また、硫酸第2セリウム−硫酸水溶液を用い
た場合には、硫酸第2セリウムによる酸化反応で
生成する硫酸第1セリウムの溶解度が小さく、反
応中セリウム塩の析出を避けるために必然的に硫
酸セリウム−硫酸水溶液中の第2セリウムイオン
の濃度が低濃度になり、反応速度が遅くなる欠点
を有する。
[Problems to be solved by the invention] Using a ceric ion-acidic aqueous solution,
5-Nitro- for liquid phase oxidation of nitronaphthalene
In the method for producing 1,4-naphthoquinone, the second
Cerium ion - The higher the concentration of ceric ion in the acidic aqueous solution, or the higher the oxidation reaction temperature, the higher the reaction rate, which is advantageous in terms of the yield of the desired product per unit time. From the viewpoint of selectivity of the desired product, it is more advantageous to have a lower concentration of ceric ions in the ceric ion-acidic aqueous solution or a lower temperature of the oxidation reaction. Ceric ion - acidic aqueous solution is ceric ammonium nitrate -
If the nitric acid aqueous solution is used, the ceric ion concentration can be maintained at a high concentration, but if the concentration is too high, 3-
Since by-products such as nitrophthalic acid and o-nitrobenzoic acid are produced, there is a limit to increasing the ceric ion concentration. Even if the reaction temperature is lowered to improve selectivity, the reaction rate decreases due to temperature and there is a limit to the reaction rate due to the limited ceric ion concentration. Conditions will be set once a compromise is reached. In addition, when a ceric sulfate-sulfuric acid aqueous solution is used, the solubility of ceric sulfate produced in the oxidation reaction with ceric sulfate is low, and in order to avoid precipitation of cerium salt during the reaction, ceric sulfate is inevitably added. -The concentration of ceric ions in the sulfuric acid aqueous solution becomes low, resulting in a slow reaction rate.

本発明は上記の欠点を解消し、1−ニトロナフ
タリンから5−ニトロ−1,4−ナフトキノンを
高選択的に副生物少なく、生産性良く、かつ作業
環境及び公害等の面で有利に得る方法を提供する
ものである。
The present invention solves the above-mentioned drawbacks and provides a method for obtaining 5-nitro-1,4-naphthoquinone from 1-nitronaphthalene in a highly selective manner with few by-products, high productivity, and advantageous in terms of working environment and pollution. It provides:

[問題を解決するための手段] 本発明者等は、前記従来法の欠点について鋭意
検討の結果、1−ニトロナフタリンを第2セリウ
ムイオン−酸性水溶液を用いて液相酸化する工程
において超音波照射下に液相酸化させることによ
り副生物の少ない5−ニトロ−1,4−ナフトキ
ノンを高選択的に得られることを見出した。従来
この工程は攪拌機、外部循環、ガスの吹込み等に
よる強制攪拌下に行なわれてきたが、本発明にお
いては超音波照射下に好ましくは強制攪拌を組合
せて行なわれる。超音波照射により、単なる強制
攪拌のみの場合よりはるかに大きい反応速度が得
られ、反応温度を低くすることができあるいは反
応時間の短縮ができて生産性が上がり、かつ高選
択的に反応が進行する。即ち、本発明は、第2セ
リウムイオン−酸性水溶液を用い、超音波照射下
に1−ニトロナフタリンを液相酸化することを特
徴とする5−ニトロ−1,4−ナフトキノンの製
造法である。以下に更に詳しく説明する。
[Means for Solving the Problems] As a result of intensive study on the drawbacks of the conventional method, the present inventors discovered that ultrasonic irradiation in the liquid phase oxidation process of 1-nitronaphthalene using a ceric ion-acidic aqueous solution. It has been found that 5-nitro-1,4-naphthoquinone with few by-products can be obtained with high selectivity by carrying out liquid phase oxidation. Conventionally, this step has been carried out under forced stirring using a stirrer, external circulation, gas blowing, etc., but in the present invention it is preferably carried out in combination with ultrasonic irradiation and forced stirring. Ultrasonic irradiation allows a much higher reaction rate than simple forced stirring, lowering the reaction temperature or shortening the reaction time, increasing productivity, and allowing the reaction to proceed with high selectivity. do. That is, the present invention is a method for producing 5-nitro-1,4-naphthoquinone, which is characterized in that 1-nitronaphthalene is oxidized in a liquid phase using a ceric ion-acidic aqueous solution under ultrasonic irradiation. This will be explained in more detail below.

該液相酸化反応で照射する超音波は10KHz以上
の周波数のものが好ましく、その照射方式は外部
照射方式、内部照射方式のいずれでもよく、また
超音波発生装置としても個々の周波数、出力を有
する装置が使用でき、超音波放射体としては平板
型、リング型、円板型等のいずれの型式でもよ
い。照射は反応中連続的または断続的に行われ、
また反応速度の低下する反応の後期のみに実施す
ることも有効である。
The ultrasonic waves irradiated in the liquid phase oxidation reaction preferably have a frequency of 10 KHz or higher, and the irradiation method may be either an external irradiation method or an internal irradiation method, and the ultrasonic generator has individual frequencies and outputs. The ultrasonic radiator may be of any type, such as a flat plate type, ring type, or disc type. Irradiation is carried out continuously or intermittently during the reaction,
It is also effective to carry out the reaction only in the latter stage of the reaction when the reaction rate decreases.

第2セリウムイオン−酸性水溶液としては各種
の第2セリウム塩の各種酸性水溶液が使用でき
る。あるいは、硝酸第1セリウムアンモニウム、
硝酸第1セリウムまたは硫酸第1セリウム等の第
1セリウム塩を酸性水溶液に溶解し酸化して得ら
れる第2セリウムイオン−酸性水溶液も使用でき
る。硝酸第2セリウムアンモニウム((NH42
[Ce(NO36])−硝酸水溶液を用いる場合には、
前記のごとく硝酸セリウムアンモニウムの水に対
する溶解度が比較的大きいので低温でも第2セリ
ウムイオンの濃度を高く保持し得るが、本発明で
は超音波照射下に行うため更に充分な反応速度で
かつ高選択的に反応させることができ好適に使用
できる。また第2セリウムイオン−酸性水溶液と
して、硝酸第1セリウムを硝酸水溶液に溶解し酸
化して得られる硝酸第2セリウム−硝酸水溶液を
用いる場合も第2セリウムイオンの濃度を高く保
持でき好適に使用できる。これらの第2セリウム
イオン−硝酸性水溶液中の第2セリウムイオン濃
度は好ましくは0.1〜6モル/、より好ましく
は0.2〜5モル/の範囲である。濃度が低くす
ぎると酸化力が弱く、反応速度が遅くなるだけで
なく更に反応液量も大となつて不利である。逆に
高すぎると前述の問題や、液の粘度が上昇してプ
ロセス上の諸操作に支障をきたす恐れが生じる。
As the ceric ion-acidic aqueous solution, various acidic aqueous solutions of various ceric salts can be used. Alternatively, ceric ammonium nitrate,
A ceric ion-acidic aqueous solution obtained by dissolving a cerous salt such as cerous nitrate or ceric sulfate in an acidic aqueous solution and oxidizing the solution can also be used. Ceric ammonium nitrate ((NH 4 ) 2
[Ce(NO 3 ) 6 ]) - When using a nitric acid aqueous solution,
As mentioned above, since the solubility of ceric ammonium nitrate in water is relatively high, the concentration of ceric ions can be maintained at a high level even at low temperatures. However, in the present invention, since the reaction is carried out under ultrasonic irradiation, the reaction rate is even more sufficient and highly selective. can be reacted with, and can be used suitably. In addition, when using a ceric nitrate-nitric acid aqueous solution obtained by dissolving cerous nitrate in a nitric acid aqueous solution and oxidizing the solution as the ceric ion-acidic aqueous solution, the concentration of ceric ions can be maintained at a high level, making it suitable for use. . The concentration of ceric ions in these ceric ion-nitric acid aqueous solutions is preferably in the range of 0.1 to 6 mol/, more preferably 0.2 to 5 mol/. If the concentration is too low, the oxidizing power will be weak, which will not only slow down the reaction rate but also increase the amount of reaction liquid, which is disadvantageous. On the other hand, if it is too high, the above-mentioned problems and the viscosity of the liquid may increase, which may interfere with various process operations.

第2セリウムイオン−酸性水溶液の酸濃度とし
ては、低過ぎると第2セリウムイオンが不安定に
なる一方、高過ぎると第2セリウムイオンの濃度
が低下したり装置の腐蝕の面から不利であるた
め、酸性水溶液中の酸濃度は好ましくは0.3〜10
モル/、より好ましくは0.5〜5モル/の範
囲である。
If the acid concentration of the ceric ion-acidic aqueous solution is too low, the ceric ions will become unstable, while if it is too high, the concentration of ceric ions will decrease, which is disadvantageous in terms of equipment corrosion. , the acid concentration in the acidic aqueous solution is preferably 0.3-10
It is in the range of 0.5 to 5 mol/, more preferably 0.5 to 5 mol/.

液相酸化反応の好ましい反応温度は、通常0〜
80℃、より好ましくは15〜60℃である。温度が低
すぎると反応速度の減少をきたすほか冷却のため
の費用がかかり、温度が高すぎると第2セリウム
塩の加水分解が生じたり重合等副反応生成物の混
入や着色あるいは装置の腐蝕性の面から不利であ
る。
The preferred reaction temperature for the liquid phase oxidation reaction is usually 0 to
The temperature is 80°C, more preferably 15-60°C. If the temperature is too low, the reaction rate will be reduced and cooling costs will be required; if the temperature is too high, the ceric salt may be hydrolyzed, or side reaction products such as polymerization may be mixed in or colored, or the equipment may be corrosive. This is disadvantageous in terms of

また液相酸化反応においては、1−ニトロナフ
タリンを水と混和しない有機溶媒に溶解せしめて
も、あるいは溶媒を用いずに1−ニトロナフタリ
ンのみを添加してもよく、該系は液状でもスラリ
ー状でもよい。上記有機溶媒としては、ベンゼ
ン、ターシヤリーブチルベンゼン、クロルベンゼ
ン等の芳香族炭化水素又はその置換体、シクロヘ
キサン、n−ヘキサン、n−ペンタン、n−オク
タン等の脂肪族炭化水素、四塩化炭素、クロルメ
チレン、ジクロルエタン等の塩素化脂肪族炭化水
素等の有機溶媒が使用できる。
In addition, in the liquid phase oxidation reaction, 1-nitronaphthalene may be dissolved in an organic solvent that is immiscible with water, or 1-nitronaphthalene alone may be added without using a solvent, and the system may be in the form of a liquid or a slurry. But that's fine. Examples of the organic solvent include aromatic hydrocarbons or substituted products thereof such as benzene, tert-butylbenzene, and chlorobenzene, aliphatic hydrocarbons such as cyclohexane, n-hexane, n-pentane, and n-octane, carbon tetrachloride, Organic solvents such as chlorinated aliphatic hydrocarbons such as chlormethylene and dichloroethane can be used.

[実施例] 次に本発明を実施例及び比較例により詳細に説
明するが、本発明はこれらの実施例に限定される
ものではない。
[Examples] Next, the present invention will be explained in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

実施例 1 硝酸第2セリウムアンモニウム1096.5gを1.8
モル/の硝酸水溶液に溶解し1とした溶液
(従つて第2セリウムイオンの濃度は2.0モル/
)を、還流冷却器、攪拌装置を取付けたガラス
容器に入れ40℃に保持した。これに1−ニトロナ
フタリン60.55gとシクロヘキサン200gを添加し
攪拌するとともに28KHz、400Wの超音波を約30
分間外部照射し反応させた。反応終了後、攪拌及
び超音波照射を停止し、反応液を分液ロートに移
し、油層と水層を分離し、水層については200g
のシクロヘキサンを用いて3回抽出した。抽出油
層と前記分離後の油層とを混合して全有機溶液中
の5−ニトロ−1,4−ナフトキノン及び未反応
1−ニトロナフタリンをガスクロマトグラフイー
により定量した結果、5−ニトロ−1,4−ナフ
トキノン66.15gが得られ、未反応1−ニトロナ
フタリンは3.03gであつた。従つて、1−ニトロ
ナフタリンの転化率95.0%、反応1−ニトロナフ
タリン当りの5−ニトロ−1,4−ナフトキノン
の収率は98.0モル%であつた。上記全有機層を減
圧下約50℃で濃縮し、5−ニトロ−1,4−ナフ
トキノンを析出させ、濾別後の沈澱を80℃にて2
時間減圧乾燥させた後、ガスクロマトグラフイー
で測定したところ99.2%の純度であつた。なお、
上記水層中にはセリウム塩の結晶は析出していな
かつた。
Example 1 1.8 g of 1096.5 g of ceric ammonium nitrate
A solution of 1 dissolved in nitric acid aqueous solution (therefore, the concentration of ceric ion is 2.0 mol/mol/
) was placed in a glass container equipped with a reflux condenser and a stirring device and maintained at 40°C. Add 60.55 g of 1-nitronaphthalene and 200 g of cyclohexane to this, stir, and apply ultrasonic waves of 28 KHz and 400 W for about 30 minutes.
It was exposed to external irradiation for a minute to react. After the reaction, stop stirring and ultrasonic irradiation, transfer the reaction solution to a separating funnel, separate the oil layer and water layer, and add 200 g of the water layer.
Extracted three times with cyclohexane. The extracted oil layer and the separated oil layer were mixed and 5-nitro-1,4-naphthoquinone and unreacted 1-nitronaphthalene in the total organic solution were quantified by gas chromatography. - 66.15 g of naphthoquinone was obtained, and 3.03 g of unreacted 1-nitronaphthalene. Therefore, the conversion rate of 1-nitronaphthalene was 95.0%, and the yield of 5-nitro-1,4-naphthoquinone based on the reacted 1-nitronaphthalene was 98.0 mol%. The above organic layer was concentrated at about 50°C under reduced pressure to precipitate 5-nitro-1,4-naphthoquinone, and the precipitate after filtering was heated at 80°C for 2 hours.
After drying under reduced pressure for an hour, the purity was determined to be 99.2% by gas chromatography. In addition,
No cerium salt crystals were precipitated in the aqueous layer.

実施例 2 反応温度を20℃、超音波照射を40KHz、600W
とし、シクロヘキサンの代りにターシヤリーブチ
ルベンゼンを用いた他は実施例1と同様に反応、
後処理、分析を行なつた。その結果、1−ニトロ
ナフタリンの転化率93.0%、反応1−ニトロナフ
タリン当りの5−ニトロ−1,4−ナフトキノン
の収率98.5モル%であつた。全有機層を濃縮、析
出、濾別、乾燥させて得た5−ニトロ−1,4−
ナフトキノンの純度は99.3%であつた。
Example 2 Reaction temperature: 20℃, ultrasonic irradiation: 40KHz, 600W
The reaction was carried out in the same manner as in Example 1, except that tert-butylbenzene was used instead of cyclohexane.
Post-processing and analysis were performed. As a result, the conversion rate of 1-nitronaphthalene was 93.0%, and the yield of 5-nitro-1,4-naphthoquinone based on the reacted 1-nitronaphthalene was 98.5 mol%. 5-nitro-1,4- obtained by concentrating, precipitating, filtering, and drying all organic layers
The purity of naphthoquinone was 99.3%.

実施例 3 反応温度を0℃とした他は実施例1と同様に反
応、後処理、分析を行なつた。その結果、1−ニ
トロナフタリンの転化率93.0%、反応1−ニトロ
ナフタリン当りの5−ニトロ−1,4−ナフトキ
ノンの収率98.2モル%であつた。全有機層を濃
縮、析出、濾別、乾燥させて得た5−ニトロ−
1,4−ナフトキノンの純度は99.1%であつた。
Example 3 The reaction, post-treatment, and analysis were carried out in the same manner as in Example 1, except that the reaction temperature was 0°C. As a result, the conversion rate of 1-nitronaphthalene was 93.0%, and the yield of 5-nitro-1,4-naphthoquinone based on the reacted 1-nitronaphthalene was 98.2 mol%. 5-nitro- obtained by concentrating all organic layers, precipitating, filtering and drying
The purity of 1,4-naphthoquinone was 99.1%.

実施例 4 反応温度を80℃とし、シクロヘキサンを用いな
い他は実施例1と同様に反応を行なつた。反応終
了後、攪拌及び超音波照射を停止し、反応混合物
を濾過、沈澱を純水で洗浄した。濾液及び洗液を
合わせ、200gのベンゼンを用いて3回抽出し、
抽出油層と前記沈澱とを混合した後、実施例1と
同様に分析を行なつた。その結果は、1−ニトロ
ナフタリンの転化率93.0%、反応1−ニトロナフ
タリン当りの5−ニトロ−1,4−ナフトキノン
の収率96.0モル%であつた。全有機層を濃縮、析
出、濾別、乾燥させて得た5−ニトロ−1,4−
ナフトキノンの純度は98.2%であつた。
Example 4 The reaction was carried out in the same manner as in Example 1, except that the reaction temperature was 80°C and cyclohexane was not used. After the reaction was completed, stirring and ultrasonic irradiation were stopped, the reaction mixture was filtered, and the precipitate was washed with pure water. The filtrate and washing liquid were combined and extracted three times using 200 g of benzene.
After mixing the extracted oil layer and the precipitate, analysis was conducted in the same manner as in Example 1. The results were that the conversion rate of 1-nitronaphthalene was 93.0% and the yield of 5-nitro-1,4-naphthoquinone was 96.0 mol% based on the reacted 1-nitronaphthalene. 5-nitro-1,4- obtained by concentrating, precipitating, filtering, and drying all organic layers
The purity of naphthoquinone was 98.2%.

実施例 5 第2セリウムイオン濃度を0.1モル/とした
他は実施例1と同様に反応、後処理、分析を行な
つた。その結果、1−ニトロナフタリンの転化率
88.0%、反応1−ニトロナフタリン当りの5−ニ
トロ−1,4−ナフトキノンの収率98.8モル%で
あつた。全有機層を濃縮、析出、濾別、乾燥させ
て得た5−ニトロ−1,4−ナフトキノンの純度
は99.4%であつた。
Example 5 The reaction, post-treatment and analysis were carried out in the same manner as in Example 1 except that the ceric ion concentration was 0.1 mol/. As a result, the conversion rate of 1-nitronaphthalene
The yield of 5-nitro-1,4-naphthoquinone was 98.8 mol% based on the reacted 1-nitronaphthalene. The purity of 5-nitro-1,4-naphthoquinone obtained by concentrating, precipitating, filtering, and drying all the organic layers was 99.4%.

実施例 6 第2セリウムイオン濃度を5モル/とした他
は実施例1と同様に反応、後処理、分析を行なつ
た。その結果、1−ニトロナフタリンの転化率
97.0%、反応1−ニトロナフタリン当りの5−ニ
トロ−1,4−ナフトキノンの収率96.2モル%で
あつた。全有機層を濃縮、析出、濾別、乾燥させ
て得た5−ニトロ−1,4−ナフトキノンの純度
は98.8%であつた。
Example 6 The reaction, post-treatment, and analysis were carried out in the same manner as in Example 1, except that the cerium ion concentration was 5 mol/. As a result, the conversion rate of 1-nitronaphthalene
The yield of 5-nitro-1,4-naphthoquinone was 96.2 mol% based on the reacted 1-nitronaphthalene. The purity of 5-nitro-1,4-naphthoquinone obtained by concentrating, precipitating, filtering, and drying all the organic layers was 98.8%.

実施例 7 硝酸濃度を0.3モル/とした他は実施例1と
同様に反応、後処理、分析を行なつた。その結
果、1−ニトロナフタリンの転化率89.5%、反応
1−ニトロナフタリン当りの5−ニトロ−1,4
−ナフトキノンの収率97.8モル%であつた。全有
機層を濃縮、析出、濾別、乾燥させて得た5−ニ
トロ−1,4−ナフトキノンの純度は99.0%であ
つた。
Example 7 The reaction, post-treatment and analysis were carried out in the same manner as in Example 1 except that the nitric acid concentration was 0.3 mol/. As a result, the conversion rate of 1-nitronaphthalene was 89.5%, and the conversion rate of 5-nitro-1,4 per 1-nitronaphthalene was
-The yield of naphthoquinone was 97.8 mol%. The purity of 5-nitro-1,4-naphthoquinone obtained by concentrating, precipitating, filtering, and drying all the organic layers was 99.0%.

実施例 8 硝酸濃度を7モル/とした他は実施例1と同
様に反応、後処理、分析を行なつた。その結果、
1−ニトロナフタリンの転化率96.0%、反応1−
ニトロナフタリン当りの5−ニトロ−1,4−ナ
フトキノンの収率95.9モル%であつた。全有機層
を濃縮、析出、濾別、乾燥させて得た5−ニトロ
−1,4−ナフトキノンの純度は98.4%であつ
た。
Example 8 The reaction, post-treatment, and analysis were carried out in the same manner as in Example 1, except that the nitric acid concentration was 7 mol/mol. the result,
1-Nitronaphthalene conversion rate 96.0%, reaction 1-
The yield of 5-nitro-1,4-naphthoquinone based on nitronaphthalene was 95.9 mol%. The purity of 5-nitro-1,4-naphthoquinone obtained by concentrating, precipitating, filtering, and drying all the organic layers was 98.4%.

比較例 1 超音波照射をせずに100分間反応させた他は実
施例1と同様に反応、後処理、分析を行なつた。
その結果、1−ニトロナフタリンの転化率74.0
%、反応1−ニトロナフタリン当りの5−ニトロ
−1,4−ナフトキノンの収率83.3モル%であつ
た。全有機層を濃縮、析出、濾別、乾燥させて得
た5−ニトロ−1,4−ナフトキノンの純度は
93.6%であつた。
Comparative Example 1 The reaction, post-treatment, and analysis were carried out in the same manner as in Example 1, except that the reaction was carried out for 100 minutes without ultrasonic irradiation.
As a result, the conversion rate of 1-nitronaphthalene was 74.0.
%, the yield of 5-nitro-1,4-naphthoquinone based on the reacted 1-nitronaphthalene was 83.3 mol%. The purity of 5-nitro-1,4-naphthoquinone obtained by concentrating, precipitating, filtering, and drying all organic layers is
It was 93.6%.

[発明の効果] 以上、本発明を実施することにより、1−ニト
ロナフタリンから5−ニトロ−1,4−ナフトキ
ノンを高選択的に副生物少なく、生産性の面でも
有利に得る方法を提供するものである。
[Effects of the Invention] As described above, by carrying out the present invention, it is possible to provide a method for obtaining 5-nitro-1,4-naphthoquinone from 1-nitronaphthalene with high selectivity, with few by-products, and advantageously in terms of productivity. It is something.

Claims (1)

【特許請求の範囲】 1 1−ニトロナフタリンを酸化し5−ニトロ−
1,4−ナフトキノンを製造する方法において、
第2セリウムイオンを含む酸性水溶液を用いて超
音波照射下に液相酸化反応を行なうことを特徴と
する5−ニトロ−1,4−ナフトキノンの製造
法。 2 第2セリウムイオンを含む酸性水溶液中の第
2セリウムイオン濃度が0.1〜6モル/である
ことを特徴とする特許請求の範囲1に記載の方
法。 3 酸性水溶液中の酸濃度が0.3〜10モル/で
あることを特徴とする特許請求の範囲1または2
に記載の方法。 4 酸化反応温度が0〜80℃であることを特徴と
する特許請求の範囲1,2または3に記載の方
法。
[Claims] 1 Oxidation of 1-nitronaphthalene to produce 5-nitro-
In a method for producing 1,4-naphthoquinone,
A method for producing 5-nitro-1,4-naphthoquinone, which comprises carrying out a liquid phase oxidation reaction under ultrasonic irradiation using an acidic aqueous solution containing ceric ions. 2. The method according to claim 1, wherein the concentration of ceric ions in the acidic aqueous solution containing ceric ions is 0.1 to 6 mol/. 3 Claim 1 or 2 characterized in that the acid concentration in the acidic aqueous solution is 0.3 to 10 mol/
The method described in. 4. The method according to claim 1, 2 or 3, wherein the oxidation reaction temperature is 0 to 80°C.
JP182087A 1987-01-09 1987-01-09 Production of 5-nitro-1,4-naphthoquinone Granted JPS63170340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP182087A JPS63170340A (en) 1987-01-09 1987-01-09 Production of 5-nitro-1,4-naphthoquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP182087A JPS63170340A (en) 1987-01-09 1987-01-09 Production of 5-nitro-1,4-naphthoquinone

Publications (2)

Publication Number Publication Date
JPS63170340A JPS63170340A (en) 1988-07-14
JPH0317819B2 true JPH0317819B2 (en) 1991-03-11

Family

ID=11512198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP182087A Granted JPS63170340A (en) 1987-01-09 1987-01-09 Production of 5-nitro-1,4-naphthoquinone

Country Status (1)

Country Link
JP (1) JPS63170340A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560527B (en) * 2012-02-22 2014-12-10 西南大学 Direct electrochemical synthesis method of 5-nitro-1, 4-naphthoquinone

Also Published As

Publication number Publication date
JPS63170340A (en) 1988-07-14

Similar Documents

Publication Publication Date Title
JPH02222731A (en) Recovery method of catalyser
JPH0317819B2 (en)
US3917719A (en) Process for the preparation of 4-nitro-m-cresol
JPH0434980B2 (en)
JPH0480011B2 (en)
JPH0529340B2 (en)
JPH0529341B2 (en)
JP4126729B2 (en) Method for producing phthalides
JPH0417172B2 (en)
JPS61118378A (en) Production of tetrachlorophthalic anhydride
JP2824394B2 (en) Catalyst for producing fumaric acid and method for producing fumaric acid using the catalyst
JP3927835B2 (en) Process for producing iodinated aromatic compound diacetate
US3093635A (en) Preparation of nitro derivatives from
JPS5935907B2 (en) Production method of aromatic polycarboxylic acid
SU979327A1 (en) Process for producing adipic acid
JPS62249957A (en) Purification of oxamide
JPH11189567A (en) Production of fumaric acid
JPS63169394A (en) Production of 1-aminoanthraquinone
JPH0788340B2 (en) Copper removal method
JPH0788337B2 (en) Process for producing 5-amino-2,4,6-triiodoisophthalic acid
JPS5953252B2 (en) Method for producing 2-methyl-1,4-naphthoquinone
JPH023625A (en) Production of 3-nitrophthalic acid
JPS61215344A (en) Production of molybdenum monocarboxylate
JPS62281842A (en) Production of glycolic acid
JPS5852255A (en) Preparation of unsaturated amide