JPS61118378A - Production of tetrachlorophthalic anhydride - Google Patents

Production of tetrachlorophthalic anhydride

Info

Publication number
JPS61118378A
JPS61118378A JP23977984A JP23977984A JPS61118378A JP S61118378 A JPS61118378 A JP S61118378A JP 23977984 A JP23977984 A JP 23977984A JP 23977984 A JP23977984 A JP 23977984A JP S61118378 A JPS61118378 A JP S61118378A
Authority
JP
Japan
Prior art keywords
reaction
phthalic anhydride
chlorine gas
solvent
anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23977984A
Other languages
Japanese (ja)
Inventor
Yasushi Fukai
靖 深井
Katsuhiro Saito
斎藤 克博
Jutaro Nakamura
中村 寿太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP23977984A priority Critical patent/JPS61118378A/en
Publication of JPS61118378A publication Critical patent/JPS61118378A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled compound facilitating the reuse of reaction solvent and the removal of the solvent from the product, by reacting phthalic anhydride with chlorine as using chlorosulfonic acid as the reaction solvent. CONSTITUTION:The objective compound is produced by dissolving phthalic anhydride in chlorosulfonic acid used as the reaction solvent at a concentration of <=40 wt%, especially 5-20 wt%, and introducing chlorine gas into the solu tion at 50-200 deg.C, preferably 70-130 deg.C, preferably in the presence of a catalyst (e.g. aluminum chloride, ferric chloride, etc., especially iodine) thereby reacting the chlorine gas with the phthalic anhydride. The amount of the chlorine gas is 1-3 times mol, especially, 1.1-2 times mol-of the stoichiometric amount (4 times mol of the charged phthalic anhydride). After the reaction, the reaction liquid is cooled to separate the objective compound in the form of crystal, and the remaining liquid is reused as the reaction solvent. The solvent attached to the product can be removed easily by drying.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、難燃性ポリマーやフタロシアニン系有機顔料
の原料として宵月なテトラクロロフタル酸無水物の製造
法、詳しくは、クロロスルホン酸反応溶媒中で無水フタ
ル酸を塩素ガスで塩素化してテトラクロロフタル酸無水
物を製造する方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing tetrachlorophthalic anhydride, which is useful as a raw material for flame-retardant polymers and phthalocyanine-based organic pigments, and more specifically, a method for producing tetrachlorophthalic anhydride, which is useful as a raw material for flame-retardant polymers and phthalocyanine organic pigments. The present invention relates to a method for producing tetrachlorophthalic anhydride by chlorinating phthalic anhydride with chlorine gas in a solvent.

〔従来の技術〕[Conventional technology]

テトラクロロフタル酸無水物の製造法は、無水フタル酸
を塩素ガスで塩素化する方法が一般的であり、その際、
反応溶媒としては、通常、発煙硫酸が用いられている。
The general method for producing tetrachlorophthalic anhydride is to chlorinate phthalic anhydride with chlorine gas.
Fuming sulfuric acid is usually used as the reaction solvent.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

発煙硫酸を用いてテトラクロロフタル酸無水物を製造す
る方法は、次のような欠点を有している。
The method of producing tetrachlorophthalic anhydride using fuming sulfuric acid has the following drawbacks.

即ち、発煙硫酸中で無水フタル酸を塩素化すると、塩化
水素が生成し、この塩化水素が速やかに発煙硫酸中の二
酸化イオウと反応してクロロスルホン酸を副生じてしま
う、このクロロスルホン酸の生成量は目的生成物である
テトラクロロフタル酸無水物の1.5倍以上であり、工
業的にみても不利と言わざるを得ない、しかも、この反
応ではヨウ素を触媒として用いることがあるが、その場
合、ヨウ素が昇華性で混入しやすいため、クロロスルホ
ン酸の蒸留分離が容易ではない、また、この方法の場合
、反応終了後、溶媒がクロロスルホン酸と硫酸の混合液
となっているが、このような混合液を結晶(目的生成物
)分離後そのまま反応溶媒として再び用いると反応は極
めて遅(なってしまう。
That is, when phthalic anhydride is chlorinated in fuming sulfuric acid, hydrogen chloride is generated, and this hydrogen chloride immediately reacts with sulfur dioxide in the fuming sulfuric acid to produce chlorosulfonic acid as a by-product. The amount produced is more than 1.5 times that of the target product, tetrachlorophthalic anhydride, which is unfavorable from an industrial perspective.Moreover, iodine is sometimes used as a catalyst in this reaction. In that case, it is not easy to separate chlorosulfonic acid by distillation because iodine is sublimable and easily mixed in. Also, in this method, after the reaction is completed, the solvent is a mixture of chlorosulfonic acid and sulfuric acid. However, if such a mixed solution is used again as a reaction solvent after separating the crystals (target product), the reaction will be extremely slow.

(問題点を解決するための手Y&) 本発明者等は、鋭意検討した結果、反応溶媒としてクロ
ロスルホン酸を用い、無水フタル酸と塩素ガスとを反応
させると上記の欠点を排除してテトラクロロフタル酸無
水物を製造できることを見出し、本発明に到達した。
(Measures to Solve the Problem Y&) As a result of intensive study, the present inventors have found that using chlorosulfonic acid as a reaction solvent and reacting phthalic anhydride with chlorine gas eliminates the above drawbacks and allows We have discovered that chlorophthalic anhydride can be produced, and have arrived at the present invention.

以下に本発明のテトラクロロフタル酸無水物の製造法を
その実施感様に基づいて詳述する。
The method for producing tetrachlorophthalic anhydride according to the present invention will be described in detail below based on its implementation.

本発明は、先ず、反応溶媒であるクロロスルホン酸に無
水フタル酸を溶解し、次いでこの溶液に塩素ガスを供給
して無水フタル酸と塩素ガスを反応させることによって
実施される。
The present invention is carried out by first dissolving phthalic anhydride in chlorosulfonic acid, which is a reaction solvent, and then supplying chlorine gas to this solution to cause the phthalic anhydride and chlorine gas to react.

クロロスルホン酸中の無水フタル酸濃度は、40重置%
以下、特に5〜201量%とするのが好ましい。
The concentration of phthalic anhydride in chlorosulfonic acid is 40%
Below, it is particularly preferable to set it as 5-201% by weight.

また、反応に使用される塩素ガス量は、理論量(無水フ
タル酸の仕込量の4倍モル)の1〜3倍モル、好ましく
は1.1〜2倍モルである。塩素ガスの供給は、反応の
進行と共に量を下げて行く方法が塩素の反応率を上げる
上で有利である。
Further, the amount of chlorine gas used in the reaction is 1 to 3 times the mole, preferably 1.1 to 2 times the theoretical amount (4 times the mole of the charged amount of phthalic anhydride). It is advantageous to reduce the amount of chlorine gas supplied as the reaction progresses in order to increase the chlorine reaction rate.

また、触媒としては甘つ素、塩化アルミニウム、塩化第
二鉄、五塩化アンチモン等を使用することができるが、
これらの触媒の中でもヨウ素を使用するのが最も好まし
く、その使用量は無水フタル酸の仕込量に対して0.1
〜10重景%重量に1〜7ii量%とするのが好ましい
、触媒としてヨウ素を使用した場合、ヨウ素は、本反応
系で塩素と容易に反応し、塩化ヨウ素及び三塩化ヨウ素
となり、この形で触媒作用を示す、これらのヨウ素塩化
物は沸点と融点が近接しており、クロロスルホン酸の沸
点以下で反応を行う場合還流液が少ないため、反応器の
排ガス出口付近にヨウ素塩化物が固体となって付着しや
すい、従って、時々反応液の攪拌を激しく行って洗い落
とすことによってこの固体を反応液に戻してやる必要が
あり、これを怠ると反応速度が低下する。
In addition, as a catalyst, acetic acid, aluminum chloride, ferric chloride, antimony pentachloride, etc. can be used.
Among these catalysts, it is most preferable to use iodine, and the amount used is 0.1 based on the amount of phthalic anhydride charged.
When iodine is used as a catalyst, preferably in an amount of 1 to 7ii% by weight, iodine easily reacts with chlorine in this reaction system to form iodine chloride and iodine trichloride, and this form The boiling point and melting point of these iodine chlorides are close to each other, and when the reaction is carried out below the boiling point of chlorosulfonic acid, there is little reflux, so the iodine chloride becomes solid near the exhaust gas outlet of the reactor. Therefore, it is necessary to return this solid to the reaction solution by vigorously stirring the reaction solution from time to time and washing it off. If this is not done, the reaction rate will decrease.

反応温度は、50〜200℃、特に70〜130℃とす
るのが好ましい、また、反応は常圧又は加圧下で実施さ
れ、加圧下で行えば反応速度が上がる利点がある。
The reaction temperature is preferably 50 to 200°C, particularly 70 to 130°C. Also, the reaction is carried out at normal pressure or under elevated pressure, and there is an advantage that the reaction rate is increased if carried out under elevated pressure.

〔実施例〕〔Example〕

以下に実施例をあげ、本発明を更に詳しく説明する。 The present invention will be explained in more detail with reference to Examples below.

実施例1 11容のステンレス製オートクレーブに無水フタル1!
50 g (0,34モル)、クロロスルホン酸500
g及び触媒としてヨウi1.5gを入れ、100℃に加
熱した0次いで、オートクレーブ内にゲージ圧が5にg
/−になるまで塩素ガスを導入し、攪拌して反応を開始
させた。その後、30分毎に、オートクレーブ内のゲー
ジ圧が1Kg/−になるまでガスを放出し、代わりに塩
素ガスを5にg/clIになるまで導入する操作を繰り
返し、10時間反応を行うた。
Example 1 Anhydrous phthalate 1 in an 11 volume stainless steel autoclave!
50 g (0.34 mol), chlorosulfonic acid 500
g and 1.5 g of iodine as a catalyst were heated to 100°C.Then, the gauge pressure was set to 5g in the autoclave.
Chlorine gas was introduced until the temperature reached /-, and the reaction was started by stirring. Thereafter, the operation was repeated every 30 minutes to release gas until the gauge pressure in the autoclave reached 1 kg/-, and instead introduce chlorine gas until it reached 5 g/clI, and the reaction was carried out for 10 hours.

反応終了後、排気してオートクレーブ内を常圧とした0
次いで、窒素ガスで反応液中の溶解塩素を追い出した後
、反応液を冷却した。析出し々結晶を1!素気流下濾別
し、少量のクロロスルホン酸で洗浄後、結晶の入ったロ
ートを60℃に温め、このロートに窒素を通して乾燥し
、目的物であるテトラクロロフタル酸無水物の結晶を得
た。このテトラクロロフタル酸無水物の収量は62.9
 g、融点は255〜257.5℃であった。
After the reaction is complete, the autoclave is evacuated and brought to normal pressure at 0.
Next, dissolved chlorine in the reaction solution was expelled with nitrogen gas, and then the reaction solution was cooled. 1 crystal precipitated! After filtering under a stream of bare air and washing with a small amount of chlorosulfonic acid, the funnel containing the crystals was heated to 60°C, and nitrogen was passed through the funnel for drying to obtain crystals of the desired product, tetrachlorophthalic anhydride. . The yield of this tetrachlorophthalic anhydride is 62.9
g, the melting point was 255-257.5°C.

また、濾液500gに無水フタル酸34g(0゜23モ
ル)を加え、1回目と同様の操作で塩素ガスを導入し、
8時間反応を行った0反応終了後、1回目と同様の処理
をしてテトラクロロフタル酸無水物の結晶を得た。この
テトラクロロフタル酸無水物の収量は62.2 g、融
点は254〜257℃であつた。
Additionally, 34 g (0°23 mol) of phthalic anhydride was added to 500 g of the filtrate, and chlorine gas was introduced in the same manner as the first time.
After the reaction was completed for 8 hours, the same treatment as the first time was carried out to obtain crystals of tetrachlorophthalic anhydride. The yield of this tetrachlorophthalic anhydride was 62.2 g, and the melting point was 254-257°C.

実施例2 21容の四つロフラスコに無水フタル酸200g(1,
35モル)、クロロスルホン酸2000g及び触媒とし
てヨウ素7gを入れ、攪拌した0次いで、これを油浴に
より100℃に加温し、そこへ攪拌下塩素ガスを導入し
反応を開始させた。この際、塩素ガス流量を始め225
cc/sinで4時間、次に130cc/sinで10
時間、最後に70cc/+*inで12時間と段階的に
変えて反応を行った。
Example 2 200 g of phthalic anhydride (1,
35 mol), 2000 g of chlorosulfonic acid, and 7 g of iodine as a catalyst were added and stirred.Next, this was heated to 100°C in an oil bath, and chlorine gas was introduced therein with stirring to start the reaction. At this time, starting with the chlorine gas flow rate,
4 hours at cc/sin, then 10 at 130cc/sin
The reaction was carried out by changing the time stepwise, ending with 70 cc/+*in for 12 hours.

反応終了後、窒素ガスで反応液中の溶解塩素を追い出し
た後、実施例1と同様の処理をしてテトラクロロフタル
酸無水物の結晶を得た。このテトラクロロフタル酸無水
物の収量は261g、融点は254〜256.5℃であ
った。
After the reaction was completed, dissolved chlorine in the reaction solution was expelled with nitrogen gas, and the same treatment as in Example 1 was carried out to obtain crystals of tetrachlorophthalic anhydride. The yield of this tetrachlorophthalic anhydride was 261 g, and the melting point was 254-256.5°C.

また、濾液2000gに無水フタル酸135g(0,9
1モル)を加え、次の如くして再度反応を行った。
In addition, 135 g of phthalic anhydride (0.9
1 mol) was added thereto, and the reaction was carried out again as follows.

濾液に無水フタル酸を攪拌熔解後、100℃に加温し、
そこへ攪拌下塩素ガスを130cc/winで8時間、
70cc/sinで12時間導入し、反応を行った0反
応終了後、1回目と同様の処理をしてテトラクロロフタ
ル酸無水物の結晶を得た。このテトラクロロフタル酸無
水物の収量は258g。
After stirring and dissolving phthalic anhydride in the filtrate, the mixture was heated to 100°C.
Add chlorine gas at 130cc/win for 8 hours while stirring.
After the reaction was completed, the same treatment as the first time was carried out to obtain crystals of tetrachlorophthalic anhydride. The yield of this tetrachlorophthalic anhydride was 258 g.

融点は254〜257℃であった。The melting point was 254-257°C.

比較例1 21容の四つロフラスコに無水フタル酸200g(1,
35モル)、発煙硫@2000 g及び触媒としてヨウ
素7gを入れ、攪拌した0次いで、これを油浴により1
00℃に加温し、そこへ攪拌下塩素ガスを導入し反応を
開始させた。塩素ガスを始め225cc/sinで4時
間、次に130cc/sinで10時間導入したところ
、結晶が析出しはしめ、この頃よりフラスコの塩素ガス
吹き込み口の詰まりが顕著になった。塩素ガス流量を7
0cc/winに落とし、時々反応を中断して塩素ガス
吹き込み口の詰まりを除去しながら更に6時間反応を続
けた。そして、排ガス中の未反応塩素分の分析値から反
応の終結を[i!認し、塩素ガスの導入を止めた。
Comparative Example 1 200 g of phthalic anhydride (1,
35 mol), 2000 g of fuming sulfur and 7 g of iodine as a catalyst were added and stirred.
The reaction mixture was heated to 00°C, and chlorine gas was introduced therein with stirring to start the reaction. When chlorine gas was first introduced at 225 cc/sin for 4 hours and then at 130 cc/sin for 10 hours, crystals began to precipitate, and around this time the chlorine gas inlet of the flask became noticeably clogged. Chlorine gas flow rate 7
The reaction rate was reduced to 0 cc/win, and the reaction was continued for an additional 6 hours while occasionally interrupting the reaction to remove clogging of the chlorine gas inlet. Then, the end of the reaction is determined from the analytical value of unreacted chlorine in the exhaust gas [i! The company recognized the situation and stopped introducing chlorine gas.

反応終了後、窒素ガスで反応液中の熔解塩素を追い出し
た後、反応液を冷却し、析出した結晶を濾別した。この
結晶を少量の発煙硫酸で洗浄後、硫酸分が不揮発性で除
去し難いため更に水洗を行い、次いで乾燥し、テトラク
ロロフタル酸無水物の結晶を得た。このテトラクロロフ
タル酸無水物の収量は245 g−融点は232〜25
2℃であった。また、このテトラクロロフタル酸無水物
をガスクロマトグラフィーで分析したところ、二塩化物
が3.5%及び三塩化物が5.5%含まれていた。
After the reaction was completed, dissolved chlorine in the reaction solution was expelled with nitrogen gas, the reaction solution was cooled, and the precipitated crystals were filtered off. The crystals were washed with a small amount of fuming sulfuric acid, and since the sulfuric acid content is nonvolatile and difficult to remove, they were further washed with water and then dried to obtain crystals of tetrachlorophthalic anhydride. The yield of this tetrachlorophthalic anhydride was 245 g - the melting point was 232-25
The temperature was 2°C. Further, when this tetrachlorophthalic anhydride was analyzed by gas chromatography, it was found to contain 3.5% dichloride and 5.5% trichloride.

また、濾液20QQgに無水フタル酸135g(0,9
1モル)を加え、次の如くして再度反応を行った。
In addition, 135 g of phthalic anhydride (0.9
1 mol) was added thereto, and the reaction was carried out again as follows.

濾液に無水フタル酸を攪拌熔M後、1(10℃に加温し
、そこへ攪拌下塩素ガスを130cc/winで8時間
、70cc/+++inで12時間導入した。ここで反
応液の一部をとり、これを氷水中に圧加して得られた結
晶をガスクロマトグラフィーで分析したところ、反応が
非常に遅く、実施例2の2回目の反応の場合と比較する
と約1/6の反応速度であることが判った。
After stirring phthalic anhydride to the filtrate, it was heated to 10° C., and chlorine gas was introduced into the filtrate with stirring at 130 cc/win for 8 hours and 70 cc/+++in for 12 hours. When the crystals obtained by pressurizing this into ice water were analyzed by gas chromatography, the reaction was very slow, and compared to the second reaction in Example 2, the reaction was about 1/6 It turned out to be speed.

比較例2 反応温度を150℃に変えた以外は比較例1と同様にし
て反応を開始させた。塩素ガスを始め225cc/+m
inで4時間、次に130cc/+*inで10時間導
入したところで排ガス中の未反応塩素分の分析値から反
応の終結を[認し、塩素ガスの導入を止めた0反応終了
後、窒素ガスで反応液中の溶解塩素を追い出した後、反
応液を冷却し、析出した結晶を濾別した。この結晶を比
較例1と同様の処理をしてテトラクロロフタル酸無水物
の結晶を得た。このテトラクロロフタル酸無水物の収量
は226gと少なく、また融点は249〜253゜5℃
であうな、また、このテトラクロロフタル酸無水物をガ
スクロマトグラフィーで分析したところ、トリクロロモ
ノヨードフタル酸無水物が2.1%及びヘキサクロロベ
ンゼンが0.5%含まれていた。
Comparative Example 2 A reaction was started in the same manner as Comparative Example 1 except that the reaction temperature was changed to 150°C. 225cc/+m including chlorine gas
After introducing chlorine gas for 4 hours at 130 cc/+*in for 10 hours, the analysis of unreacted chlorine in the exhaust gas indicated that the reaction had ended, and the introduction of chlorine gas was stopped. After expelling dissolved chlorine in the reaction solution with gas, the reaction solution was cooled and the precipitated crystals were filtered off. This crystal was treated in the same manner as in Comparative Example 1 to obtain crystals of tetrachlorophthalic anhydride. The yield of this tetrachlorophthalic anhydride was as small as 226g, and the melting point was 249-253°5°C.
Furthermore, when this tetrachlorophthalic anhydride was analyzed by gas chromatography, it was found to contain 2.1% trichloromonoiodophthalic anhydride and 0.5% hexachlorobenzene.

〔発明の効果〕〔Effect of the invention〕

本発明のテトラクロロフタルall無水物の製造法によ
れば、発煙硫酸を反応溶媒として用いる従来法における
ような副生問題を生ずることがなく、且つ反応終了後結
晶分離した液をそのまま反応溶媒として再使用すること
ができ、しかも、発煙硫酸を用いる従来法の場合、硫酸
分が不揮発性のため、得られた結晶iよ溶媒と分離後充
分に水洗しなければならないのに対し、本発明法の場合
、クロロスルホン酸が揮発性のため、乾燥によって溶媒
除去ができるので水洗工程が省け、これにより分離工程
の設備やその材質、及び排水処理関係設備等の点で非常
に有利になる。
According to the method for producing tetrachlorophthal all anhydride of the present invention, there is no problem of by-products as in the conventional method using fuming sulfuric acid as a reaction solvent, and the liquid crystallized after the reaction is used as a reaction solvent as it is. In addition, in the case of the conventional method using fuming sulfuric acid, the sulfuric acid content is non-volatile, so the obtained crystals must be thoroughly washed with water after separation from the solvent, whereas the method of the present invention can be reused. In this case, since the chlorosulfonic acid is volatile, the solvent can be removed by drying, so the washing step can be omitted, which is very advantageous in terms of equipment for the separation process, its material, and equipment related to wastewater treatment.

Claims (1)

【特許請求の範囲】[Claims] 反応溶媒としてクロロスルホン酸を用い、無水フタル酸
と塩素ガスとを反応させることを特徴とするテトラクロ
ロフタル酸無水物の製造法。
A method for producing tetrachlorophthalic anhydride, which comprises reacting phthalic anhydride and chlorine gas using chlorosulfonic acid as a reaction solvent.
JP23977984A 1984-11-14 1984-11-14 Production of tetrachlorophthalic anhydride Pending JPS61118378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23977984A JPS61118378A (en) 1984-11-14 1984-11-14 Production of tetrachlorophthalic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23977984A JPS61118378A (en) 1984-11-14 1984-11-14 Production of tetrachlorophthalic anhydride

Publications (1)

Publication Number Publication Date
JPS61118378A true JPS61118378A (en) 1986-06-05

Family

ID=17049765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23977984A Pending JPS61118378A (en) 1984-11-14 1984-11-14 Production of tetrachlorophthalic anhydride

Country Status (1)

Country Link
JP (1) JPS61118378A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307858A (en) * 1987-05-18 1988-12-15 エルフ アトケム ソシエテ アノニム Manufacture of halogenated imide
EP0632032A1 (en) * 1993-06-02 1995-01-04 Nippon Light Metal Co., Ltd. Process for purifying tetrachlorophthalic anhydride and high-purity tetrachlorophthalic anhydride
WO2010126152A1 (en) 2009-04-28 2010-11-04 住友化学株式会社 Process for producing phthalic acid compound including chlorinated aromatic ring

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307858A (en) * 1987-05-18 1988-12-15 エルフ アトケム ソシエテ アノニム Manufacture of halogenated imide
EP0632032A1 (en) * 1993-06-02 1995-01-04 Nippon Light Metal Co., Ltd. Process for purifying tetrachlorophthalic anhydride and high-purity tetrachlorophthalic anhydride
US5493033A (en) * 1993-06-02 1996-02-20 Nippon Light Metal Company, Ltd. Process for purifying tetrachlorophthalic anhydride
WO2010126152A1 (en) 2009-04-28 2010-11-04 住友化学株式会社 Process for producing phthalic acid compound including chlorinated aromatic ring
JP2010275300A (en) * 2009-04-28 2010-12-09 Sumitomo Chemical Co Ltd Process for producing phthalic acid compound including chlorinated aromatic ring
CN102414161A (en) * 2009-04-28 2012-04-11 住友化学株式会社 Process for producing phthalic acid compound including chlorinated aromatic ring

Similar Documents

Publication Publication Date Title
GB2032920A (en) Process for preparing terephthalic acid
JPS5818332A (en) Treatment of aromatic monocarboxylic acid reactant mixture
JPH0641026A (en) Production of 3,5-difluoroaniline
US4328374A (en) Process for the production of aromatic dialdehydes
US3996291A (en) Process for the production of 4-hydroxy-3,5-dibromobenzaldehyde
JP2911626B2 (en) Preparation of carboxylic acid chloride
JPS61118378A (en) Production of tetrachlorophthalic anhydride
EP0849253A1 (en) Process for producing benzoyl chlorides
JPH06329653A (en) Production of tetrachlorophthalic acid anhydride
JPS61158949A (en) Production of 2-(4&#39;-amylbenzoyl)benzoic acid mixture
JPH06145100A (en) Production of 2,6-dichlorobenzoyl chloride
JPS5834469B2 (en) Method for producing chlorobenzene sulfochloride
JPS59190944A (en) Production of quinone
HU181498B (en) Process for preparing monochloro-acetyl-chloride and monochloro-acetic acid by means the hydration of trichloro-ethylene
JPH02304046A (en) Production of highly purified o-toluic acid
JP2722686B2 (en) Method for producing thiophosgene
JPH0153260B2 (en)
JPS62106035A (en) Production of terephthalic acid and phenol
RU2064918C1 (en) Method of synthesis of 2,2-bis-(3,5-dibromo-4-hydroxyphenyl)-propane
JPH09202751A (en) Production of di-tertiary-butyl dicarbonate
JPH03279347A (en) Method for purifying 4,4&#39;-diphenyldicarboxylic acid
US3484461A (en) Process for the production of 2,3-dichloronaphthoquinone-(1,4)
JPS63192728A (en) Production of 1,1&#39;-dinaphthyl
JPH03284648A (en) Method for industrially producing naphthalene-2,6-dicarboxylic acid
JPS63196536A (en) Purification of m-phenoxybenzyl alcohol