JPS63169394A - Production of 1-aminoanthraquinone - Google Patents

Production of 1-aminoanthraquinone

Info

Publication number
JPS63169394A
JPS63169394A JP62000111A JP11187A JPS63169394A JP S63169394 A JPS63169394 A JP S63169394A JP 62000111 A JP62000111 A JP 62000111A JP 11187 A JP11187 A JP 11187A JP S63169394 A JPS63169394 A JP S63169394A
Authority
JP
Japan
Prior art keywords
nitro
ions
aqueous solution
acidic aqueous
ceric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62000111A
Other languages
Japanese (ja)
Other versions
JPH0623142B2 (en
Inventor
Noriaki Ikeda
憲明 池田
Noboru Sugishima
昇 杉島
Yasushi Fujii
靖士 藤井
Shinji Ikuta
生田 伸治
Akira Inoue
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP62000111A priority Critical patent/JPH0623142B2/en
Priority to US07/062,638 priority patent/US4840749A/en
Priority to DE87108717T priority patent/DE3787929T2/en
Priority to CA000539848A priority patent/CA1294616C/en
Priority to EP87108717A priority patent/EP0249969B1/en
Priority to IN440/MAS/87A priority patent/IN170122B/en
Publication of JPS63169394A publication Critical patent/JPS63169394A/en
Publication of JPH0623142B2 publication Critical patent/JPH0623142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To produce high purity 1-aminoanthraquinone with high selectivity in a high yield by subjecting 1-nitronaphthalene to liq. phase oxidation with an acidic aq. soln. contg. ceric ions to produce 5-nitro-1,4-naphthoquinone. CONSTITUTION:1-Nitronaphthalene is subjected to liq. phase oxidation at about 0-80 deg.C with an acidic aq. soln. contg. ceric ions and having 0.3-10mol/l acid concn. preferably under radiated ultrasonic waves of >=10kHz frequency. Crystals contg. 5-nitro-1,4-naphthoquinone and an acidic aq. soln. contg. cerium ions are separated from the resulting reaction product mixture. The 5-nitro-1,4- naphthoquinone and 1,3-butadiene are brought into the Diels-Alder reaction at about 0-250 deg.C to deposit crystals contg. 5-nitro-1,4,4a,9a- tetrahydroanthraquinone. The crystals are separated and reduced at about 50-150 deg.C with a reducing agent. The reduced crystals contg. 1- aminoanthraquinone are separated and purified.

Description

【発明の詳細な説明】 本発明は1−ニトロナフタリンを原料とする新規な1−
アミノアントラキノンの製造法に関するものである。更
に詳しく述べると1−ニトロナフタリンを第2セリウム
イオンを含む酸性水溶液(以下、「第2セリウムイオン
−酸性水溶液」という)を用いて液相酸化して得られた
5−ニトロ−1,4−ナフトキノンと1.3−ブタジエ
ンのディールスアルダー反応により5−ニトロ−1゜4
.4a 、9a−テトラヒドロアントラキノンを生成せ
しめ、更に還元剤を用いて還元することを特徴とする1
−アミノアントラキノンの製造法である。1−アミノア
ントラキノンはアントラキノン系染料等の中間体として
工業的に有用である。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides novel 1-nitronaphthalene as a raw material.
This invention relates to a method for producing aminoanthraquinone. More specifically, 5-nitro-1,4- obtained by liquid phase oxidation of 1-nitronaphthalene using an acidic aqueous solution containing ceric ions (hereinafter referred to as "ceric ion-acidic aqueous solution") 5-nitro-1゜4 by Diels-Alder reaction of naphthoquinone and 1,3-butadiene
.. 1, characterized in that 4a, 9a-tetrahydroanthraquinone is produced and further reduced using a reducing agent.
- A method for producing aminoanthraquinone. 1-aminoanthraquinone is industrially useful as an intermediate for anthraquinone dyes and the like.

[従来の技術] アントラキノンを出発原料とする1−アミノアントラキ
ノンの製造方法には、アントラキノンのスルホン化によ
って得られるアントラキノン−1−スルホン酸をアンモ
ノリシスして合成する方法(特開昭48−4455、特
開昭48−70732、特開[50−111059) 
、7>トラ*/ンを濃硝酸あるいは混酸等によりニトロ
化して1−ニトロアントラキノンを合成しく特開昭47
−4784、特開昭57−193426、特公昭58−
35498.特開昭58−150545)次いでアンモ
ニアと反応させるか或いは硫化アルカリや水硫化アルカ
リを用いて還元する方法等が知られている。しかし、ス
ルホン化法はスルホン化工程で水銀触媒を使用するため
作業環境、公害等の面で問題がある。又、ニトロ化法で
は硫酸及び1i1N酸の使用量が多く、取扱い及び廃液
処理等の点で問題が多い上に、得られる1−アミノアン
トラキノンは、ジアミノ体、2−アミノ体などの副生物
を多量に含有し、染料の中間体として用いるには複雑な
精製操作を加える必要があり、工業的に有利な方法とは
いえない。
[Prior Art] A method for producing 1-aminoanthraquinone using anthraquinone as a starting material includes a method of synthesizing anthraquinone-1-sulfonic acid obtained by sulfonation of anthraquinone by ammonolysis (Japanese Patent Application Laid-Open No. 48-4455, 1977-70732, Japanese Patent Publication [50-111059]
, 7> To synthesize 1-nitroanthraquinone by nitration of thora*/n with concentrated nitric acid or mixed acid etc.
-4784, JP-A-57-193426, JP-A-58-
35498. JP-A-58-150545) There are known methods in which the reaction mixture is then reacted with ammonia or reduced using alkali sulfide or alkali hydrosulfide. However, since the sulfonation method uses a mercury catalyst in the sulfonation step, there are problems in terms of working environment, pollution, etc. In addition, the nitration method uses a large amount of sulfuric acid and 1i1N acid, which causes many problems in terms of handling and waste liquid treatment, and the 1-aminoanthraquinone obtained does not contain by-products such as diamino and 2-amino acids. It is not an industrially advantageous method because it is contained in large amounts and requires complex purification operations to be used as an intermediate for dyes.

また、5−ニトロ−1,4−ナフトキノンを1゜3−ブ
タジエンとディールスアルダー反応させて5−ニトロ−
1,4,4a 、9a−テトラヒドロアントラキノンと
し、これを酸化して1−アミノアントラキノンを製造す
る方法も知られている(特開昭5l−32551)。こ
の方法では、前記欠点は改善され、作業環境及び公害等
の面で有利である。
In addition, 5-nitro-1,4-naphthoquinone is reacted with 1゜3-butadiene and Diels-Alder to produce 5-nitro-1,4-naphthoquinone.
A method for producing 1-aminoanthraquinone by oxidizing 1,4,4a,9a-tetrahydroanthraquinone is also known (JP-A-51-32551). This method improves the above-mentioned drawbacks and is advantageous in terms of working environment and pollution.

一方、5−ニトロ−1,4−ナフトキノンの製造法とし
ては、一般的に第2セリウムイオン−酸性水溶液を用い
て芳香族化合物を液相酸化し、対応するキノン類を得る
方法、例えば■水と混和しない有機溶媒に溶解したナフ
タリンを第2セリウムイオン−酸性水溶液を用いて酸化
し、1.4−ナフトキノンを製造する方法(特公昭49
−34978号公報)、■粉末状のナフタリンを分散剤
によって第2t?リウム塩の水溶液中に懸濁させること
を特徴とする1、4−ナフトキノンの製造方法(特開昭
56−61321号公報)等が知られており、これを応
用することが考えられる。これら酸化反応に用いられる
第2セリウムイオン−酸性水溶液としては硝酸セリウム
アンモニウム−硝酸水溶液や硫酸セリウム−硫酸水溶液
が一般的に用いられる。また、前記液相酸化反応のプロ
セスとしては、通常液相酸化反応後に生成する第1セリ
ウムイオンの第2セリウムイオンへの再生法として電気
化学的再生法の工程が含まれる。
On the other hand, as a method for producing 5-nitro-1,4-naphthoquinone, generally, an aromatic compound is oxidized in a liquid phase using a ceric ion-acidic aqueous solution to obtain the corresponding quinones. A method for producing 1,4-naphthoquinone by oxidizing naphthalene dissolved in an organic solvent immiscible with ceric ion using an acidic aqueous solution (Japanese Patent Publication No. 49
-34978 Publication), ■ Powdered naphthalene is mixed with a dispersant to make the second A method for producing 1,4-naphthoquinone characterized by suspending it in an aqueous solution of a lithium salt (Japanese Unexamined Patent Publication No. 56-61321) is known, and it is possible to apply this method. As the ceric ion-acidic aqueous solution used in these oxidation reactions, a ceric ammonium nitrate-nitric acid aqueous solution or a cerium sulfate-sulfuric acid aqueous solution is generally used. Further, the process of the liquid phase oxidation reaction includes an electrochemical regeneration process as a method of regenerating cerium ions produced after the liquid phase oxidation reaction into cerium ions.

[発明が解決しようとする問題点コ 前記5−ニトロー1,4−ナフトキノンを出発原料とす
る1−アミノアントラキノンの製造方法では、原料の5
−ニトロ−1,4−ナフトキノンの純度が高いものを使
用しないと1−アミノアントラキノン製品も高純度のも
のが得られない。
[Problems to be Solved by the Invention] In the method for producing 1-aminoanthraquinone using 5-nitro-1,4-naphthoquinone as a starting material,
Unless a highly purified nitro-1,4-naphthoquinone is used, a highly purified 1-aminoanthraquinone product cannot be obtained.

一方、第2セリウムイオン−酸性水溶液を用いて1−ニ
トロナフタリンを液相酸化する5−ニトロ−1,4−ナ
フトキノンの製造方法では、通常第2セリウムイオン−
酸性水溶液中の第2セリウムイオンの濃度が高濃度であ
るほど、あるいは酸化反応温度が高温であるほど反応速
度が大きく単位時間当りの目的の酸化物の収量の而で有
利である反面、目的酸化物の連携性の面からは第2セリ
「クムイオンー酸性水溶液中の第2セリウムイオンの濃
度が低濃度であるほど、あるいは酸化反応温度が低温で
あるほど有利である。第2セリウムイオン−酸性水溶液
が硝酸性水溶液である場合にはホ)の第1セリウムイオ
ンを電解酸化して第2セリウムイオンに再生する工程に
おいて、共存する硝酸イオンが電解によって陰極で亜硝
酸イオンやアンモニウムイオンに還元されることにより
、各イオン濃度が変化し、液のpHが変り、極端な場合
加水分解が起こってしまう。こうした複雑な挙動に伴っ
て、第2セリウムイオン−酸性水溶液の酸化剤としての
能力も変化し、またこれら副反応生成物の蓄積も要因と
なりえて、1−ニトロナフタリンから5−ニトロ−1,
4−ナフトキノンへの反応速度のみならず、選択性にも
影響し、更には1−アミノアントラキノンの収率や純度
にも影響する。従って、液相酸化反応条件の設定も変動
させねばならず、実際の運転には定期的な液組成の分析
及び調整、更には液の入替えの必要が生じてくる。また
、第1セリウムイオンの酸化以外の陽極反応は目的とす
る第2セリウムイオン生成の電流効率の低下をもたらし
、電極の劣化もより複雑かつ深刻に起こる。このような
電極での副反応およびそれに起因する不都合は、他の第
2セリウムイオン−酸性水溶液についても同様のことが
言える。
On the other hand, in a method for producing 5-nitro-1,4-naphthoquinone in which 1-nitronaphthalene is oxidized in a liquid phase using a ceric ion-acidic aqueous solution, ceric ion-
The higher the concentration of ceric ions in the acidic aqueous solution or the higher the oxidation reaction temperature, the higher the reaction rate, which is advantageous in terms of the yield of the desired oxide per unit time. From the viewpoint of the coordination of things, the lower the concentration of ceric ions in the ceric ion-acidic aqueous solution, or the lower the oxidation reaction temperature, the more advantageous it is. When is a nitric acid aqueous solution, in the step (e) of electrolytically oxidizing ceric ions to regenerate them to ceric ions, coexisting nitrate ions are reduced to nitrite ions and ammonium ions at the cathode by electrolysis. As a result, the concentration of each ion changes, the pH of the solution changes, and in extreme cases, hydrolysis occurs.Along with these complex behaviors, the ability of the ceric ion-acidic aqueous solution as an oxidizing agent also changes. , and the accumulation of these side reaction products may also be a factor, resulting in the conversion of 1-nitronaphthalene to 5-nitro-1,
It affects not only the reaction rate to 4-naphthoquinone but also the selectivity, and further affects the yield and purity of 1-aminoanthraquinone. Therefore, the settings of the liquid phase oxidation reaction conditions must also be varied, and in actual operation, it becomes necessary to periodically analyze and adjust the liquid composition and further replace the liquid. Furthermore, anodic reactions other than the oxidation of ceric ions result in a decrease in the current efficiency for the purpose of producing ceric ions, and deterioration of the electrode occurs in a more complicated and serious manner. The same side reactions at the electrode and the inconveniences caused by them can be applied to other ceric ion-acidic aqueous solutions.

本発明は上記の欠点を解消し、1−ニトロナフタリンか
ら副生物の少ない5−ニトロ−1,4−ナフトキノンを
得、これと1,3−ブタジエンとをディールスアルダー
反応させ更に還元することにより、高純度の1−アミノ
アントラキノンを高選択的に生産性層(、かつ作業環境
及び公害等の面で有利に得る方法を提供するものである
The present invention solves the above drawbacks by obtaining 5-nitro-1,4-naphthoquinone with few by-products from 1-nitronaphthalene, and further reducing it by subjecting it to a Diels-Alder reaction with 1,3-butadiene. The present invention provides a method for obtaining highly selective 1-aminoanthraquinone in a highly productive layer (and advantageous in terms of working environment and pollution, etc.).

[問題を解決するための手段] 本発明者等は、前記従来法の欠点について鋭意検討の結
果、回収した第1セリウムイオンを第2セリウムイオン
に酸化するホ)の工程において、陽極液としてセリウム
イオンを含む酸性水溶液を、陰極液として電解質液を、
隔膜としてイオン交換膜を用いて電解酸化することによ
り、良質の第2セリウムイオン−酸性水溶液を得、以降
の各工程の目的物の選択性及び生産性をよくし、最終的
に副生物の少ない1−アミノアントラキノンを製造する
方法を見出した。即ち、本発明は、イ)第2セリウムイ
オンを含む酸性水溶液を用い、7−ニトロナフタリンを
液相酸化する工程。
[Means for Solving the Problem] As a result of intensive study on the drawbacks of the conventional method, the present inventors discovered that cerium was used as the anolyte in the step (e) of oxidizing the recovered cerium ions to ceric ions. An acidic aqueous solution containing ions is used as a catholyte, and an electrolyte is used as a catholyte.
By electrolytically oxidizing using an ion exchange membrane as a diaphragm, a high-quality ceric ion-acidic aqueous solution is obtained, which improves the selectivity and productivity of the target product in each subsequent process, and ultimately produces fewer by-products. We have discovered a method for producing 1-aminoanthraquinone. That is, the present invention is a) a step of oxidizing 7-nitronaphthalene in a liquid phase using an acidic aqueous solution containing ceric ions.

口)イ)の工程で得られた反応混合物から5−ニトロ−
1.4−ナフトキノンを含む結晶とセリウムイオンを含
む酸性水溶液とを分離する工程。
5-nitro- from the reaction mixture obtained in step a)
1. A step of separating crystals containing 4-naphthoquinone from an acidic aqueous solution containing cerium ions.

ハ)口)の工程で得られた5−ニトロ−1,4−ナフト
キノンを1,3−ブタジエンとディールスアルダー反応
させ、5−ニトロ−1,4,4a。
5-nitro-1,4-naphthoquinone obtained in step c) is subjected to a Diels-Alder reaction with 1,3-butadiene to produce 5-nitro-1,4,4a.

9a−テトラヒドロアントラキノンを含む結晶を晶析、
分離する工程。
Crystallization of crystals containing 9a-tetrahydroanthraquinone,
Separation process.

二)ハ)の工程で得られた5−ニトロ−1,4゜4a、
9a−テトラヒドロアントラキノンを還元剤を用いて還
元した後、1−アミノアントラキノンを含む結晶を分離
、精製する工程。
2) 5-nitro-1,4°4a obtained in step c),
A step of reducing 9a-tetrahydroanthraquinone using a reducing agent and then separating and purifying crystals containing 1-aminoanthraquinone.

ホ)陽極液として第1セリウムイオンを含む酸性水溶液
を、陰極液として電解質液を、隔膜としてイオン交換膜
を用いて電解酸化し、該酸性水溶液中の第1セリウムイ
オンを第2セリウムイオンに酸化し、イ)の工程に送る
工程。
e) Electrolytically oxidize an acidic aqueous solution containing cerous ions as an anolyte, an electrolyte as a catholyte, and an ion exchange membrane as a diaphragm, and oxidize cerous ions in the acidic aqueous solution to ceric ions. The process of sending the product to step (a).

からなることを特徴とする1−アミノアントラキノンの
製造法である。以下に更に詳しく説明する。
This is a method for producing 1-aminoanthraquinone, characterized by comprising: This will be explained in more detail below.

イ)の第2セリウムイオン−酸性水溶液を用いて1−ニ
トロナフタリンを液相酸化せしめる工程は、撹拌機、外
部循環、ガスの吹込み等による強II7撹拌下に行なわ
れる。
The step (b) of oxidizing 1-nitronaphthalene in a liquid phase using a ceric ion-acidic aqueous solution is carried out under strong II7 stirring using a stirrer, external circulation, gas blowing, or the like.

該工程は、好ましくは超音波照射を組合せて行なわれる
。超音波照射により、単なる強制撹拌のみの場合より大
きい反応速度が得られ、反応温度を低くすることができ
あるいは反応時間の短縮ができて生産性が上がり、かつ
高選択的に反応が進行、する。超音波照射を組合せる場
合、超音波は10KH2以上の周波数のものが好ましく
、その照射方式は外部照射方式、内部照射方式のいずれ
でしよく、また超音波発生装置としても四々の周波数、
出力を有するHEが使用でき、超音波放射体としては平
板型、リング型、円板型等のいずれの型式でもよい。照
射は反応中連続的または断続的に行われ、また反応速度
の低下する反応の後期のみに実施することも有効である
The step is preferably carried out in combination with ultrasound irradiation. Ultrasonic irradiation allows a higher reaction rate than simple forced stirring, lowers the reaction temperature or shortens the reaction time, increases productivity, and allows the reaction to proceed with high selectivity. . When combining ultrasonic irradiation, it is preferable that the ultrasonic wave has a frequency of 10 KH2 or more, and the irradiation method can be either an external irradiation method or an internal irradiation method.
An HE having an output can be used, and the ultrasonic radiator may be of any type such as a flat plate type, ring type, or disk type. Irradiation can be carried out continuously or intermittently during the reaction, and it is also effective to carry it out only in the latter stage of the reaction when the reaction rate decreases.

好ましい反応温度は通常O〜80℃、より好ましくは1
5〜60℃である。温度が低すぎると反応速度の減少を
きたし、高すぎると第2セリウム塩の加水分解が生じた
り重合等副反応生成物の混入や着色あるいは装置の腐蝕
性の面から不利である。
The preferred reaction temperature is usually 0 to 80°C, more preferably 1
The temperature is 5 to 60°C. If the temperature is too low, the reaction rate decreases, and if the temperature is too high, it is disadvantageous in terms of hydrolysis of the ceric salt, contamination of side reaction products such as polymerization, coloring, or corrosion of the equipment.

第2セリウムイオン−酸性水溶液の酸濃度としては、低
過ぎると第2セリウムイオンが不安定になる一方、高過
ぎると装置の腐蝕の面から不利であるため、酸性水溶液
中のM温度は好ましくは0.3〜10モル/i、より好
ましくは0.5〜5モル/lの範囲とする。酸性水溶液
の酸としては、上記第2セリウムイオン供給源を形成す
る陰イオンに対応する酸を使用することができるが、そ
れ以外の酸を添加することもでき、例えば硫酸、硝酸等
を単独あるいは混合して使用することができる。
Regarding the acid concentration of the ceric ion-acidic aqueous solution, if it is too low, the ceric ions will become unstable, while if it is too high, it is disadvantageous in terms of corrosion of the equipment, so the M temperature in the acidic aqueous solution is preferably The range is from 0.3 to 10 mol/l, more preferably from 0.5 to 5 mol/l. As the acid in the acidic aqueous solution, an acid corresponding to the anion forming the ceric ion supply source can be used, but other acids can also be added. For example, sulfuric acid, nitric acid, etc. can be used alone or Can be used in combination.

また、第2セリウムイオン−酸性水溶液としては各種の
第2セリウム塩の酸性水溶液が使用できる。あるいは硝
酸第1セリウムアンモニウム、硝酸第1セリウムまたは
硫酸第1セリウム等の第1セリウム塩を酸性水溶液に溶
解し酸化して得られる第2セリウムイオン−酸性水溶液
も使用できる。
Further, as the ceric ion-acidic aqueous solution, various acidic aqueous solutions of ceric salts can be used. Alternatively, a ceric ion-acidic aqueous solution obtained by dissolving a ceric salt such as ammonium cerous nitrate, cerous nitrate, or cerous sulfate in an acidic aqueous solution and oxidizing the solution can also be used.

硝酸第2セリウムアンモニウム(、(NH4)2[Ce
 (NO3)6 ] )−硝酸水溶液を用いる場合には
、前記のごとく硝酸セリウムアンモニウムの水に対する
溶解度が比較的大きいので低温でも第2セリウムイオン
の濃度を高く保持でき、充分な反応速度でかつ高選択的
に反応させることができ好適に使用できる。また、硝酸
第1セリウムを硝酸水溶液に溶解し酸化して得られる硝
酸第2セリウム−硝酸水溶液も第2セリウムイオンの濃
度を高く保持でき好適に使用できる。これらの場合、酸
性水溶液中の第2セリウムイオン濃度は好ましくは0.
1〜6モル/l、より好ましくは0.2〜5モル/lの
範囲とする。濃度が低すぎると酸化力が弱く、反応速度
も小であり、更に反応液量も大となって不利である。逆
に高すぎる(セリウム塩の溶解量が多い)と液の粘度が
上昇し、プロセス上の開操作に支障をきたす恐れが生じ
る。
Ceric ammonium nitrate (, (NH4)2[Ce
(NO3)6 ) - When using a nitric acid aqueous solution, as mentioned above, the solubility of ceric ammonium nitrate in water is relatively high, so the concentration of ceric ions can be maintained at a high level even at low temperatures, and a sufficient reaction rate and high It can be reacted selectively and can be suitably used. Further, a ceric nitrate-nitric acid aqueous solution obtained by dissolving ceric nitrate in an aqueous nitric acid solution and oxidizing the solution can also be suitably used since it can maintain a high concentration of ceric ions. In these cases, the ceric ion concentration in the acidic aqueous solution is preferably 0.
The range is 1 to 6 mol/l, more preferably 0.2 to 5 mol/l. If the concentration is too low, the oxidizing power will be weak, the reaction rate will be low, and the amount of reaction liquid will also be large, which is disadvantageous. On the other hand, if it is too high (a large amount of cerium salt is dissolved), the viscosity of the liquid will increase, which may interfere with the opening operation in the process.

またイ)の工程においては、1−ニトロナフタリンを水
と混和しない有機溶媒に溶解せしめても、あるいは溶媒
を用いずに1−ニトロナフタリンのみを添加してもよく
、該系は液状でもスラリー状でもよい。上記有機溶媒と
しては、ベンゼン、ターシャリ−ブチルベンゼン、クロ
ルベンゼン等の芳香族炭化水素又はその置換体、シクロ
ヘキサン、n−ヘキサン、n−ペンタン、n−オクタン
等の脂肪族炭化水素、四塩化炭素、クロルメチレン、ジ
クロルエタン等の塩素化脂肪族炭化水素等の有機溶媒が
使用できる。 1 0)の工程により、イ)の工程で19られた反応混合物
から5−ニトロ−1,4−ナフトキノン結晶を晶析し、
遠心分離、濾過等により該結晶と濾液とに分離し、必要
により更に濾液からセリウムイオンを含む酸性水溶液相
と有機相とを分離し、結晶はハ)の工程へ、セリウムイ
オンを含む酸性水溶液はホ)の工程へ送られる。有機相
は主として溶解度分の5−ニトロ−1,4−ナフトキノ
ン、未反応の1−ニトロナフタリンあるいはイ)の工程
で用いた溶媒等からなり、水溶液相と分離しないままホ
)の工程へ送られるか、または分離、回収してイ)の工
程へ戻される。
In the step (a), 1-nitronaphthalene may be dissolved in an organic solvent that is immiscible with water, or 1-nitronaphthalene alone may be added without using a solvent, and the system may be in the form of a liquid or a slurry. But that's fine. Examples of the organic solvent include aromatic hydrocarbons or substituted products thereof such as benzene, tert-butylbenzene, and chlorobenzene, aliphatic hydrocarbons such as cyclohexane, n-hexane, n-pentane, and n-octane, carbon tetrachloride, Organic solvents such as chlorinated aliphatic hydrocarbons such as chlormethylene and dichloroethane can be used. 1. In step 0), crystallize 5-nitro-1,4-naphthoquinone crystals from the reaction mixture obtained in step a),
The crystals and the filtrate are separated by centrifugation, filtration, etc., and if necessary, the acidic aqueous solution containing cerium ions and the organic phase are further separated from the filtrate, and the crystals are transferred to step c). It is sent to the process e). The organic phase mainly consists of the solubility of 5-nitro-1,4-naphthoquinone, unreacted 1-nitronaphthalene, or the solvent used in step (a), and is sent to step (e) without separation from the aqueous phase. Otherwise, it is separated and recovered and returned to step (a).

ハ)の工程で5−ニトロ−1,4−ナフトキノンを1,
3−ブタジエンとディールスアルダー反応させる。反応
は5−ニトロ−1,4−ナフトキノンと1,3−ブタジ
エンを溶解する適当な溶媒を用いて行なわれる。そのよ
うな溶媒としては例えば、ベンゼン、トルエン、キシレ
ン等の芳族炭化水素、ジクロロエタン、四塩化炭素、ジ
クロロベンゼン等のハロゲン化炭化水素、エチルエーテ
ル、ジフェニルエーテル等のエーテル類、フタル酸ジオ
クチル、酢酸メチル等のエステル類、アセトン、メチル
エチルケトン等のケトン類、メタノール、エタノール等
のアルコール類、メチルセロソルブ、エチルセロソルブ
等のセロソルブ類等があげられる。5−ニトロ−1,4
−ナフトキノンと1,3−ブタジエンのディールスアル
ダー反応は、他の芳香族キノン化合物の場合と同様に一
般的には0〜250℃、好ましくは30〜150℃の温
度で行われる。反応温度が高過ぎれば、1゜3−ブタジ
エンの溶解度が減少し反応が進みにくくなり、また生成
した5−ニトロ−1,4,4a。
In step c), 5-nitro-1,4-naphthoquinone is converted into 1,
Diels-Alder reaction with 3-butadiene. The reaction is carried out using a suitable solvent that dissolves 5-nitro-1,4-naphthoquinone and 1,3-butadiene. Examples of such solvents include aromatic hydrocarbons such as benzene, toluene, and xylene, halogenated hydrocarbons such as dichloroethane, carbon tetrachloride, and dichlorobenzene, ethers such as ethyl ether and diphenyl ether, dioctyl phthalate, and methyl acetate. etc., ketones such as acetone and methyl ethyl ketone, alcohols such as methanol and ethanol, and cellosolves such as methyl cellosolve and ethyl cellosolve. 5-nitro-1,4
The Diels-Alder reaction between naphthoquinone and 1,3-butadiene is generally carried out at a temperature of 0 to 250°C, preferably 30 to 150°C, as in the case of other aromatic quinone compounds. If the reaction temperature is too high, the solubility of 1°3-butadiene will decrease, making it difficult for the reaction to proceed, and 5-nitro-1,4,4a will be produced.

9a−テトラヒドロアントラキノンが異性化、脱水素等
の副反応により他の物質に変換し、原料の5−ニトロ−
1,4−ナフトキノンや1.3−ブタジエンの重合等の
副反応も生じ、反応選択率が低下する。又、低過ぎれば
反応速度が低下する。
9a-Tetrahydroanthraquinone is converted into other substances through side reactions such as isomerization and dehydrogenation, and the raw material 5-nitro-
Side reactions such as polymerization of 1,4-naphthoquinone and 1,3-butadiene also occur, reducing reaction selectivity. On the other hand, if it is too low, the reaction rate will decrease.

反応圧力は1,3−ブタジエンの溶解度等にも依存する
が、通常12C1/α2以下、より一般的には0〜20
Ky/α2の範囲で行われる。1.3−ブタジエンの使
用量は5−ニトロ−1,4−ナフトキノンに対して過剰
である程反応は速く完結するが、あまり多過ぎても装置
的な面で経済的ではなく、好ましくは1〜20モル倍、
より好ましくは1.1〜10モル倍で行われる。また、
反応時間は1,3−ブタジエンの濃度、反応温度、反応
圧力等の諸条件の制約により限定され、それぞれ最適の
反応時間が選ばれる。
The reaction pressure depends on the solubility of 1,3-butadiene, etc., but is usually 12C1/α2 or less, more generally 0 to 20
This is done within the range of Ky/α2. The reaction is completed more quickly when the amount of 1.3-butadiene used is in excess of 5-nitro-1,4-naphthoquinone, but if it is too much, it is not economical in terms of equipment, and preferably ~20 mole times,
More preferably, the amount is 1.1 to 10 times the mole. Also,
The reaction time is limited by constraints such as the concentration of 1,3-butadiene, reaction temperature, and reaction pressure, and the optimum reaction time is selected for each.

ハ)の工程で得られた5−ニトロ−1,4,4a、9a
−テトラヒドロアントラキノンは、二)の工程で還元さ
れ、容易に1−アミノアントラキノンになる。還元剤と
しては水素をはじめヨウ化水素、硫化水素、水素化アル
ミニウムリチウム、水素化ホウ素ナトリウム等の比較的
不安定な水素化合物、−酸化炭素、二酸化イオウ、亜硫
酸塩等の低級酸化物または低級酸素酸の塩、硫化ナトリ
ウム、水硫化ナトリウム、硫化アンモニウム等のイオウ
化合物、アルカリ金属、マグネシウム、カルシウム等の
電気的陽性の大きい金属またはそれらのアマルガム、鉄
(■)、スズ(■)、チタン(■)、クロム(II)等
の低原子価状態にある金属の塩類、アルデヒド類、ギ酸
、シュウ酸等の還元剤としての作用を有する有機化合物
が用いられる。
5-nitro-1,4,4a, 9a obtained in step c)
-Tetrahydroanthraquinone is reduced in step 2) and easily becomes 1-aminoanthraquinone. Reducing agents include hydrogen, relatively unstable hydrogen compounds such as hydrogen iodide, hydrogen sulfide, lithium aluminum hydride, and sodium borohydride; - lower oxides or lower oxygen such as carbon oxide, sulfur dioxide, and sulfite; Acid salts, sulfur compounds such as sodium sulfide, sodium hydrosulfide, ammonium sulfide, alkali metals, highly electropositive metals such as magnesium and calcium, or their amalgams, iron (■), tin (■), titanium (■) ), salts of metals in a low valence state such as chromium (II), aldehydes, and organic compounds that act as reducing agents such as formic acid and oxalic acid are used.

二)の工程においては、溶媒としてアセトン、メタノー
ル、エタノール、イソプロパツール、メチルセロソルブ
等の水溶性溶媒を使用しても単に水でもよい。又、トル
エン、キシレン等の水と非混和性の溶媒も使用できるが
、この場合はアンモニア或いはメチルアミン、エチルア
ミン等の脂肪族第1アミン、ジアリルアミン、ジエチル
アミン等の脂肪族第2アミン、トリメチルアミン、トリ
エチルアミン等の脂肪族第3アミン、アリルアミン、ジ
アリルアミン等の脂肪族不飽和アミン、シクロプロピル
アミン、シクロブチルアミン等の脂環式アミン、アニリ
ン、ベンジルアミン、ジフェニルアミン等の芳香族アミ
ンのごとく、有機アミンを添加すればよい。反応は使用
する溶媒等にもよるが、通常50〜150℃、好ましく
は60〜120℃にて行なわれる。反応温度が高過ぎる
と原料の5−ニトロ−1.4.4a 、9a−テトラヒ
ドロアントラキノンの異性化、脱水素等の副反応により
他の物質に変換し、反応温度が低過ぎると反応速度が低
下する。
In step 2), a water-soluble solvent such as acetone, methanol, ethanol, isopropanol, methyl cellosolve, etc. may be used as the solvent, or simply water may be used. In addition, water-immiscible solvents such as toluene and xylene can also be used, but in this case, ammonia, aliphatic primary amines such as methylamine and ethylamine, aliphatic secondary amines such as diallylamine and diethylamine, trimethylamine and triethylamine are used. Addition of organic amines such as aliphatic tertiary amines such as allylamine, aliphatic unsaturated amines such as allylamine, diallylamine, alicyclic amines such as cyclopropylamine, cyclobutylamine, aromatic amines such as aniline, benzylamine, diphenylamine, etc. do it. The reaction is usually carried out at 50 to 150°C, preferably 60 to 120°C, although it depends on the solvent used. If the reaction temperature is too high, the raw materials 5-nitro-1.4.4a and 9a-tetrahydroanthraquinone will be converted into other substances through side reactions such as isomerization and dehydrogenation, and if the reaction temperature is too low, the reaction rate will decrease. do.

ホ)の電解酸化工程は、第1セリウムイオンを含む酸性
水溶液中の第1セリウムイオンを第2セリウムイオンに
酸化し、イ)の工程の第2セリウムイオン−酸性水溶液
として再生または調製する工程である。本発明において
、該工程は隔膜としてイオン交換膜を用いて行われる。
The electrolytic oxidation step (e) is a step in which ceric ions in an acidic aqueous solution containing ceric ions are oxidized to ceric ions, and regenerated or prepared as the ceric ion-acidic aqueous solution in step (a). be. In the present invention, this step is performed using an ion exchange membrane as a diaphragm.

前述の如くセリウムイオン−酸性水溶液が陰極に接触す
ると、特にセリウムイオン−酸性水溶液に硝酸イオンが
含まれている場合、電解酸化によって各種のイオンが?
!雑に挙動し、様々な不都合が生じる。隔膜としてイオ
ン交換膜を用いることにより、陽極液中に含まれている
硝酸イオンあるいはその他のイオンが陰極と接触するの
を防ぐことができ、また陰極液が陰極で還元作用を受け
てなんらかの副生物が生成しても隔膜に隔てられて陽極
液に混入することはなく、これらの不都合を防ぐことが
できる。なお、ここでいう第1セリウムイオンを含む酸
性水溶液には、口)の工程で分離したセリウムイオンを
含む酸性水溶液の他、新規あるいは補充仕込みのセリウ
ム塩を溶解した酸性水溶液も含まれる。
As mentioned above, when a cerium ion-acidic aqueous solution comes into contact with the cathode, various ions are generated by electrolytic oxidation, especially if the cerium ion-acidic aqueous solution contains nitrate ions.
! It behaves sloppily and causes various inconveniences. By using an ion exchange membrane as a diaphragm, it is possible to prevent nitrate ions or other ions contained in the anolyte from coming into contact with the cathode, and also to prevent the catholyte from being reduced by the cathode and producing any by-products. Even if they are generated, they are separated by the diaphragm and do not mix into the anolyte, thus preventing these inconveniences. Note that the acidic aqueous solution containing cerium ions referred to herein includes not only the acidic aqueous solution containing the cerium ions separated in the step (1), but also an acidic aqueous solution in which a new or supplementary cerium salt is dissolved.

次に本発明に基づく一実施態様を示す第1図により、具
体的に説明する。第1図は液相酸化反応に溶媒を用いて
1−アミノアントラキノンを連続的に製造するフローシ
ートである(溶媒を使用しない場合は6.8を省略でき
る)。第1図に33いて、1は陰極液タンク、2は電解
槽、3は陽極液タンク、4は1−ニトロナフタリンタン
ク、5は液相酸化反応器、6は溶剤タンク、7,13は
濾過器、8は分離塔、9はディールスアルダー反応器、
1oは1.3−ブタジエンタンク、11は還元反応器、
12は還元剤タンク、14は廃液タンク、15は製品(
1−アミノアントラキノン)タンクを表わす。
Next, an embodiment based on the present invention will be explained in detail with reference to FIG. 1. FIG. 1 is a flow sheet for continuously producing 1-aminoanthraquinone using a solvent in a liquid phase oxidation reaction (if no solvent is used, step 6.8 can be omitted). 33 in Figure 1, 1 is a catholyte tank, 2 is an electrolyte tank, 3 is an anolyte tank, 4 is a 1-nitronaphthalene tank, 5 is a liquid phase oxidation reactor, 6 is a solvent tank, 7 and 13 are filtration 8 is a separation column, 9 is a Diels-Alder reactor,
1o is a 1,3-butadiene tank, 11 is a reduction reactor,
12 is a reducing agent tank, 14 is a waste liquid tank, and 15 is a product (
1-aminoanthraquinone) tank.

電解槽2の陰極と陽極はイオン交換膜の隔膜によって隔
てられており、陰極側は陰極液タンク1中の陰極液をラ
イン16から電解槽2へ導入し、電解槽2からライン1
7を経て陰極液タンク1へ循環させ、一方間極側は陽極
液タンク3中の第1セリウムイオンを含む酸性水溶液を
ライン18から電解槽2へ導入し、電解1f!2からラ
イン19を経て陽極液タンク3へ循環させる。この間に
電解して該酸性水溶液中の第1セリウムイオンを第2セ
リウムイオンに酸化する。所定濃度の第2セリウムイオ
ンを含む陽極液は陽極液タンク3からライン20を経て
、1−ニトロナフタリンは1−ニトロナフタリンタンク
4よりライン21を経て、そして溶媒は溶剤タンク6よ
りライン22を経て液相酸化反応器5へ導入され、1−
ニトロナフタリンの第2セリウムイオンによる接触液相
酸化が行われる。反応生成物は濾過器7でか遇され、5
−ニトロ−1,4−ナフトキノンの結晶はうイン27を
経てディールスアルダー反応器9へ導入される。一方、
炉液はライン24を経て分離塔8へ導入され、有fi層
はライン26を経て溶剤タンク6へ循環され、第1、第
2セリウムイオンを含む酸性水溶液層はライン25を経
て陽極液タンク3に戻され電解槽2で第2セリウムイオ
ンに循環再生される。ディールスアルダー反応器9に導
入された5−ニトロ−1,4−ナフトキノンは1.3−
ブタジエンタンク10から導入された1、3−ブタジエ
ンと適当な溶媒の存在下に適当な温度、圧力にてディー
ルスアルダー反応させる。反応して得られた5−ニトロ
−1,4,4a 、9a−テトラヒドロアントラキノン
はライン29を経て還元反応器11に送られ、ここで還
元剤タンク12からライン30を経て導入された適当な
還元剤により適当な反応温度にて還元され、1−アミノ
アントラキノンとなる。得られた反応混合物は濾過器1
3にて炉別され、1−7ミノアントラキノンの結晶は製
品タンク15に貯蔵される。炉液は廃液タンク14に貯
蔵し、適宜処理される。
The cathode and anode of the electrolytic cell 2 are separated by a diaphragm of an ion exchange membrane, and on the cathode side, the catholyte in the catholyte tank 1 is introduced into the electrolytic cell 2 through a line 16, and from the electrolytic cell 2 into the line 1.
7 to the catholyte tank 1, and on the other hand, on the interelectrode side, the acidic aqueous solution containing cerium ions in the anolyte tank 3 is introduced from line 18 to the electrolytic cell 2, and electrolysis 1f! 2 to the anolyte tank 3 via line 19. During this time, electrolysis is performed to oxidize the cerium ions in the acidic aqueous solution to cerium ions. The anolyte containing a predetermined concentration of ceric ions is passed from the anolyte tank 3 through line 20, the 1-nitronaphthalene is passed from the 1-nitronaphthalene tank 4 through line 21, and the solvent is passed from the solvent tank 6 through line 22. Introduced into liquid phase oxidation reactor 5, 1-
Catalytic liquid phase oxidation of nitronaphthalene with ceric ions is carried out. The reaction product is passed through a filter 7,
The crystals of nitro-1,4-naphthoquinone are introduced into the Diels-Alder reactor 9 via the inlet 27. on the other hand,
The furnace liquid is introduced into the separation column 8 via a line 24, the fi layer is circulated via a line 26 to the solvent tank 6, and the acidic aqueous solution layer containing the first and second cerium ions is transferred via a line 25 to the anolyte tank 3. The cerium ions are returned to the electrolytic cell 2 and recycled into cerium ions. The 5-nitro-1,4-naphthoquinone introduced into the Diels-Alder reactor 9 is 1.3-
A Diels-Alder reaction is carried out with 1,3-butadiene introduced from the butadiene tank 10 at an appropriate temperature and pressure in the presence of an appropriate solvent. The 5-nitro-1,4,4a,9a-tetrahydroanthraquinone obtained by the reaction is sent via line 29 to reduction reactor 11, where it is fed with a suitable reducing agent introduced via line 30 from reducing agent tank 12. It is reduced to 1-aminoanthraquinone using a suitable reaction temperature. The resulting reaction mixture was filtered through filter 1.
3, and the crystals of 1-7 minoanthraquinone are stored in a product tank 15. The furnace liquid is stored in a waste liquid tank 14 and treated as appropriate.

[実施例] 次に本発明を実施例により詳細に説明するが、本発明は
これらの実施例に限定されるものではない。
[Examples] Next, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these Examples.

実施例−1 電解槽2にて、陽極にptメッキTiW極、陰極に5U
S316L電極、隔膜にフッ素系カチオン交換膜(デュ
ポン社製、ナフィオン423)を用いて電流密度15A
/dm  にて硝酸セリウムアンモニウム−2モル/l
硝酸水溶液を電解し、第2セリウムイオン濃度が2モル
/l硝酸水溶液に対し2.4モル/lである陽極液を得
た。陰極液は2モル/l硝酸水溶液とした。電流効率は
95%であった。この第2セリウムイオンを含む硝酸水
溶液3954 Kyとt−ブチルベンゼン300 Kg
に溶解せしめた1−ニトロナフタリン100Kgを45
℃に732KHz1400Wの超音波を内部照射して約
1時間液相酸化反応器5にて撹拌しながら反応させて得
た結晶を濾過器7で炉別し、炉液については有機層と水
層を分離塔8で分離後右nWIは循環再使用するため溶
剤タンク6へ、又水層は反応後に生成した第1セリウム
イオンを電解再生するため陽極タンク3へ送液した。一
方、結晶は洗浄後ディールスアルダー反応器へ導入する
が、洗浄後の結晶の重量は102.1yであり、この結
晶をガスクロマトグラフィーで分析したところ、純If
 99.5%の5−ニトロ−1,4−ナフトキノンであ
ることが確認された。
Example-1 In electrolytic cell 2, the anode is PT-plated TiW electrode and the cathode is 5U.
Using a S316L electrode and a fluorine-based cation exchange membrane (manufactured by DuPont, Nafion 423) as a diaphragm, the current density was 15A.
Cerium ammonium nitrate - 2 mol/l at /dm
A nitric acid aqueous solution was electrolyzed to obtain an anolyte having a ceric ion concentration of 2.4 mol/l relative to 2 mol/l of a nitric acid aqueous solution. The catholyte was a 2 mol/l nitric acid aqueous solution. Current efficiency was 95%. 3954 Ky of nitric acid aqueous solution containing this ceric ion and 300 kg of t-butylbenzene
100 kg of 1-nitronaphthalene dissolved in 45
The crystals obtained by internally irradiating ultrasonic waves of 732 KHz and 1400 W at ℃ and reacting with stirring in the liquid phase oxidation reactor 5 for about 1 hour are separated in the filter 7, and the organic layer and the aqueous layer are separated from the furnace liquid. After separation in the separation column 8, the right nWI was sent to the solvent tank 6 for circulation and reuse, and the aqueous layer was sent to the anode tank 3 for electrolytic regeneration of cerium ions produced after the reaction. On the other hand, the crystals are introduced into the Diels-Alder reactor after washing, but the weight of the crystals after washing is 102.1y, and when this crystal is analyzed by gas chromatography, it is found that pure If
It was confirmed that it was 99.5% 5-nitro-1,4-naphthoquinone.

次に反応器9にて前記5−ニトロナフトキノン102.
1yをメタノール約300 Ky、1,3−ブタジエン
68.3 Kg添加した後、3 K!J / ctn 
 圧力下、90℃にて2.5時間反応させた。反応後の
結晶および反応液を反応器11に移し、30%水硫化ナ
トリウム水溶液157.8Kg添加して、常圧下90℃
にて2時間反応させたところ、赤色の結晶が得られた。
Next, in the reactor 9, the 5-nitronaphthoquinone 102.
After adding about 300 Ky of methanol and 68.3 Kg of 1,3-butadiene, 3 K! J/ctn
The reaction was carried out under pressure at 90° C. for 2.5 hours. The crystals and reaction solution after the reaction were transferred to reactor 11, 157.8 kg of 30% sodium hydrogen sulfide aqueous solution was added thereto, and the mixture was heated at 90°C under normal pressure.
When the reaction was carried out for 2 hours, red crystals were obtained.

この結晶の炉別、洗浄、乾燥後の小娘は108.3/(
gであった。得られた製品をガスクロマトグラフィー及
び赤外分光で分析したところ、純度99.0%の1−ア
ミノアントラキノンであることが確認された。従って、
純1−アミノアントラキノンの収率は107.2wt%
であった。
The crystal size after furnace separation, washing and drying is 108.3/(
It was g. When the obtained product was analyzed by gas chromatography and infrared spectroscopy, it was confirmed that it was 1-aminoanthraquinone with a purity of 99.0%. Therefore,
The yield of pure 1-aminoanthraquinone is 107.2wt%
Met.

実施例−2 液相酸化反応器5での反応において超音波照射せずに5
0℃にて約2時間反応させた他は実施例−1と同様に反
応後処理、分析を行った。その結果、5−ニトロナフト
キノンが101.2Kg得られた。次にメタノール約3
00 Ky、1,3−ブタジエン67.3 K9を添加
し、実施例−1と同様に反応させ、さらに次の工程では
30%水硫化ナトリウム水溶液を15.5.Ell添加
した以外は同様の反応後処理を行なった。その結果、炉
別、洗浄、乾燥後、純度98.7%の1−アミノアント
ラキノンが、107.0Kylliられた。従って、純
1−アミノアントラキノンの収率は、105.6wt%
であった。
Example-2 Reaction in liquid phase oxidation reactor 5 without ultrasonic irradiation
Post-reaction treatment and analysis were carried out in the same manner as in Example-1, except that the reaction was carried out at 0°C for about 2 hours. As a result, 101.2 kg of 5-nitronaphthoquinone was obtained. Next, about 3 methanol
00 Ky, 1,3-butadiene 67.3 K9 was added and reacted in the same manner as in Example-1, and in the next step, 30% aqueous sodium hydrogen sulfide solution was added at 15.5. The same post-reaction treatment was performed except that Ell was added. As a result, after furnace separation, washing, and drying, 107.0 Kylli of 1-aminoanthraquinone with a purity of 98.7% was obtained. Therefore, the yield of pure 1-aminoanthraquinone is 105.6 wt%
Met.

[発明の効果] 以上本発明を実施することにより、まず1−ニトロナフ
タリンの液相酸化反応工程にて副生物の少ない5−ニト
ロ−1,4−ナフトキノンが製造されるために次工程以
降における1、3−ブタジエンとのディールスアルダー
反応及び還元反応においても複雑な精製工程を必要とせ
ずに高純度の1−アミノアントラキノンが作業環境及び
公害等の面で右利、高収伍かつ高選択的に製造すること
ができる。
[Effects of the Invention] By carrying out the present invention as described above, 5-nitro-1,4-naphthoquinone with few by-products is produced in the liquid phase oxidation reaction step of 1-nitronaphthalene. Even in the Diels-Alder reaction and reduction reaction with 1,3-butadiene, highly pure 1-aminoanthraquinone does not require complicated purification steps and is beneficial in terms of working environment and pollution, with high yield and high selectivity. can be manufactured.

特許出願人  日本触媒化学工業株式会社〕 コ l# ] 1、 陰(6液ランク 2、電解槽 3、 陽t4i液タンク 4.1−ニトロナフタリンタンク 5、液(口M化反応器 6、 溶剤タンク 7、 濾過器 8、 分離1jj 9、ディールスアルダー反応器 10.1.3−ブタジエンタンク 11、i!!元反応器 12、  還元rIIIタンク 13、  を濾過器 14、廃液タンクPatent applicant: Nippon Shokubai Chemical Co., Ltd. Ko l# ] 1. Yin (6 liquid rank 2. Electrolytic cell 3. Positive T4i liquid tank 4.1-Nitronaphthalene tank 5. Liquid (mouth Mization reactor) 6. Solvent tank 7. Filter 8. Separation 1jj 9. Diels-Alder reactor 10.1.3-Butadiene tank 11.i! ! Original reactor 12, Reduced rIII tank 13. Filter 14. Waste liquid tank

Claims (3)

【特許請求の範囲】[Claims] (1)イ)第2セリウムイオンを含む酸性水溶液を用い
、1−ニトロナフタリンを液相酸化する工程。 ロ)イ)の工程で得られた反応混合物から5−ニトロ−
1,4−ナフトキノンを含む結晶とセリウムイオンを含
む酸性水溶液とを分離する工程。 ハ)ロ)の工程で得られた5−ニトロ−1,4−ナフト
キノンを1,3−ブタジエンとディールスアルダー反応
させ、5−ニトロ−1,4,4a,9a−テトラヒドロ
アントラキノンを含む結晶を晶析、分離する工程。 ニ)ハ)の工程で得られた5−ニトロ−1,4,4a,
9a−テトラヒドロアントラキノンを還元剤を用いて還
元した後、1−アミノアントラキノンを含む結晶を分離
、精製する工程。 ホ)陽極液として第1セリウムイオンを含む酸性水溶液
を、陰極液として電解質液を、隔膜としてイオン交換膜
を用いて電解酸化し、該酸性水溶液中の第1セリウムイ
オンを第2セリウムイオンに酸化し、イ)の工程に送る
工程。 からなることを特徴とする1−アミノアントラキノンの
製造法。
(1) A) A step of oxidizing 1-nitronaphthalene in a liquid phase using an acidic aqueous solution containing ceric ions. b) From the reaction mixture obtained in step b), 5-nitro-
A step of separating crystals containing 1,4-naphthoquinone from an acidic aqueous solution containing cerium ions. c) 5-nitro-1,4-naphthoquinone obtained in step b) is subjected to a Diels-Alder reaction with 1,3-butadiene to obtain crystals containing 5-nitro-1,4,4a,9a-tetrahydroanthraquinone. The process of analysis and separation. d) 5-nitro-1,4,4a obtained in step c),
A step of reducing 9a-tetrahydroanthraquinone using a reducing agent and then separating and purifying crystals containing 1-aminoanthraquinone. e) Electrolytically oxidize an acidic aqueous solution containing cerous ions as an anolyte, an electrolyte as a catholyte, and an ion exchange membrane as a diaphragm, and oxidize cerous ions in the acidic aqueous solution to ceric ions. The process of sending the product to step (a). A method for producing 1-aminoanthraquinone, characterized by comprising:
(2)イ)の工程において超音波照射下に1−ニトロナ
フタリンを液相酸化することを特徴とする特許請求の範
囲(1)に記載の方法。
The method according to claim (1), characterized in that in step (2) a), 1-nitronaphthalene is oxidized in a liquid phase under ultrasonic irradiation.
(3)イ)の工程の第2セリウムイオンを含む酸性水溶
液中の酸濃度が0.3〜10モル/lであることを特徴
とする特許請求の範囲(1)または(2)に記載の方法
(3) The acid concentration in the acidic aqueous solution containing ceric ions in step (a) is 0.3 to 10 mol/l, according to claim (1) or (2). Method.
JP62000111A 1986-06-17 1987-01-06 Process for producing 1-aminoanthraquinone Expired - Lifetime JPH0623142B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62000111A JPH0623142B2 (en) 1987-01-06 1987-01-06 Process for producing 1-aminoanthraquinone
US07/062,638 US4840749A (en) 1986-06-17 1987-06-16 Process for production of 1-aminoanthraquinone
DE87108717T DE3787929T2 (en) 1986-06-17 1987-06-16 Process for the preparation of 1-aminoanthraquinone.
CA000539848A CA1294616C (en) 1986-06-17 1987-06-16 Process for production of 1-aminoanthraquinone
EP87108717A EP0249969B1 (en) 1986-06-17 1987-06-16 Process for production of 1-aminoanthraquinone
IN440/MAS/87A IN170122B (en) 1986-06-17 1987-06-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62000111A JPH0623142B2 (en) 1987-01-06 1987-01-06 Process for producing 1-aminoanthraquinone

Publications (2)

Publication Number Publication Date
JPS63169394A true JPS63169394A (en) 1988-07-13
JPH0623142B2 JPH0623142B2 (en) 1994-03-30

Family

ID=11464958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62000111A Expired - Lifetime JPH0623142B2 (en) 1986-06-17 1987-01-06 Process for producing 1-aminoanthraquinone

Country Status (1)

Country Link
JP (1) JPH0623142B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113527134A (en) * 2021-07-08 2021-10-22 常州大学 Synthesis method of 1-hydroxyaminoanthraquinone

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129473A (en) * 1974-09-06 1976-03-12 Mitsui Toatsu Chemicals Kojundo 55 nitorotetorahidoroantorakinon no seizohoho
JPS5132551A (en) * 1974-09-13 1976-03-19 Mitsui Toatsu Chemicals 11 aminoantorakinonoseizosuru hoho
JPS5634659A (en) * 1979-08-29 1981-04-06 Kawasaki Kasei Chem Ltd Preparation of high-purity 2-aminoanthraquinone
JPS59216828A (en) * 1983-05-26 1984-12-06 Kawasaki Kasei Chem Ltd Oxidation of organic compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129473A (en) * 1974-09-06 1976-03-12 Mitsui Toatsu Chemicals Kojundo 55 nitorotetorahidoroantorakinon no seizohoho
JPS5132551A (en) * 1974-09-13 1976-03-19 Mitsui Toatsu Chemicals 11 aminoantorakinonoseizosuru hoho
JPS5634659A (en) * 1979-08-29 1981-04-06 Kawasaki Kasei Chem Ltd Preparation of high-purity 2-aminoanthraquinone
JPS59216828A (en) * 1983-05-26 1984-12-06 Kawasaki Kasei Chem Ltd Oxidation of organic compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113527134A (en) * 2021-07-08 2021-10-22 常州大学 Synthesis method of 1-hydroxyaminoanthraquinone
CN113527134B (en) * 2021-07-08 2023-05-23 常州大学 Synthesis method of 1-hydroxyaminoanthraquinone

Also Published As

Publication number Publication date
JPH0623142B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US5409581A (en) Tetravalent titanium electrolyte and trivalent titanium reducing agent obtained thereby
JP2618389B2 (en) Oxidation of organic compounds using cerium ions in aqueous trifluoromethanesulfonic acid
JPS58192839A (en) Cyclohexanol and manufacture
US4840749A (en) Process for production of 1-aminoanthraquinone
JPS59216828A (en) Oxidation of organic compound
JP2633244B2 (en) Oxidation of organic compounds using cerium methanesulfonate in aqueous organic solutions
US4794172A (en) Ceric oxidant
JPS63169394A (en) Production of 1-aminoanthraquinone
CN114853668B (en) Synthesis method of 4-pyridine sulfonic acid
US5213665A (en) Process for producing 1-aminoanthraquinones
JPH0394085A (en) Production of 1-aminoanthraquinones
EP0117371B1 (en) Process for the production of aminobenzoic acids from corresponding nitrotoluenes
JPS63169393A (en) Production of 1-aminoanthraquinone
JPH0470310B2 (en)
JPH0529340B2 (en)
JPH0529341B2 (en)
RU2135458C1 (en) Method of synthesis of succinic acid
JPH02262543A (en) Production of 1-aminoanthraquinones
GB1568023A (en) Process for the preparation of aminoaphthalenesulphonic acids
JPS63170340A (en) Production of 5-nitro-1,4-naphthoquinone
JPH0417172B2 (en)
JPS6157818B2 (en)
JPH023625A (en) Production of 3-nitrophthalic acid
JPS6152382A (en) Oxidizing method of aromatic compound
FR2512844A1 (en) Amino:benzoic acid prodn. from nitrotoluene - by oxidn. to nitrobenzoic acid and electrochemical redn. to amino:benzoic acid with simultaneous regeneration of oxidising agent