JPH03177753A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH03177753A
JPH03177753A JP1318412A JP31841289A JPH03177753A JP H03177753 A JPH03177753 A JP H03177753A JP 1318412 A JP1318412 A JP 1318412A JP 31841289 A JP31841289 A JP 31841289A JP H03177753 A JPH03177753 A JP H03177753A
Authority
JP
Japan
Prior art keywords
pressure
electric valve
discharge pressure
discharge
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1318412A
Other languages
Japanese (ja)
Other versions
JPH0776644B2 (en
Inventor
Masahiko Sugino
雅彦 杉野
Noriaki Hayashida
林田 徳明
Koji Ishikawa
石川 孝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1318412A priority Critical patent/JPH0776644B2/en
Publication of JPH03177753A publication Critical patent/JPH03177753A/en
Publication of JPH0776644B2 publication Critical patent/JPH0776644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To suppress the over-rising of a discharge of a discharged pressure at the time of returning to a normal state operation of the subject device, by a method wherein, when a discharge pressure has become above the first specified pressure, a motor-operated valve is opened, and after a specified time has elapsed and evaporation pressure has risen above a specified valve, the operation capacity of a blower is lowered; and when the discharged pressure has lowered below the second specified pressure, the motor-operated valve is closed. CONSTITUTION:At the time of warming operation, and discharge pressure Pd being detected by a detector 13 fixed to a piping of a compressor 1 is above the specified value Pd1 a mean 14 for controlling a motor-operated valve, said valve 9 is made to be opened, a part of a coolant is made to flow through a by-pass 10, resulting in the loweing of the discharge pressure, while when the working time set by the time measuring means 16 for the motor reaches a spcifiedvalue, and when the evaporation pressure T of an outdoor heat exchanger 3 measured by a steam pressure detector 18 is more than the specified value T1, then a blower capacity control means 15 lowers the operating capacities of the blowers 7a - 7c. On the other hand when the discharge pressure detector 14 detects that the discharged pressure lowers to a specific value pd2 (herein, Pd1 is larger than Pd2), the motor-driven valve controller 14 closes the valve 9, with the operating capacities of the blowers 7a - 7c in the state as being lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は空気調和機に関し、特に冷凍サイクルおよび
制御装置に係わる容量制御可能な室外送風機を用いた空
気調和機の蒸発圧力制御に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air conditioner, and particularly relates to evaporation pressure control of an air conditioner using a capacity controllable outdoor blower related to a refrigeration cycle and a control device. .

〔従来の技術〕[Conventional technology]

従来の空気調和機の構成を第3図に示す、第3図におい
て、1は吸入したガス冷媒を圧縮して吐出する圧縮機、
2は冷房運転側、[1房運転側に切換わる四方弁、3は
室外熱交換器、4は高圧の:夜冷媒を低圧の気液混合冷
媒にする減圧装置、5は室内熱交換器、6は冷媒の気液
分離を行うアキュムレータ、6aはアキュムレータ6の
流出管途中にキリ穴を開けて構成される返油装置である
。ここで四方弁2は、圧縮機1の吐出口、室外熱交換器
3の一端口、室内熱交換器5の一端口、アキュムレータ
6の入口に配管接続されている。7a1b、1cは室外
熱交換器3に風を送るための室外送風機、8は圧縮機1
の吐出管に設けられ吐出圧力を検出する圧力センサ、9
はその吐出管とアキュムレータ6の入口配管との間に接
続されたバイパス路10の冷媒の流量を制御する電動弁
の一例としてのt磁弁、11および12は夫々ガス側延
長配管およびWL1!I11延長配管である。室外熱交
換器3の他端口と、室内熱交換器5の他端口に接続され
ている減圧装置4とが液側延長配管12によって接続さ
れている。13は圧力センサ8に接続された吐出圧力検
知手段、14は吐出圧力検知手段からの出力に応じて電
磁弁9を開閉制御する電磁弁制御手段である。
The configuration of a conventional air conditioner is shown in FIG. 3. In FIG. 3, 1 is a compressor that compresses and discharges the gas refrigerant sucked in;
2 is a cooling operation side, [1 is a four-way valve that switches to the room operation side, 3 is an outdoor heat exchanger, 4 is a pressure reducing device that converts the high-pressure night refrigerant into a low-pressure gas-liquid mixed refrigerant, 5 is an indoor heat exchanger, 6 is an accumulator for separating refrigerant into gas and liquid, and 6a is an oil return device constructed by drilling a hole in the middle of the outflow pipe of the accumulator 6. Here, the four-way valve 2 is connected to a discharge port of the compressor 1 , one end of the outdoor heat exchanger 3 , one end of the indoor heat exchanger 5 , and an inlet of the accumulator 6 . 7a1b, 1c are outdoor blowers for sending air to the outdoor heat exchanger 3; 8 is a compressor 1;
a pressure sensor for detecting the discharge pressure provided in the discharge pipe; 9;
11 and 12 are gas-side extension pipes and WL1!, which are examples of electric valves that control the flow rate of refrigerant in the bypass passage 10 connected between the discharge pipe and the inlet pipe of the accumulator 6, respectively. This is I11 extension piping. The other end of the outdoor heat exchanger 3 and the pressure reducing device 4 connected to the other end of the indoor heat exchanger 5 are connected by a liquid side extension pipe 12 . 13 is a discharge pressure detecting means connected to the pressure sensor 8, and 14 is a solenoid valve control means for controlling the opening and closing of the solenoid valve 9 according to the output from the discharge pressure detecting means.

図中実線矢印は冷房運転時の冷媒流れ方向を、また破線
矢印は暖房運転時の冷媒流れ方向を示している。
In the figure, solid line arrows indicate the direction of refrigerant flow during cooling operation, and broken line arrows indicate the direction of refrigerant flow during heating operation.

次に、冷房運転時の動作について説明する。圧縮機1で
圧縮し、吐出された高温高圧のガス冷媒は、四方弁2を
介して室外熱交換器3に流入し、室外送風機7a、7b
、7cの送風作用により室外空気に放熱する一方、冷媒
は凝縮して高圧の液冷媒となり、液側延長配管12をか
いして減圧装置4で減圧され、低圧の気液混合冷媒とな
って、室内熱交換器5に供給される。室内熱交換器5で
は、室内空気から採熱して冷房する一方、冷媒は蒸発し
て低圧のガス冷媒となり、ガス側延長配管11および四
方弁2を介してアキュムレータ6に流入する。アキュム
レータ6では、室内熱交換器5で蒸発し切れなかった液
冷媒とガス冷媒を分離して圧縮a1に吸入させる一方、
アキュムレータ6の底部に溜まっている冷媒と冷凍機油
の混合液を返油装置6aを介して圧縮′alに吸入させ
、圧縮@1内部の潤滑に必要な油量を適正に保持する。
Next, the operation during cooling operation will be explained. The high-temperature, high-pressure gas refrigerant compressed and discharged by the compressor 1 flows into the outdoor heat exchanger 3 via the four-way valve 2, and is then passed through the outdoor blowers 7a and 7b.
, 7c, while the heat is radiated to the outdoor air, the refrigerant condenses to become a high-pressure liquid refrigerant, passes through the liquid side extension pipe 12, is depressurized by the pressure reducing device 4, and becomes a low-pressure gas-liquid mixed refrigerant. It is supplied to the indoor heat exchanger 5. In the indoor heat exchanger 5, heat is collected from the indoor air for cooling, while the refrigerant evaporates to become a low-pressure gas refrigerant, which flows into the accumulator 6 via the gas side extension pipe 11 and the four-way valve 2. In the accumulator 6, the liquid refrigerant and gas refrigerant that were not completely evaporated in the indoor heat exchanger 5 are separated and sucked into the compressor a1, while
A mixed liquid of refrigerant and refrigerating machine oil accumulated at the bottom of the accumulator 6 is sucked into the compressor 'al through an oil return device 6a to maintain an appropriate amount of oil necessary for lubrication inside the compressor @1.

次に、暖房運転時の動作について説明する。Next, the operation during heating operation will be explained.

圧ff1llでガス冷媒を圧縮し、吐出された高温高圧
のガス冷媒は、四方弁2およびガス側延長配管11を介
して室内熱交換器5に流入し、室内空気に放熱して暖房
する一方、冷媒は凝縮して高圧の液冷媒となり、減圧装
置4で減圧され、低圧の気液7昆合冷媒となった後、液
側延長配管12をかいして室外熱交換器3に供給される
。室外熱交換器3では、室外送風機?a、7b、7cの
送風作用により室外空気より採熱して冷媒は蒸発し、低
圧のガス冷媒となり、四方弁2を介してアキュムレータ
6に流入する。アキエムレータ6では、室外熱交換器3
で蒸発し切れなかった液冷媒とガス冷媒を分離する一方
、ガス冷媒と圧縮機1に必要な冷凍機油を返油する。
The gas refrigerant is compressed at a pressure of ff1ll, and the discharged high-temperature, high-pressure gas refrigerant flows into the indoor heat exchanger 5 via the four-way valve 2 and the gas side extension pipe 11, and radiates heat to indoor air to heat it, The refrigerant is condensed to become a high-pressure liquid refrigerant, which is depressurized by the pressure reducing device 4 to become a low-pressure gas-liquid refrigerant, and then supplied to the outdoor heat exchanger 3 through the liquid-side extension pipe 12. In outdoor heat exchanger 3, is it an outdoor blower? The refrigerant is evaporated by collecting heat from the outdoor air by the blowing action of the refrigerant a, 7b, and 7c, becomes a low-pressure gas refrigerant, and flows into the accumulator 6 via the four-way valve 2. In Akiemureta 6, outdoor heat exchanger 3
The liquid refrigerant and gas refrigerant that were not completely evaporated are separated, while the gas refrigerant and refrigerating machine oil necessary for the compressor 1 are returned.

この様な空気調和機の動作を、第4図により説明する。The operation of such an air conditioner will be explained with reference to FIG.

ステップ19で暖房が開始した後、負荷が増加すると圧
縮機lから吐出される冷媒ガスの圧力が上昇する。特に
暖房時冷媒ガスを凝縮させるための熱交換器、つまり室
内熱交換器5の容量が小さいため、吐出圧力が上昇し易
く、このためステップ21で、圧力センサ8に接続して
いる吐出圧力検知手段13で吐出圧力P、が第1の所定
値20以上と検出したときは、ステップ22で電磁弁制
御手段14により電磁弁9を開路し、バイパス路10の
冷媒の一部を流すことにより、吐出圧力を低下させる。
After heating starts in step 19, when the load increases, the pressure of the refrigerant gas discharged from the compressor 1 increases. In particular, since the capacity of the heat exchanger for condensing the refrigerant gas during heating, that is, the indoor heat exchanger 5, is small, the discharge pressure tends to increase. When the means 13 detects that the discharge pressure P is equal to or higher than the first predetermined value 20, the solenoid valve control means 14 opens the solenoid valve 9 in step 22 to allow a part of the refrigerant in the bypass path 10 to flow. Decrease discharge pressure.

この後ステップ25において吐出圧力検知手段13で吐
出圧力P、が第2の所定値Po(但し、pH<Pa1)
以下か否かを判定し、吐出圧力P4が第2の所定値P。
After that, in step 25, the discharge pressure detection means 13 determines the discharge pressure P to a second predetermined value Po (however, pH<Pa1).
It is determined whether or not the discharge pressure P4 is equal to or less than a second predetermined value P.

以下の時には、ステップ29で電磁弁制御手段14によ
り電磁弁9を閉路し、通常の運転状態に戻る。
In the following cases, the solenoid valve control means 14 closes the solenoid valve 9 in step 29 to return to the normal operating state.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の空気調和機は以上のように構成されているので、
いったん電磁弁9が開路した後は吐出圧力が所定値以下
になるまでは何等の制御を行っていないため、バイパス
路lOを通って流入した吐出ガス冷媒の影響で蒸発圧力
が上昇し、圧縮機1からの冷凍機油の吐出量が増大し、
圧!II!1の暁損を生じる危険性などの課題があった
Conventional air conditioners are configured as described above.
Once the solenoid valve 9 is opened, no control is performed until the discharge pressure falls below a predetermined value, so the evaporation pressure increases due to the influence of the discharge gas refrigerant that has flowed in through the bypass path IO, and the compressor The amount of refrigeration oil discharged from 1 increases,
Pressure! II! There were issues such as the risk of causing a loss of 1.

この発明は上記のような課題を解決するためになされた
もので、吐出圧力が所定値以上となり電動弁が開路した
後、蒸発圧力を適正に維持して圧縮機からの冷凍機油の
吐出を抑制するようにした空気調和機を得る事を目的と
する。
This invention was made to solve the above problems, and after the discharge pressure exceeds a predetermined value and the electric valve opens, the evaporation pressure is maintained appropriately and the discharge of refrigerating machine oil from the compressor is suppressed. The purpose is to obtain an air conditioner that is designed to

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わる空気調和機は、圧縮機と四方弁との接
続配管の途中より電磁弁を介してアキュムレータ流入配
管に接続されたバイパス路、室外熱交換器に風を送るた
めの複数の送風機、送風機の運転容量、を制御する送風
機容量制御手段、電動弁の開閉動作を制御する電動弁制
御手段、電動弁の作動時間を計時する電動弁作動計時手
段、室外熱交換器の液側配管に取り付けられた蒸発圧力
検出手段、圧縮機の吐出配管に取り付けられた吐出圧力
検出手段を備え、吐出圧力検出手段による吐出圧力が第
1の所定値以上の時は、電動弁制御手段により電動弁を
開とすると共に、電動弁作動計時手段による時間が所定
値に達し4た時、蒸発圧力検出手段による蒸発圧力が所
定値以上の時は、送風機容量制御手段により送風機の運
転容量を減少させてゆき、その後吐出圧力検出手段によ
る吐出圧力が第2の所定値以下となった時は、送風機の
運転容量減少のまま電動弁制御手段により電動弁を閉と
するようにしたものである。
The air conditioner according to the present invention includes a bypass path connected to an accumulator inflow pipe via a solenoid valve from the middle of a connecting pipe between a compressor and a four-way valve, a plurality of blowers for sending air to an outdoor heat exchanger, A blower capacity control means for controlling the operating capacity of the blower, an electric valve control means for controlling the opening/closing operation of the electric valve, an electric valve operation timer for measuring the operation time of the electric valve, and installed on the liquid side piping of the outdoor heat exchanger. and a discharge pressure detection means attached to the discharge piping of the compressor, and when the discharge pressure detected by the discharge pressure detection means is equal to or higher than a first predetermined value, the electric valve control means opens the electric valve. At the same time, when the time measured by the electric valve operation timing means reaches a predetermined value, and the evaporation pressure measured by the evaporation pressure detection means is equal to or higher than the predetermined value, the operating capacity of the blower is reduced by the blower capacity control means, Thereafter, when the discharge pressure determined by the discharge pressure detection means becomes equal to or lower than the second predetermined value, the electric valve control means closes the electric valve while the operating capacity of the blower is reduced.

〔作 用〕[For production]

この発明では、吐出圧力が第1の所定値以上の時は、電
動弁制御手段により電動弁を開とすると共に、電動弁作
動計時手段による時間が所定値に達した時、蒸発圧力が
所定値以上の時は、送風機容量制御手段により送風機の
運転容量を減少させてゆくため、蒸発圧力の上昇を抑制
して圧縮機からの冷凍機油の吐出を抑えると共に、吐出
圧力の上昇も抑制できる。また、その後吐出圧力が第2
の所定値以下となった時は、送風機の運転容ffl 減
少のまま電動弁制御手段により電動弁を閉とするように
したため、通常運転に復帰したときも吐出圧力の上昇は
抑制できる。
In this invention, when the discharge pressure is equal to or higher than the first predetermined value, the motorized valve control means opens the motorized valve, and when the time measured by the motorized valve operation timing means reaches a predetermined value, the evaporation pressure is set to the predetermined value. In such a case, since the operating capacity of the blower is reduced by the blower capacity control means, it is possible to suppress the rise in evaporation pressure, suppress the discharge of refrigerating machine oil from the compressor, and also suppress the rise in discharge pressure. Also, after that, the discharge pressure becomes the second level.
When it becomes below a predetermined value, the electric valve control means closes the electric valve while the operating capacity ffl of the blower is decreased, so that an increase in the discharge pressure can be suppressed even when normal operation is resumed.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明するや第1
図はこの発明の一実施例による空気調和機の全体構成図
である。第1図において、1〜6゜6a、7a〜7c 
(−7)、8〜14は第3図に示した空気調和機の同符
号部分と同様のものであり、その説明を省略する。15
は蒸発圧力に応じて3つの室外送風機7a〜7cの運転
容量を制御する送風機容量制御手段、16はt磁弁9と
送風機容量制御手段15に入力側が接続され室外送風m
、7の運転容量が減少された後又は電磁弁9が開路した
後の経過時間を計時する電磁弁作動計時手段である。1
7は室外熱交換器3と減圧装置4との間の蒸発圧力を検
出するために室外熱交換器3の一端口付近の配管に取付
けられた圧力センサ、18は圧力センサI7からの蒸発
圧力検出信号を入力して設定値との大小を比較して蒸発
圧力のレベル判定を行う蒸発圧力検知手段で、吐出圧力
検知手段13と双方向に接続され、また、出力側が送風
機容量制御手段15にも接続されている。また、吐出圧
力検知手段13の入力側は電磁弁作動計時手段16およ
び送風機容量制御手段15にも接続されている。なお、
図中実線矢印は冷房運転時の冷媒流れ方向を示し、破線
矢印は暖房運転時の冷媒流れ方向を示す。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.
The figure is an overall configuration diagram of an air conditioner according to an embodiment of the present invention. In Figure 1, 1~6°6a, 7a~7c
(-7), 8 to 14 are the same as the parts with the same symbols in the air conditioner shown in FIG. 3, and their explanation will be omitted. 15
Reference numeral 16 indicates an outdoor air blower m whose input side is connected to the magnetic valve 9 and the air blower capacity control means 15.
, 7 is reduced or the solenoid valve 9 is opened. 1
7 is a pressure sensor attached to the pipe near one end of the outdoor heat exchanger 3 to detect the evaporation pressure between the outdoor heat exchanger 3 and the pressure reducing device 4; 18 is the evaporation pressure detection from the pressure sensor I7 This is an evaporation pressure detection means that inputs a signal and compares the magnitude with a set value to determine the level of evaporation pressure.It is bidirectionally connected to the discharge pressure detection means 13, and the output side is also connected to the blower capacity control means 15. It is connected. Further, the input side of the discharge pressure detection means 13 is also connected to the electromagnetic valve operation timer means 16 and the blower capacity control means 15. In addition,
In the figure, solid line arrows indicate the direction of refrigerant flow during cooling operation, and broken line arrows indicate the direction of refrigerant flow during heating operation.

第2図は暖房運転中の吐出圧力上昇時の制御フローチセ
ートを示したものである。
FIG. 2 shows the control flow rate when the discharge pressure increases during heating operation.

冷房運転並びに暖房運転時の冷媒の動作については第3
図に示す従来の空気調和機の動作と全く同様なのでその
説明を省略し、負荷が増大し吐出圧力が上昇した場合の
動作について第2図をベースに説明する。
Regarding the operation of refrigerant during cooling and heating operations, see Part 3.
Since the operation is exactly the same as that of the conventional air conditioner shown in the figure, the explanation thereof will be omitted, and the operation when the load increases and the discharge pressure increases will be explained based on FIG. 2.

ステップ19で暖房運転を開始し、通常はステップ20
に示すように室外送風17はファンステップN−3(N
は稼働中の室外送風機数を表わす、)で全送風機が運転
している。ファンステップNと室外送風@1a〜7cの
ON−〇FF関係を下記暖房負荷が増大し吐出圧力が上
昇してステップ21で吐出圧力検出信号工3により吐出
圧力P。
Heating operation starts in step 19, and normally in step 20
As shown in FIG.
represents the number of outdoor fans in operation, and all the fans are in operation. The ON-FF relationship between fan step N and outdoor ventilation @ 1a to 7c is as follows: The heating load increases, the discharge pressure rises, and in step 21, the discharge pressure detection signal 3 determines the discharge pressure P.

が第1の所定値P4を以上になったと判断した場合(但
し、吐出圧力検知手段13が圧力センサ8から入力した
P4相当の吐出圧力検出信号と第1の所定値P41相当
の第1の設定値との大小を比較して判断する。)、ステ
ップ22でこの判定結果を受けた電磁弁制御■手段14
により電磁弁9を開路する。このときステップ23でi
m弁作動計時手段16が電磁弁作動時間を零にリセ・ノ
ドし、を磁なったとき、この経過信号をiim弁作動計
時手段16から受けた吐出圧力検知手段13はステップ
25で吐出圧力P、が第2の所定値P。以下か否か即ち
圧力センサ8からのP4相当の吐出圧力検出信号とP。
has exceeded the first predetermined value P4 (however, the discharge pressure detection means 13 uses the discharge pressure detection signal corresponding to P4 input from the pressure sensor 8 and the first setting corresponding to the first predetermined value P41) ), the solenoid valve control unit 14 receives this determination result in step 22.
This opens the solenoid valve 9. At this time, in step 23, i
When the m-valve operation timer 16 resets the solenoid valve operation time to zero and becomes magnetized, the discharge pressure detection means 13 which receives this elapsed signal from the iim-valve operation timer 16 detects the discharge pressure P in step 25. , is the second predetermined value P. In other words, the discharge pressure detection signal equivalent to P4 from the pressure sensor 8 and P.

相当の第2の設定値との大小を比較して判断する。吐出
圧力P4が第2の所定値P4□以下ならばこの判定結果
を受けた電磁弁制御手段14がステップ29で電磁弁9
を閉路する。
The determination is made by comparing the magnitude with a corresponding second set value. If the discharge pressure P4 is less than or equal to the second predetermined value P4
Close the circuit.

ステップ25において、吐出圧力P、が第2の所定値P
。以下でないと判断すれば、この判定結果を吐出圧力検
知手段13から受けた蒸発圧力検知手段18は圧力セン
サ17からの蒸発圧力P。
In step 25, the discharge pressure P is set to a second predetermined value P.
. If it is determined that the determination result is not below, the evaporation pressure detection means 18 receives this determination result from the discharge pressure detection means 13 and detects the evaporation pressure P from the pressure sensor 17.

相当の蒸発圧力検出信号と所定値Pal相当の蒸発圧力
設定値との大小を比較して蒸発圧力P、が所定値Pa1
以上か否かを判定する。蒸発圧力P、が所定値Pe+以
上であればこの判定結果を受けた送風機容量制御手段1
5がステップ27でファンステップNがlを超えている
か否かを判定し、ファンステップNが1を超えていれば
ステップ28でファンステップNを1段ステップダウン
する。ステップ26で蒸発圧力P、が所定値Pa1以上
でないとの判定結果を蒸発圧力検知手段18から受けた
場合又はステップ27でファンステップNが1を超えて
いないとの判定結果を送風機容量制御■手段15から受
けた場合の吐出圧力検知手段13はステップ25の処理
を行う。また、送風機容量制御1手段15からステップ
28を処理した旨の信号を受けた電磁弁作動計時手段1
6はステップ23の処理に戻って上記動作を繰返す。
By comparing the magnitude of the corresponding evaporation pressure detection signal and the evaporation pressure set value corresponding to the predetermined value Pal, the evaporation pressure P is determined to be the predetermined value Pa1.
Determine whether or not the value is greater than or equal to the value. If the evaporation pressure P is greater than or equal to the predetermined value Pe+, the blower capacity control means 1 receives this determination result.
5, it is determined in step 27 whether the fan step N exceeds 1, and if the fan step N exceeds 1, the fan step N is stepped down by one step in step 28. When the determination result that the evaporation pressure P is not greater than the predetermined value Pa1 is received from the evaporation pressure detection means 18 in step 26, or the determination result that the fan step N does not exceed 1 in step 27, the blower capacity control means 15, the discharge pressure detection means 13 performs the process of step 25. Further, the electromagnetic valve operation timing means 1 receives a signal indicating that step 28 has been processed from the blower capacity control means 15.
Step 6 returns to step 23 and repeats the above operation.

以上のようにして電磁弁9をステップ29で閉路した後
では、吐出圧力検知手段13はステップ21に戻って上
記動作を繰返す。なお、上記動作で、ファンステップN
が1以下になっていれば、それ以上のステップダウンを
行わず、また、吐出圧力P4が第2の所定値以下となっ
て電磁弁9が閉路した場合でも、上記室外送風機7の運
転容量の減少のままで室外送風機7が停止するまでのフ
ァンステップNを維持する。
After the solenoid valve 9 is closed in step 29 as described above, the discharge pressure detection means 13 returns to step 21 and repeats the above operation. In addition, in the above operation, fan step N
If it is less than 1, no further step-down is performed, and even if the discharge pressure P4 becomes less than the second predetermined value and the solenoid valve 9 closes, the operating capacity of the outdoor blower 7 remains unchanged. The fan step N is maintained while decreasing until the outdoor blower 7 stops.

なお、上記実施例において、圧力センサ17の代りに配
管温度を検知して蒸発圧力に換算するセンサ等を用いる
こともできる。
In the above embodiment, a sensor or the like that detects the pipe temperature and converts it into evaporation pressure may be used instead of the pressure sensor 17.

また、圧力センサの代りに圧力スイッチを用いて、圧力
スイッチのON・OFFを検知することにより圧力判定
を行なうこともできる。
Further, pressure can also be determined by using a pressure switch instead of a pressure sensor and detecting whether the pressure switch is turned on or off.

(発明の効果〕 以上のように、この発明によれば吐出圧力が第1の所定
値以上の時にはアキュムレータの流入配管と圧縮機の吐
出配管との間のバイパス路に設けた電動弁を開にすると
共に、その開時から所定時間以上になった時に、蒸発圧
力が所定値以上の時には、送風機の運転容量を減少して
ゆき、その後吐出圧力が第2の所定値以下になると送風
機の運転容量減少のまま電動弁を閉にするように構成し
たので、蒸発圧力の上昇を抑制して圧縮機から冷凍機油
の吐出を抑えると共に、吐出圧力の上昇も抑制できる効
果がある。また、通常運転に復帰したときも吐出圧力の
上昇を抑制でき、圧縮機の信頼性および空気調和機の安
全性を向上させる効果がある。
(Effects of the Invention) As described above, according to the present invention, when the discharge pressure is higher than the first predetermined value, the electric valve provided in the bypass path between the inlet pipe of the accumulator and the discharge pipe of the compressor is opened. At the same time, when a predetermined time has elapsed since the opening, if the evaporation pressure is above a predetermined value, the operating capacity of the blower is reduced, and when the discharge pressure becomes below a second predetermined value, the operating capacity of the blower is reduced. Since the electric valve is configured to close while the evaporation pressure is decreasing, it is possible to suppress the increase in evaporation pressure and discharge of refrigerating machine oil from the compressor, and also to suppress the increase in discharge pressure. Even when the compressor is restored, the increase in discharge pressure can be suppressed, which has the effect of improving the reliability of the compressor and the safety of the air conditioner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による空気調和機の全体構
成図、第2図は暖房運転中の吐出圧力上昇時の制御フロ
ーチャート、第3図は従来の空気調和機の全体構成図、
第4図は従来の暖房運転時の制御フローチャートである
。 図中、1・・・圧縮機、2・・・四方弁、3・・・室外
熱交換器、4・・・減圧装置、5・・・室内熱交換器、
6・・・アキュムレータ、7a、7b、7c・・・室外
送風機、8・・・圧力センサ、9・・・電磁弁、13・
・・吐出圧力検知手段、14・・・電磁弁制御手段、1
5・・・送風機容量制御手段、16・・・電磁弁作動計
時手段、17・・・圧力センサ、18・・・蒸発圧力検
知手段、(8゜13)・・・吐出圧力検出手段、(17
,18)・・・蒸発圧力検出手段。 なお、図中同一符号は同一、又は相当部分を示す。
FIG. 1 is an overall configuration diagram of an air conditioner according to an embodiment of the present invention, FIG. 2 is a control flowchart when the discharge pressure increases during heating operation, and FIG. 3 is an overall configuration diagram of a conventional air conditioner.
FIG. 4 is a control flowchart during conventional heating operation. In the figure, 1... compressor, 2... four-way valve, 3... outdoor heat exchanger, 4... pressure reducing device, 5... indoor heat exchanger,
6... Accumulator, 7a, 7b, 7c... Outdoor blower, 8... Pressure sensor, 9... Solenoid valve, 13...
...Discharge pressure detection means, 14...Solenoid valve control means, 1
5...Blower capacity control means, 16...Solenoid valve operation timing means, 17...Pressure sensor, 18...Evaporation pressure detection means, (8°13)...Discharge pressure detection means, (17
, 18)...Evaporation pressure detection means. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室外熱交換器、減圧装置、室内熱交換
器、アキュムレータを配管接続した冷媒回路、上記圧縮
機と上記四方弁との接続配管の途中より電動弁を介して
上記アキュムレータ流入配管に接続されたバイパス路、
上記室外熱交換器に風を送るための個別運転が可能な複
数の送風機、該送風機の運転容量を制御する送風機容量
制御手段、上記電動弁の開閉動作を制御する電動弁制御
手段、上記電動弁の作動時間を計時する電動弁作動計時
手段、上記室外熱交換器と上記減圧装置の間の圧力を検
出するための蒸発圧力検出手段、上記圧縮機の吐出配管
に取り付けられた吐出圧力検出手段を備え、該吐出圧力
検出手段により吐出圧力が第1の所定値以上と検出され
た場合、上記電動弁制御手段により電動弁を開とすると
共に上記電動弁作動計時手段を作動させ、該電動弁作動
計時手段による時間が所定値以上に達した時に上記蒸発
圧力検出手段により蒸発圧力が所定値以上と検出された
場合、上記送風機容量制御手段により上記送風機の容量
を減少させてゆき、その後上記吐出圧力検出手段により
吐出圧力が第2の所定値以下と検出された場合には、上
記送風機の運転容量減少のまま上記電動弁制御手段によ
り上記電動弁を閉とするようにしたことを特徴とする空
気調和機。
A refrigerant circuit to which a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, and an accumulator are connected via piping, and an inflow piping for the accumulator via an electric valve from the middle of the connecting piping between the compressor and the four-way valve. bypass path connected to
a plurality of blowers that can be operated individually to send air to the outdoor heat exchanger; blower capacity control means for controlling the operating capacity of the blowers; electric valve control means for controlling opening and closing operations of the electric valve; an electric valve operation timer for timing the operating time of the compressor; an evaporation pressure detector for detecting the pressure between the outdoor heat exchanger and the pressure reducing device; and a discharge pressure detector attached to the discharge piping of the compressor. and when the discharge pressure detection means detects that the discharge pressure is equal to or higher than a first predetermined value, the electric valve control means opens the electric valve and operates the electric valve operation timing means, and the electric valve operation timing means opens the electric valve and operates the electric valve operation timing means. If the evaporation pressure is detected by the evaporation pressure detection means to be above a predetermined value when the time measured by the timer reaches a predetermined value or more, the blower capacity control means decreases the capacity of the blower, and then the discharge pressure If the detection means detects that the discharge pressure is equal to or lower than a second predetermined value, the electric valve control means closes the electric valve while the operating capacity of the blower is reduced. harmonizer.
JP1318412A 1989-12-06 1989-12-06 Air conditioner Expired - Fee Related JPH0776644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1318412A JPH0776644B2 (en) 1989-12-06 1989-12-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1318412A JPH0776644B2 (en) 1989-12-06 1989-12-06 Air conditioner

Publications (2)

Publication Number Publication Date
JPH03177753A true JPH03177753A (en) 1991-08-01
JPH0776644B2 JPH0776644B2 (en) 1995-08-16

Family

ID=18098862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1318412A Expired - Fee Related JPH0776644B2 (en) 1989-12-06 1989-12-06 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0776644B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159152A1 (en) * 2015-03-31 2016-10-06 ダイキン工業株式会社 Indoor air conditioning unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159152A1 (en) * 2015-03-31 2016-10-06 ダイキン工業株式会社 Indoor air conditioning unit
JP2016191531A (en) * 2015-03-31 2016-11-10 ダイキン工業株式会社 Indoor unit of air conditioner
US10488066B2 (en) 2015-03-31 2019-11-26 Daikin Industries, Ltd. Air conditioning indoor unit with refrigerant leak detection

Also Published As

Publication number Publication date
JPH0776644B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US4517812A (en) Load control device for a heat-pump type air conditioning apparatus
KR101677031B1 (en) Air conditioner and Control method of the same
JPH03175230A (en) Operation controller of air conditioner
JPH0498040A (en) Operation control device for air conditioner
JP3161389B2 (en) Air conditioner
JPH09170828A (en) Oil recovery controller of multiple type air conditioner
JP3198859B2 (en) Multi-type air conditioner
JPH0727453A (en) Air conditioner
JPH07234044A (en) Controlling device for protecting compressor of air conditioner
JPH09159293A (en) Compressor protection controller for air conditioner
JPH03177753A (en) Air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JP2008202868A (en) Air conditioner
JPH01147265A (en) Air conditioner
JP2002243240A (en) Refrigerating device
JPH03221760A (en) Method and apparatus for controlling refrigerant flow in heat pump air conditioner
JP2839347B2 (en) Air conditioner
JP2015124958A (en) Air conditioner
JPH0213908Y2 (en)
JPH03267657A (en) Multi-room air-conditioner
JPH0828982A (en) Air conditioner
KR100812780B1 (en) Heat-pump having inverter-type compressor for preventing heating overload and control method of the same
JPS62213669A (en) Method of controlling operation of air conditioner
JPH03158664A (en) Air conditioner
JP2882172B2 (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees