JPH03177506A - Production of superhard alloy or cermet alloy - Google Patents

Production of superhard alloy or cermet alloy

Info

Publication number
JPH03177506A
JPH03177506A JP2243010A JP24301090A JPH03177506A JP H03177506 A JPH03177506 A JP H03177506A JP 2243010 A JP2243010 A JP 2243010A JP 24301090 A JP24301090 A JP 24301090A JP H03177506 A JPH03177506 A JP H03177506A
Authority
JP
Japan
Prior art keywords
binder
temperature
cemented carbide
powder
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2243010A
Other languages
Japanese (ja)
Other versions
JP3000641B2 (en
Inventor
Nobuyuki Kitagawa
信行 北川
Toshio Nomura
俊雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPH03177506A publication Critical patent/JPH03177506A/en
Application granted granted Critical
Publication of JP3000641B2 publication Critical patent/JP3000641B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent the deformation of a molded body and the occurrence of defects at the time of removing an org. binder and to improve quality by successively treating the molded body made of a powdery mixture of alloy powder with the binder in an inert gas and in vacuum and then carrying out sintering. CONSTITUTION:Superhard alloy powder or cermet alloy powder is mixed and kneaded with an org. binder. A molded body formed by injection-molding the kneaded material is heated in an inert gaseous atmosphere to remove the org. binder and the residual org. binder is perfectly removed by further heating in vacuum of <=1 Torr pressure. The molded body is then sintered to obtain a dense alloy.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、超硬合金またはサーメット合金の製造方法
に関するものであり、特に、超硬合金粉末またはサーメ
ット合金粉末を射出成形法によって所定の形状に成形し
た後に有機バインダを除去して焼結する超硬合金または
サーメット合金の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a method for manufacturing cemented carbide or cermet alloy, and in particular, it relates to a method for manufacturing cemented carbide or cermet alloy, and in particular, manufacturing cemented carbide powder or cermet alloy powder into a predetermined shape by injection molding. The present invention relates to a method for producing a cemented carbide or a cermet alloy, which is formed by molding, removing an organic binder, and sintering.

[従来の技術] 超硬合金やサーメット合金は高融点材料である。[Conventional technology] Cemented carbide and cermet alloys are high melting point materials.

そのため、超硬合金焼結体やサーメット合金焼結体を得
る場合には、従来から、粉末原料をプレス成形またはC
IP成形した後に焼結するという粉末冶金法が採用され
ている。しかしながら、この方法では、製造可能な形状
に制約が多い。複雑な最終形状を得るためには、焼結後
にダイヤモンド砥石によって焼結体の研削を行なうこと
が必要になり、非常なコスト高を招いていた。
Therefore, when obtaining cemented carbide sintered bodies or cermet alloy sintered bodies, powder raw materials have traditionally been press-formed or C
A powder metallurgy method is used in which sintering is performed after IP molding. However, this method has many restrictions on the shapes that can be manufactured. In order to obtain a complex final shape, it is necessary to grind the sintered body with a diamond grindstone after sintering, resulting in an extremely high cost.

プラスチックを射出成形法によって成形することが広く
知られている。特公昭62−33282号公報には、金
属粉末またはセラミックス粉末を有機バイダと混練し、
これを射出成形によって複雑な形状の物品に成形する方
法が開示されている。
It is widely known that plastics are molded by injection molding. Japanese Patent Publication No. 62-33282 discloses that metal powder or ceramic powder is kneaded with an organic binder,
A method of molding this into a complex-shaped article by injection molding is disclosed.

[発明が解決しようとする課題] しかしながら、超硬合金やサーメット合金に粉末射出成
形技術を適用した場合には、次のような問題が生じる。
[Problems to be Solved by the Invention] However, when powder injection molding technology is applied to cemented carbide or cermet alloy, the following problems occur.

すなわち、超硬合金粉末やサーメット合金粉末は、その
粒径が約工μmと微粉である。さらに、これらの合金は
その比重が大きい。
That is, cemented carbide powder and cermet alloy powder are fine powders with a particle size of about 1 μm. Furthermore, these alloys have a high specific gravity.

さらに、合金中の炭素濃度の許容量が小さい。このよう
な超硬合金やサーメット合金の材質的性質のため、脱バ
インダ処理中に変形や欠陥が生じやすい。しかも、有機
バインダの分解による残留炭素の影響によって、良質な
合金が得られない。このような問題を回避するためには
、非常に長時間の脱バインダ処理を行なうことが必要と
なる。以上のような問題点が存在するため、超硬合金お
よびサーメット合金に対する射出成形技術はいまだほと
んど実用化されていない。
Furthermore, the tolerance for carbon concentration in the alloy is small. Due to the material properties of such cemented carbide and cermet alloy, deformation and defects are likely to occur during the binder removal process. Moreover, a good quality alloy cannot be obtained due to the influence of residual carbon due to decomposition of the organic binder. In order to avoid such problems, it is necessary to perform the binder removal process for a very long time. Due to the above-mentioned problems, injection molding technology for cemented carbide and cermet alloys has hardly been put into practical use yet.

[発明の概要コ この発明の目的は、射出成形法によって効率よく超硬合
金粉末またはサーメット合金粉末を成形し、その後の脱
バインダ処理および焼結処理を経て高品質の超硬合金ま
たはサーメット合金を得ることのできる方法を提供する
ことである。
[Summary of the Invention] The object of the present invention is to efficiently mold cemented carbide powder or cermet alloy powder by injection molding, and then to produce high quality cemented carbide or cermet alloy through a subsequent debinding process and sintering process. The goal is to provide a method that can be used to obtain the desired results.

この発明の他の目的は、脱バインダ処理時に成形体の変
形や欠陥を生じさせない方法を提供することである。
Another object of the present invention is to provide a method that does not cause deformation or defects in the molded body during binder removal treatment.

この発明のさらに他の目的は、脱バインダ処理を短時間
で行なうことのできる方法を提供することである。
Still another object of the present invention is to provide a method that can perform binder removal treatment in a short time.

この発明にとって前提となるべき超硬合金またはサーメ
ット合金の製造方法は、超硬合金粉末またはサーメット
合金粉末を有機バインダと混合・混練する工程と、この
混合粉末を射出成形法によって所定の形状に成形する工
程と、その後この成形体から有機バインダを除去して焼
結する工程とを備えている。このような方法において、
この発明は、有機バインダの除去を、第1除去工程とし
てまず不活性ガス雰囲気中で行ない、引続いて第2除去
工程としてITo r r以下の真空中で行なうことを
特徴とする。
The manufacturing method of cemented carbide or cermet alloy, which is a prerequisite for this invention, includes the steps of mixing and kneading cemented carbide powder or cermet alloy powder with an organic binder, and molding this mixed powder into a predetermined shape by injection molding. and then a step of removing the organic binder from the molded body and sintering it. In such a method,
The present invention is characterized in that the organic binder is first removed in an inert gas atmosphere as a first removal step, and then in a vacuum below ITo r r as a second removal step.

この発明の1つの局面では、有機バインダは、低温で除
去可能なグループと高温で除去されるグループとに区分
される複数種類のバインダを含む。
In one aspect of the invention, the organic binder includes multiple types of binders classified into a group that can be removed at low temperatures and a group that can be removed at high temperatures.

有機バインダ中の各バインダの組成は、有機バインダの
みの不活性ガス大気圧加熱減量テスト(TG)において
−低温除去グループが全体の30%減量したとき、高温
除去グループの減量率が5%以内となる条件を満たすよ
うに選ばれている。好ましくは、低温除去グループに属
するバインダの有機バインダ全体に占める割合は、30
%以上90%以下とされる。
The composition of each binder in the organic binder was determined in an inert gas atmospheric pressure heating weight loss test (TG) of only the organic binder - when the low temperature removal group lost 30% of the total weight loss, the high temperature removal group had a weight loss rate of within 5%. selected to meet the following conditions. Preferably, the proportion of the binder belonging to the low-temperature removal group to the total organic binder is 30
% or more and 90% or less.

この発明の他の局面では、第(除去工程から第2除去工
程へ移行する温度は、次のような条件を満たすように選
ばれている。その条件とは、低温除去グループに属する
バインダの除去された量が、有機バインダ全体に対して
30%以上となり、かつ高温除去グループに属するバイ
ンダの残留割合が、有機バインダ全体に対して5%以上
であるという条件である。低温除去グループの主成分と
なるバインダとしては、親水性の極性基を持つ融点80
’C以下のワックス類が好ましい。
In another aspect of the invention, the temperature at which the transition from the first (removal step) to the second removal step is performed is selected to satisfy the following conditions. The condition is that the amount removed is 30% or more of the total organic binder, and the residual proportion of the binder belonging to the high temperature removal group is 5% or more of the total organic binder.Main component of the low temperature removal group The binder has a hydrophilic polar group with a melting point of 80
'C or lower waxes are preferred.

上述のような方法によって成形体中の有機バインダを除
去した後に、引続いて焼結処理を施すようにしてもよい
。あるいは、有機バインダを除去した後に、−度冷却し
、その後に焼結するようにしてもよい。
After the organic binder in the molded body is removed by the method described above, the molded body may be subsequently subjected to a sintering treatment. Alternatively, after removing the organic binder, the material may be cooled by -0.degree. and then sintered.

射出成形体は、粉末とバインダとで構成されており、空
隙はほとんどない。この状態で成形体を昇温すると、ま
ずバインダの膨張によってバインダが流出し、次に表面
からの蒸発によって脱バインダが進む。このような過程
によって30%の脱バインダが進行すると、成形体の内
部に表面まで連通している細孔が形成される。成形体の
内部に発生したガスは、この細孔を通って除去され、脱
バインダがさらに進行する。しかしながら、脱バインダ
が30%未満の状態で成形体内部にガスが発生するよう
な場合には、成形体に割れや膨れが生じてしまう。この
ような成形体の割れや膨れを生じさせないためには、脱
バインダが30%に到達するまでは、緩やかな昇温速度
で成形体内部でのガスの発生を抑えなければならない。
The injection molded product is composed of powder and a binder, and has almost no voids. When the temperature of the molded body is raised in this state, the binder first flows out due to expansion of the binder, and then the binder is removed by evaporation from the surface. When 30% of the binder is removed through this process, pores are formed inside the molded body that communicate with the surface. Gas generated inside the molded body is removed through the pores, and debinding further progresses. However, if gas is generated inside the molded article with less than 30% binder removed, the molded article will crack or bulge. In order to prevent such cracking and blistering of the molded product, it is necessary to suppress the generation of gas inside the molded product at a slow temperature increase rate until the binder removal reaches 30%.

そのため、脱バインダ処理は長時間を必要とする。バイ
ンダとしては、可塑剤としてのワックス類と結合剤とし
ての高分子樹脂類とが必要となる。ワックス類は、低温
で分解することなく蒸発するので、脱バインダを比較的
容易に行なうことができる。一方、高分子樹脂類は、分
解によって多量のガスを発生するので、脱バインダの初
期において成形体に欠陥を生じさせやすい。
Therefore, the binder removal process requires a long time. As the binder, waxes as a plasticizer and polymer resins as a binder are required. Since waxes evaporate at low temperatures without being decomposed, binder removal can be performed relatively easily. On the other hand, since polymeric resins generate a large amount of gas when decomposed, defects are likely to occur in the molded product at the initial stage of binder removal.

本願発明者は、上述のような点に着目し、本発明を成す
に至ったものである。具体的には、ワックス類が全体の
30%以上除去される温度に到達しても、分解を開始し
ない高分子樹脂を選択し、この高分子樹脂とワックス類
とを混合する。脱バインダ処理の初期状態においては、
ワックス類のみの蒸発によって30%以上の脱バインダ
を進行させ、成形体内部に連続した細孔を形成する。細
孔が形成された後に、高分子樹脂の分解が開始されるよ
うにする。
The inventor of the present application has focused on the above-mentioned points and has accomplished the present invention. Specifically, a polymer resin that does not start decomposing even when a temperature at which 30% or more of the waxes are removed is selected, and the polymer resin and the waxes are mixed. In the initial state of the binder removal process,
By evaporating only the waxes, 30% or more of the binder is removed and continuous pores are formed inside the molded body. After the pores are formed, the decomposition of the polymer resin is started.

低温除去グループの主成分ワックスとして、ヘキストワ
ックス、カルナウバワックス、モンタンワックス、オシ
ケライトワックス、オウリキュリワックス、キャンデリ
ラワックス、ビーワックス、マイクロクリスタリンワッ
クス等が挙げられる。
The main component waxes of the low-temperature removal group include Hoechst wax, carnauba wax, montan wax, osikerite wax, ouricuri wax, candelilla wax, beeswax, microcrystalline wax, and the like.

高温除去グループのバインダとしては、低密度ポリエチ
レン、低分子量ポリエチレン、エチレン酢酸ビニル、ポ
リプロピレン、アクリル樹脂等が挙げられる。
Binders in the high temperature removal group include low density polyethylene, low molecular weight polyethylene, ethylene vinyl acetate, polypropylene, acrylic resin, and the like.

脱バインダ処理の初期状態では、雰囲気圧力を大気圧以
上に保持することによって、成形体に欠陥が生じるのを
防止する。成形体内部に連続的な細孔が形成された後で
は、雰囲気圧力を減圧状態にし、あるいは真空に近い状
態にすることによって、ガスの表面からの蒸発や、成形
体内部に発生したガスの離脱を促進する。
In the initial state of the binder removal process, the atmospheric pressure is maintained above atmospheric pressure to prevent defects from occurring in the molded body. After continuous pores have been formed inside the compact, the atmospheric pressure is reduced to a vacuum state or close to vacuum to allow the gas to evaporate from the surface or to release the gas generated inside the compact. promote.

射出成形体の強度に注目してみる。結合剤である高分子
樹脂が除去されてしまうと、極度に粉末粒子間の結合力
が低下し、比重の大きい超硬合金等は崩壊してしまう。
Let's focus on the strength of injection molded products. If the polymeric resin that is the binder is removed, the bonding force between powder particles will be extremely reduced, and cemented carbide, etc. with a high specific gravity will collapse.

これを防ぐためには、合金を形成する粉末同士を結合さ
せて強度を得ることが必要である。しかしながら、合金
粉末の表面は薄い酸化膜で覆われているので、拡散によ
る結合が生じにくい。本願発明者は、結合剤の除去を真
空状態で実施すれば、合金粉末の表面が周囲の炭素によ
って還元され、その結果粉末間の結合力が生じることを
見出した。こうして、本願発明では、真空状態での脱バ
インダを促進することによって、粉末粒子同士を結合さ
せる。粉末粒子同士が結合していれば、脱バインダが終
了するまで成形体は崩壊することがない。本願発明の好
ましい実施例では、脱バインダ処理を第1除去工程およ
び第2除去工程の2段階で行なっている。第1除去工程
は大気圧雰囲気下で行なわれ、第2除去工程は真空雰囲
気下で行なわれる。第1除去工程から第2除去工程へ移
行する際には、結合剤が少なくとも5%は残留している
必要がある。もしも結合剤の残留量が5%以下であれば
、粉末粒子同士の結合力が生じる前に成形体は崩壊して
しまう。
In order to prevent this, it is necessary to bond the powders forming the alloy to obtain strength. However, since the surface of the alloy powder is covered with a thin oxide film, bonding by diffusion is difficult to occur. The inventors of the present invention have discovered that if the binder is removed in a vacuum, the surface of the alloy powder is reduced by the surrounding carbon, resulting in a bonding force between the powders. Thus, in the present invention, powder particles are bonded together by promoting binder removal in a vacuum state. If the powder particles are bonded together, the molded body will not collapse until the binder removal is completed. In a preferred embodiment of the present invention, the binder removal process is performed in two stages: a first removal process and a second removal process. The first removal step is performed under an atmospheric pressure atmosphere, and the second removal step is performed under a vacuum atmosphere. At least 5% of the binder must remain when moving from the first removal step to the second removal step. If the residual amount of binder is less than 5%, the compact will collapse before the bonding force between the powder particles is generated.

次に、脱バインダ処理の雰囲気について述べる。Next, the atmosphere of the binder removal process will be described.

第1除去工程は、N2やArのような不活性ガス雰囲気
中で行なうのが望ましい。脱バインダ処理を空気等の酸
化雰囲気中で行なうと、脱バインダの進行途中でCo、
Ni等の表面酸化が進行してしまう。このような表面酸
化層が存在していると、第2除去工程において還元によ
る結合力が低下してしまう。また、脱バインダが進行し
て周囲雰囲気に露出している部分のみの酸化が進行する
ため、合金内の炭素濃度が不均一となり、焼結時の液相
出現温度が不均一となり、寸法精度を大きく低下させて
しまう。第2除去工程を真空中ではな(H2雰囲気中で
行なうことによって合金粉末表面の酸化膜の還元を図る
ことが考えられる。しかし、H2雰囲気中で脱バインダ
処理を行なえば、超硬合金またはサーメット合金の硬質
相形成成分である炭化物のCと水素とが反応し、CH4
を生成させる反応も同時に生じる。そのため、合金の炭
素量を低下させてしまうことになる。
The first removal step is preferably performed in an inert gas atmosphere such as N2 or Ar. When debinding is performed in an oxidizing atmosphere such as air, Co,
Surface oxidation of Ni, etc. progresses. If such a surface oxidation layer exists, the bonding strength due to reduction will decrease in the second removal step. In addition, as binder removal progresses, oxidation progresses only in the parts exposed to the surrounding atmosphere, resulting in uneven carbon concentration within the alloy, resulting in uneven liquid phase appearance temperature during sintering, which reduces dimensional accuracy. It will decrease significantly. It is possible to reduce the oxide film on the surface of the alloy powder by performing the second removal process not in a vacuum (in an H2 atmosphere). However, if the binder removal process is performed in an H2 atmosphere, Carbide C, which is a hard phase forming component of the alloy, reacts with hydrogen to form CH4
At the same time, the reaction that produces . Therefore, the carbon content of the alloy will be reduced.

次にワックスの種類について述べる。超硬合金粉末やサ
ーメット合金粉末の表面は親水性である。
Next, we will discuss the types of wax. The surfaces of cemented carbide powder and cermet alloy powder are hydrophilic.

一方、n−パラフィン等のワックスは疎水性である。そ
のため、n−パラフィン等のワックスと超硬合金粉末ま
たはサーメット合金粉末との濡れ性は悪い。そのため、
射出成形に必要な粘度を得るためには、より多くのワッ
クスを用いることが必要になってくる。本願発明者は、
種々のワックスを検討した結果、親水性の極性基を持つ
ある種の天然ワックスを使えば、バインダの量を低減で
きることを見出した。また、射出成形時に金型から成形
体を取出す際、ワックスは脆いので成形体が壊れ易い。
On the other hand, waxes such as n-paraffin are hydrophobic. Therefore, the wettability between wax such as n-paraffin and cemented carbide powder or cermet alloy powder is poor. Therefore,
In order to obtain the viscosity required for injection molding, it becomes necessary to use more wax. The inventor of this application is
After investigating various waxes, we found that the amount of binder can be reduced by using a certain type of natural wax that has hydrophilic polar groups. Further, when the molded product is removed from the mold during injection molding, the molded product is easily broken because the wax is brittle.

このような破壊を防止するためには、少なくとも融点が
80℃以下のワックスを使用することが望ましい。親水
性の極性基を持つ融点80℃以下のワックスであれば、
合成のものであっても天然のものであってもその効果に
変わりはない。なお、滑剤としてステアリン酸等を用い
る場合があるが、そのような微量添加剤を使用しても本
発明の効果に変わりはない。
In order to prevent such destruction, it is desirable to use a wax with a melting point of at least 80° C. or lower. If it is a wax with a hydrophilic polar group and a melting point of 80°C or less,
Whether it is synthetic or natural, its effectiveness remains the same. Incidentally, stearic acid or the like may be used as a lubricant, but even if such a small amount of additive is used, the effects of the present invention will not change.

[実施例] 実施例1 粒径2〜4μmのWC粉末80%、粒径1〜2μmのT
ic粉末10%、粒径2〜4μmのC。
[Example] Example 1 80% WC powder with a particle size of 2 to 4 μm, T with a particle size of 1 to 2 μm
IC powder 10%, C with particle size 2-4 μm.

粉末10%を湿式ボールミルにて3時間混合し、乾燥し
た。この混合粉末100%に対してビーワックス6.0
%、低分子量ポリエチレン1.0%を添加し、120℃
でそれらを30分間混練した。
10% of the powder was mixed in a wet ball mill for 3 hours and dried. Beeswax 6.0% for this mixed powder 100%
%, low molecular weight polyethylene added 1.0%, 120℃
They were kneaded for 30 minutes.

次に、この原料混合体を冷却固化した後に粉砕し、粒径
0. 5〜2.0mmの原料粒を作製した。次に、スロ
ーアウェイチップの形状をした金型(20X20X6m
m)にて射出成形を行なって成形体を作製した。成形体
を炉内に配置し、炉内をAr雰囲気で1気圧に保った。
Next, this raw material mixture is cooled and solidified, and then pulverized to have a particle size of 0. Raw material grains of 5 to 2.0 mm were produced. Next, a mold in the shape of an indexable chip (20x20x6m
A molded article was produced by injection molding in step m). The molded body was placed in a furnace, and the inside of the furnace was maintained at 1 atmosphere with an Ar atmosphere.

Arの流量を3t/分の条件で425℃まで8℃/時間
の昇温速度で炉内を昇温し、脱バインダ処理を行なった
。次に、真空ポンプで炉内を0.5Torr以下に保っ
た状態で昇温速度50℃/時間で700℃まで炉内を昇
温し、1時間その温度に保持した後に冷却した。こうし
て、脱バインダ処理を終了した。次に、炉内を0.05
Torrの真空にして1400℃まで200℃/時間で
昇温し、その温度で1時間保持した後に冷却した。こう
して得られた焼結体には、何の欠陥もなく合金の特性と
しても良好であった。なおこの実施例で用いたバインダ
の加熱減量テストを実施したところ、N2の1気圧の条
件下にて425℃までにビーワックスは95%減量した
。また、425℃で低分子量ポリエチレンの減量は13
%であった。
The temperature inside the furnace was raised to 425° C. at a temperature increase rate of 8° C./hour under the condition that the flow rate of Ar was 3 t/min, and the binder removal process was performed. Next, the temperature inside the furnace was raised to 700° C. at a temperature increase rate of 50° C./hour while keeping the inside of the furnace at 0.5 Torr or less using a vacuum pump, and the temperature was maintained at that temperature for 1 hour and then cooled. In this way, the binder removal process was completed. Next, the inside of the furnace is 0.05
A vacuum of Torr was applied, the temperature was raised to 1400° C. at a rate of 200° C./hour, and the temperature was maintained at that temperature for 1 hour, followed by cooling. The sintered body thus obtained had no defects and had good alloy properties. When the binder used in this example was subjected to a heating weight loss test, the beeswax lost weight by 95% by 425° C. under the condition of 1 atm of N2. Furthermore, the weight loss of low molecular weight polyethylene at 425°C is 13
%Met.

実施例2 粒径0.5〜2pmのWC粉末90%、粒径2〜4μm
のCo粉末10%を湿式ボールミルにて20時間混合し
、乾燥した。この混合粉末100%に対しカルナウバワ
ックス5.5%、低分子量ポリプロピレン↓、0%を添
加し、■40℃で30分間混練した。次に、この原料混
合体を冷却固化した後に粉砕し、粒径約0.5〜2.0
mmの原料粒を作製した。次に、スローアウェイチップ
の形状をした金型(20X20x6mm)にて射出成形
を行なった。この成形体を炉内に配置した。
Example 2 90% WC powder with particle size 0.5-2 pm, particle size 2-4 μm
10% of Co powder was mixed in a wet ball mill for 20 hours and dried. 5.5% carnauba wax and 0% low molecular weight polypropylene were added to 100% of this mixed powder, and kneaded at 40° C. for 30 minutes. Next, this raw material mixture is cooled and solidified, then pulverized, and the particle size is approximately 0.5 to 2.0.
Raw material grains of mm size were produced. Next, injection molding was performed using a mold (20 x 20 x 6 mm) in the shape of an indexable tip. This molded body was placed in a furnace.

炉内は、Ar雰囲気下で工気圧であり、流量3L/分の
条件下で430’Cまで10℃/時間の昇温速度で昇温
しで初期の脱バインダ処理を行なった。
The interior of the furnace was at industrial pressure in an Ar atmosphere, and the temperature was raised to 430'C at a rate of 10°C/hour under conditions of a flow rate of 3L/min to perform an initial binder removal process.

次に、真空ポンプで炉内を0..2Torr以下に保っ
た状態で昇温速度50℃/時間で700℃まで昇温し、
その温度で↓時間保持した。こうして、脱バインダ処理
を終了した。その後、炉内を0゜05Torrの真空に
て1350℃まで200℃/時間で昇温し、その温度で
1時間保持した後に冷却した。こうして得られた焼結体
には何の欠陥もなく、合金の特性としても良好であった
。なお、この実施例で用いたバインダに対して加熱減量
テストを実施したところ、N2、を気圧の条件にて43
0℃までにカルナウバワックスは92%減量した。また
、430℃で低分子量ポリプロピレンの減量は8%であ
った。
Next, use a vacuum pump to pump the inside of the furnace to zero. .. Raise the temperature to 700°C at a heating rate of 50°C/hour while maintaining the temperature below 2 Torr,
It was held at that temperature for ↓ hours. In this way, the binder removal process was completed. Thereafter, the temperature inside the furnace was raised to 1350° C. at a rate of 200° C./hour under a vacuum of 0°05 Torr, and after being maintained at that temperature for 1 hour, it was cooled. The sintered body thus obtained had no defects and had good alloy properties. In addition, when a heating loss test was conducted on the binder used in this example, it was found that N2 was heated to 43% at atmospheric pressure.
By 0°C, the carnauba wax had lost 92% weight. Further, the weight loss of the low molecular weight polypropylene at 430°C was 8%.

実施例3 粒径0.1%上μmのWC粉末88%、粒径2〜4μm
のCO粉末6%、粒径2〜4μmのNi粉末6%を湿式
ボールミルにて25時時間音し1、乾燥した。この混合
粉末100%に対しビーワックス0. 5%、n−パラ
フィン4.5%、ステアリン酸0. 2%、エチレン酢
酸ビニル0. 5%、低分子量ポリエチレン1. 0%
を添加し、工20℃で30分間混練した。次に、この原
料混合体を冷却固化した後に粉砕し、粒径約0. 5〜
2. 0mmの原料粒を作製した。次に、スローアウェ
イチップの形状をした金型(20X20x6mm)にて
射出成形を行なった。この成形体を炉内に配置した。炉
内をN2雰囲気でL気圧にし、流量2L/分の条件下で
380’Cまで13℃/時間の昇温速度で昇温し、初期
の脱バインダ処理を行なった。次に、真空ポンプで炉内
を0.5Torr以下に保った状態で昇温速度50℃/
時間で70000まで昇温し、その温度で1時間保持し
た後に冷却した。こうして、脱バインダ処理を終了した
Example 3 88% WC powder with a particle size of 0.1% or more μm, a particle size of 2 to 4 μm
6% CO powder and 6% Ni powder having a particle size of 2 to 4 μm were heated in a wet ball mill for 25 hours and then dried. 0.0% beeswax for 100% of this mixed powder. 5%, n-paraffin 4.5%, stearic acid 0. 2%, ethylene vinyl acetate 0. 5%, low molecular weight polyethylene 1. 0%
was added and kneaded for 30 minutes at 20°C. Next, this raw material mixture is cooled and solidified, then pulverized, and the particle size is about 0. 5~
2. Raw material grains with a diameter of 0 mm were produced. Next, injection molding was performed using a mold (20 x 20 x 6 mm) in the shape of an indexable tip. This molded body was placed in a furnace. The inside of the furnace was set to L atmospheric pressure in a N2 atmosphere, and the temperature was raised to 380'C at a temperature increase rate of 13°C/hour under conditions of a flow rate of 2L/min, and an initial binder removal process was performed. Next, while keeping the inside of the furnace at 0.5 Torr or less using a vacuum pump, the temperature was increased at a rate of 50°C/
The temperature was raised to 70,000 in hours, maintained at that temperature for 1 hour, and then cooled. In this way, the binder removal process was completed.

次に、炉内を0.05Torrの真空にして1350℃
まで200℃/時間で昇温し、その温度で1時間保持し
た後に冷却した。こうして得られた焼結体には、何の欠
陥もなく、合金の特性としても良好であった。なお、こ
の実施例で用いたバインダに対して加熱減量テストを実
施したところ、N2.1気圧の条件にて380℃までに
ビーワックスは60%、n−パラフィンは100%減量
した。また、380℃で低分子量ポリエチレンの減量は
7.0%、エチレン酢酸ビニルの減量は10%であった
Next, the inside of the furnace was vacuumed to 0.05 Torr and heated to 1350°C.
The temperature was raised at a rate of 200° C./hour to 200° C., maintained at that temperature for 1 hour, and then cooled. The sintered body thus obtained had no defects and had good alloy properties. When the binder used in this example was subjected to a heat loss test, the weight loss of beeswax was 60% and the weight loss of n-paraffin was 100% by 380° C. under the condition of N2.1 atm. Further, at 380°C, the weight loss of low molecular weight polyethylene was 7.0%, and the weight loss of ethylene vinyl acetate was 10%.

実施例4 粒径1〜2μmのWC粉末88%、Co粉末12%を湿
式ボールミルにて工5時間混合し、乾燥した。この混合
粉末100%に対しモンタンワックス5.5%、低密度
ポリエチレン0. 8%を添加し、120℃で3時間混
練した。次に、この原料混合体を冷却固化した後に粉砕
して粒径約0゜5〜2.0mmの原料粒を作製した。次
にスローアウェイチップの形状をした金型(20X20
X6mm)にて射出成形を行なった。この成形体を、炉
内に配置した。炉内はAr雰囲気で1気圧にし、流ff
13 L/分の条件で350℃まで10℃/時間の昇温
速度で昇温し、初期の脱バインダ処理を行なった。次に
、真空ポンプで炉内をQ、5Torr以下に保った状態
で昇温速度50’C/時間で650℃まで昇温しその温
度で工時間保持した後に冷却し脱バインダ処理を終了し
た。次に、炉内を0.05Torrの真空にして140
0℃まで200℃/時間で昇温し1時間保持した後に冷
却した。こうして得られた焼結体には、何の欠陥もなく
合金の特性としても良好であった。この実施例で用いた
バインダに対して加熱減量テストを実施したところ、N
2.1気圧の条件にて350℃までにモンタンワックス
の減量は93%、350℃で低密度ポリエチレンの減量
は測定上O%であった。
Example 4 88% of WC powder and 12% of Co powder with a particle size of 1 to 2 μm were mixed in a wet ball mill for 5 hours and dried. Based on 100% of this mixed powder, 5.5% of montan wax and 0.0% of low density polyethylene. 8% was added and kneaded at 120°C for 3 hours. Next, this raw material mixture was cooled and solidified, and then pulverized to produce raw material particles having a particle size of about 0.5 to 2.0 mm. Next, a mold in the shape of an indexable tip (20x20
Injection molding was performed at This molded body was placed in a furnace. The inside of the furnace is set to 1 atmosphere with Ar atmosphere, and the flow is ff.
The temperature was raised to 350° C. at a rate of 10° C./hour under the conditions of 13 L/min, and an initial binder removal process was performed. Next, while keeping the inside of the furnace at Q, 5 Torr or less using a vacuum pump, the temperature was raised to 650° C. at a heating rate of 50'C/hour, and after being maintained at that temperature for a working time, the binder removal process was completed by cooling. Next, the inside of the furnace was vacuumed to 0.05 Torr and 140
The temperature was raised to 0°C at a rate of 200°C/hour, maintained for 1 hour, and then cooled. The sintered body thus obtained had no defects and had good alloy properties. When the binder used in this example was subjected to a heating loss test, it was found that N
Under the condition of 2.1 atm, the weight loss of montan wax was 93% by 350°C, and the measured weight loss of low density polyethylene was 0% at 350°C.

た。Ta.

実施例5 粒径0.5〜1μmのサーメット粉末(TaC10%、
TaC10%、Mo2C12%、WCl5%、Ni5%
、C010%)を湿式ボールミルにて10時間混合し、
乾燥した。この混合粉末100%に対しモンタンワック
ス7.8%、n−パラフィン2.7%、低密度ポリエチ
レン2.7%、ステアリン酸0.3%を添加し、120
℃で3時間混練した。次に、この原料混合体を冷却固化
した後に粉砕し、粒径約0. 5〜2.0mmの原料粒
を作製した。次に、直径IQmmのボールエンドミル形
状の金型へ射出成形を行ない、成形体を得た。この成形
体を炉内に配置した。炉内はAr雰囲気でt気圧とし、
流量3え7分の条件下で350℃まで10’C/時間の
昇温速度で昇温し、初期の脱バインダ処理を行なった。
Example 5 Cermet powder (TaC 10%,
TaC10%, Mo2C12%, WCl5%, Ni5%
, C010%) for 10 hours in a wet ball mill,
Dry. To 100% of this mixed powder, 7.8% of montan wax, 2.7% of n-paraffin, 2.7% of low density polyethylene, and 0.3% of stearic acid were added.
The mixture was kneaded at ℃ for 3 hours. Next, this raw material mixture is cooled and solidified, then pulverized, and the particle size is about 0. Raw material grains of 5 to 2.0 mm were produced. Next, injection molding was performed into a ball end mill-shaped mold having a diameter of IQ mm to obtain a molded product. This molded body was placed in a furnace. The inside of the furnace is set to t atmosphere in Ar atmosphere,
The temperature was raised to 350° C. at a rate of 10° C./hour under conditions of a flow rate of 3 and 7 minutes to perform an initial binder removal treatment.

次に、真空ポンプで炉内を0.5Torr以下に保った
状態で昇温速度50℃/時間で650℃まで昇温し、そ
の温度で1時間保持した後に冷却して脱バインダ処理を
終了した。次に、炉内を0.05Torrの真空にして
1400℃まで200℃/時間で昇温し1時間保持した
後に冷却し、その後1350℃でHIP処理を行なった
。こうして得られた焼結体には、何の欠陥もなく、合金
の特性としても良好であった。この実施例で用いたバイ
ンダに対して加熱減量テストを実施したところ、N2.
1気圧の条件にて350℃までにモンタンワックスの減
量は93%であり、n−パラフィンの減量は100%、
また、350℃で低密度ポリプロピレンの減量は測定上
0%であった。
Next, while keeping the inside of the furnace at 0.5 Torr or less using a vacuum pump, the temperature was raised to 650 °C at a temperature increase rate of 50 °C/hour, and after being held at that temperature for 1 hour, it was cooled to complete the binder removal process. . Next, the inside of the furnace was evacuated to 0.05 Torr, and the temperature was raised to 1400°C at a rate of 200°C/hour, held for 1 hour, and then cooled, and then HIP treatment was performed at 1350°C. The sintered body thus obtained had no defects and had good alloy properties. When a heat loss test was conducted on the binder used in this example, N2.
Under the condition of 1 atm, the weight loss of montan wax is 93%, and the weight loss of n-paraffin is 100% by 350°C.
Furthermore, the weight loss of the low density polypropylene at 350°C was measured to be 0%.

実施例6 実施例1と同じ条件で複数個の原料粒成形体を作製した
。これらの成形体に対し、脱バインダ処理の第1除去工
程における昇温速度および第2除去工程への移行温度を
変化させて、脱バインダ後の状態を調べた。その結果を
、第2表に示す。また、ビーワックスおよび低分子量ポ
リエチレン(P E)の加熱減量テストの結果を第1表
に示す。
Example 6 A plurality of molded raw material particles were produced under the same conditions as in Example 1. The state of these compacts after binder removal was examined by varying the temperature increase rate in the first removal step of the binder removal treatment and the transition temperature to the second removal step. The results are shown in Table 2. Table 1 also shows the results of heat loss tests for beeswax and low molecular weight polyethylene (PE).

第を表および第2表の結果から明らかなように、本発明
方法によれば、脱バインダ後の状態が良好であり、脱バ
インダ時間の短縮化が図れる。
As is clear from the results in Tables 1 and 2, according to the method of the present invention, the condition after binder removal is good and the binder removal time can be shortened.

(以下余白) 第■表 加熱減量率 (N21ata 10℃/分!温) 第2表 第2除去工程への移行温度テスト結果 ○印 本発明方法 6 4 実施例7 実施例1と同様の合金粉末を用い、バインダ組成として
ビーワックスと低分子量ポリエチレン(P E)との割
合を変化させたサンプル8種類を作製しくテストNo、
10〜17)、脱バインダテストを実施した。その結果
を、第3表に示す。
(Leaving space below) Table Ⅰ Heating loss rate (N21ata 10℃/min! Temperature) Table 2 Temperature test results for transition to the second removal step ○ mark Method of the present invention 6 4 Example 7 The same alloy powder as in Example 1 was used. Test No.
10 to 17), a binder removal test was conducted. The results are shown in Table 3.

第1除去工程から第2除去工程への移行温度は、450
℃とした。第3表の結果から明らかなように、本発明の
組成が良好であることが認められる。
The transition temperature from the first removal step to the second removal step is 450
℃. As is clear from the results in Table 3, it is recognized that the composition of the present invention is good.

(以下余白) 第3表 (注) ○印 本発明方法 バインダ組成は合金粉末100%に対する割合実施例8 実施例3と同様の合金粉末を用い、バインダの種類と組
成とを変化させて脱バインダテストを実施した。その結
果を第4表に示す。なお、脱バインダ条件は実施例3と
同じであった。テストNQ。
(Margins below) Table 3 (Note) ○ Marked method of the present invention The binder composition is the ratio to 100% of the alloy powder Example 8 Binder removal test using the same alloy powder as in Example 3 and changing the binder type and composition was carried out. The results are shown in Table 4. Note that the binder removal conditions were the same as in Example 3. Test NQ.

上8〜20は、良好な射出と脱バインダとが可能であっ
た。しかし、n−パラフィンを用いたテストN0921
は、n−パラフィンの量を増加しなければ良好な射出が
できなかった。また、テストNo、22は、脱バインダ
処理において変形を生じた。ビーワックスとn−パラフ
ィンとを1/1で混合したテストNo、23は、若干の
バインダ量の追加を要したが、脱バインダ時の変形は見
られなかった。
For samples No. 8 to No. 20, good injection and binder removal were possible. However, test N0921 with n-paraffin
could not achieve good injection without increasing the amount of n-paraffin. Further, in test No. 22, deformation occurred during the binder removal process. Test No. 23, in which beeswax and n-paraffin were mixed at a ratio of 1:1, required addition of a small amount of binder, but no deformation was observed during binder removal.

(以下余白) 第4表 ワックスの種類と結果 (注) O印 本発明方性 バインダ組成は合金粉末100%に対する割合実施例9 第2表のテストNo、5と同様の製造方法において、第
1除去工程および第2除去工程の雰囲気を、第5表のテ
ストNo、24〜30に示すごとく変化させた。第5表
の結果から明らかなように、本発明の雰囲気が有効であ
ることが認められる。
(Leaving space below) Table 4 Wax types and results (Note) O mark The composition of the isotropic binder of the present invention is the ratio to 100% of the alloy powder Example 9 In the same manufacturing method as Test No. 5 in Table 2, the first removal The atmosphere of the process and the second removal process was changed as shown in Test Nos. 24 to 30 in Table 5. As is clear from the results in Table 5, it is recognized that the atmosphere of the present invention is effective.

テストNo、26および29の試料は、脱バインダ時に
崩壊したので、焼結工程までは進めなかった。その他の
試料は焼結工程まで進むことができた。
Samples of test Nos. 26 and 29 collapsed during binder removal, so they could not proceed to the sintering step. Other samples were able to proceed to the sintering process.

(以下余白) O印:本発明方法(Margin below) O mark: method of the present invention

Claims (5)

【特許請求の範囲】[Claims] (1)超硬合金粉末またはサーメット合金粉末を有機バ
インダと混合・混練し、この混合粉末を射出成形法によ
って所定の形状に成形し、その後この成形体から有機バ
インダを除去して焼結することによって緻密な合金を得
る、超硬合金またはサーメット合金の製造方法において
、 前記有機バインダの除去を、第1除去工程としてまず不
活性ガス雰囲気中で行ない、引続いて第2除去工程とし
て1Torr以下の真空中で行なうことを特徴とする、
超硬合金またはサーメット合金の製造方法。
(1) Mixing and kneading cemented carbide powder or cermet alloy powder with an organic binder, molding this mixed powder into a predetermined shape by injection molding, and then removing the organic binder from this molded body and sintering it. In a method for manufacturing a cemented carbide or cermet alloy, in which a dense alloy is obtained by Characterized by being carried out in a vacuum,
Method of manufacturing cemented carbide or cermet alloy.
(2)前記有機バインダは、低温で除去可能なグループ
と高温で除去されるグループとに区分される複数種類の
バインダを含み、 i種類のバインダを含む低温除去グループの各バインダ
の有機バインダ全体に占める割合をa_1、a_2、…
、a_iとし、j種類のバインダを含む高温除去グルー
プの各バインダの有機バインダ全体に占める割合をb_
1、b_2、…、b_jとし(Σa_i+Σb_j=1
)、低温除去グループに属する各バインダ単体の不活性
ガス大気圧加熱減量テスト(TG)においてある温度T
における減量率をxT_1、xT_2、…、xT_iと
し、高温除去グループに属する各バインダ単体の不活性
ガス大気圧加熱減量テストにおいてある温度Tにおける
減量率をyT_1、yT_2、…、yT_jとするとき
、前記有機バインダ中の各バインダの組成は、 Σ(a_i×xT_i)=0.3となる温度Tにおいて Σ(b_j×yT_j)≦0.05 Σb_j≧0.1 という条件を満たすように選ばれている、請求項1に記
載の超硬合金またはサーメット合金の製造方法。
(2) The organic binder includes multiple types of binders classified into a group that can be removed at low temperature and a group that can be removed at high temperature, and the organic binder of each binder in the low temperature removal group including the i type of binder is The proportion a_1, a_2,...
, a_i, and the proportion of each binder in the high-temperature removal group containing j types of binders to the total organic binder is b_
1, b_2, ..., b_j (Σa_i+Σb_j=1
), a certain temperature T in the inert gas atmospheric pressure heating weight loss test (TG) of each binder belonging to the low temperature removal group.
Let xT_1, xT_2, ..., xT_i be the weight loss rate at a certain temperature T in the inert gas atmospheric pressure heating weight loss test of each binder belonging to the high temperature removal group, then let yT_1, yT_2, ..., yT_j be the weight loss rate at The composition of each binder in the organic binder is selected to satisfy the following conditions: Σ(b_j×yT_j)≦0.05 Σb_j≧0.1 at a temperature T such that Σ(a_i×xT_i)=0.3 A method for producing a cemented carbide or a cermet alloy according to claim 1.
(3)前記第1除去工程から前記第2除去工程へ移行す
る温度Tは、 Σa_i×xT_i>0.3 Σb_j×(1−yT_j)>0.05 という条件を満たすように選ばれている、請求項2に記
載の超硬合金またはサーメット合金の製造方法。
(3) The temperature T at which the first removal step shifts to the second removal step is selected to satisfy the following conditions: Σa_i×xT_i>0.3 Σb_j×(1−yT_j)>0.05; A method for producing a cemented carbide or cermet alloy according to claim 2.
(4)前記低温除去グループは、親水性の極性基を持つ
融点80℃以下のワックス類を含む、請求項2に記載の
超硬合金またはサーメット合金の製造方法。
(4) The method for producing a cemented carbide or cermet alloy according to claim 2, wherein the low-temperature removal group includes waxes having a hydrophilic polar group and a melting point of 80° C. or lower.
(5)前記低温除去グループは、親水性の極性基をもつ
融点80℃以下のワックス類を含む、請求項3に記載の
超硬合金またはサーメット合金の製造方法。
(5) The method for producing a cemented carbide or cermet alloy according to claim 3, wherein the low-temperature removal group includes a wax having a hydrophilic polar group and a melting point of 80° C. or lower.
JP2-243010A 1989-09-14 1990-09-12 Manufacturing method of cemented carbide or cermet alloy Expired - Lifetime JP3000641B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-238849 1989-09-14
JP23884989 1989-09-14

Publications (2)

Publication Number Publication Date
JPH03177506A true JPH03177506A (en) 1991-08-01
JP3000641B2 JP3000641B2 (en) 2000-01-17

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314870A (en) * 2006-04-28 2007-12-06 Toyo Kohan Co Ltd Method for producing hard alloy sintered compact, and hard alloy sintered compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314870A (en) * 2006-04-28 2007-12-06 Toyo Kohan Co Ltd Method for producing hard alloy sintered compact, and hard alloy sintered compact

Also Published As

Publication number Publication date
KR920700819A (en) 1992-08-10
KR940009337B1 (en) 1994-10-07
EP0443048B1 (en) 1994-12-14
CA2041668A1 (en) 1991-03-15
DE69015150D1 (en) 1995-01-26
TW225493B (en) 1994-06-21
EP0443048A1 (en) 1991-08-28
WO1991004119A1 (en) 1991-04-04
DE69015150T2 (en) 1995-05-04
EP0443048A4 (en) 1991-10-30
CA2041668C (en) 1999-08-03

Similar Documents

Publication Publication Date Title
EP0311407B1 (en) Process for fabricating parts for particulate material
US4144207A (en) Composition and process for injection molding ceramic materials
JP3142828B2 (en) Binder system for powder injection molding
US4233256A (en) Process for injection molding sinterable carbide ceramic materials
KR930002522B1 (en) Process for removal of oil of injection molding
Basir et al. Process parameters used in macro/micro powder injection molding: an overview
US5689796A (en) Method of manufacturing molded copper-chromium family metal alloy article
KR940009337B1 (en) Method of manufacturing super alloy &amp; cermet alloy
JPH0254733A (en) Manufacture of ti sintered material
US5603071A (en) Method of preparing cemented carbide or cermet alloy
CN110560692A (en) Porous Ti-Al-based alloy material, preparation method and application thereof
JPH04285102A (en) Production of sintered body
KR20210049700A (en) Binder composition for manufacturing sintered body and debinding method for the same
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
JP3000641B2 (en) Manufacturing method of cemented carbide or cermet alloy
JP2995661B2 (en) Manufacturing method of porous cemented carbide
CN114086015B (en) Copper-tungsten alloy part and manufacturing method thereof
JPH07233404A (en) Production of heat sink material
JP2000063903A (en) Manufacture of power injection-molded parts
JPH0987775A (en) Production of molded article made of copper-chromium family metal alloy
JPH02194104A (en) Binder for forming and sintering metal powder and manufacture of sintered body using this binder
JP2949130B2 (en) Method for producing porous metal filter
JPH03257101A (en) Method for degreasing powder green compact
JPS6121960A (en) Ceramic injection moldings
JPH0734154A (en) Manufacure of sintered hard alloy by injection molding

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

EXPY Cancellation because of completion of term