JPH03176669A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH03176669A
JPH03176669A JP31679589A JP31679589A JPH03176669A JP H03176669 A JPH03176669 A JP H03176669A JP 31679589 A JP31679589 A JP 31679589A JP 31679589 A JP31679589 A JP 31679589A JP H03176669 A JPH03176669 A JP H03176669A
Authority
JP
Japan
Prior art keywords
temperature sensor
temperature
case
sensor
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31679589A
Other languages
Japanese (ja)
Inventor
Shinichi Osada
慎一 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP31679589A priority Critical patent/JPH03176669A/en
Publication of JPH03176669A publication Critical patent/JPH03176669A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/006Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of fluid seismic masses
    • G01P15/008Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of fluid seismic masses by using thermal pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To reduce the size of the sensor and obtain an output signal by a DC voltage type which facilitates signal processing by providing a thin film resistance temperature sensor for a heater which detects the intensity of the air flow in a case. CONSTITUTION:A current is supplied to the thin film resistance temperature sensor 14 for the heater and the temperature sensor 14 is heated to, for example, about 100 deg.C. When acceleration operates on the sensor 10 in this state, an air flow is generated in the case 12. The heat of the temperature 14 is absorbed by this air flow and the resistance value of the temperature sensor 14 varies. A signal based upon the resistance value is inputted to an operational amplifier 26, and the acceleration is detected from the output signal of the operational amplifier 26. Further, a detecting circuit 20 operates according to the feedback output from a transistor 28 so that the temperature sensor 14 reaches constant temperature. Further, a measurement error due to the temperature of the air in the case 12 is eliminated by detecting the temperature of the air in the case 12 by a temperature sensor 16 for temperature compensation. Consequently, an output signal which can easily be processed is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は加速度センサに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an acceleration sensor.

(従来技術) 現在、加速度センサとしては、振動する物体の変位量を
検出することによって加速度を求める方式が採用されて
いる。このような方式としては、磁石とコイルとを駆動
系として用いるものと、圧電素子の共振を利用するもの
とに大別される。磁石とコイルとを用いた加速度センサ
では、加速度によって磁石とコイルとの位置関係が変化
し、それによってコイルに生じた電圧を測定することに
よって、加速度が検出される。また、圧電素子を用いた
加速度センサlとしては、第3図に示すように、振動体
2の中間部分に圧電素子3を配置したものがある。この
振動体2の一端は支持体4に支持され、振動体2の他端
には負荷質量5が取り付けられる。そして、加速度に応
じて圧電素子に発生する電圧を測定することによって、
加速度が検出される。
(Prior Art) Currently, acceleration sensors employ a method of determining acceleration by detecting the amount of displacement of a vibrating object. Such methods are roughly divided into those that use a magnet and a coil as a drive system, and those that utilize resonance of a piezoelectric element. In an acceleration sensor using a magnet and a coil, the positional relationship between the magnet and the coil changes due to acceleration, and the acceleration is detected by measuring the voltage generated in the coil. Further, as an acceleration sensor l using a piezoelectric element, there is one in which a piezoelectric element 3 is arranged in the middle part of a vibrating body 2, as shown in FIG. One end of this vibrating body 2 is supported by a support body 4, and a load mass 5 is attached to the other end of the vibrating body 2. Then, by measuring the voltage generated in the piezoelectric element according to acceleration,
Acceleration is detected.

(発明が解決しようとする課題) しかしながら、磁石とコイルとを用いた加速度センサは
、その形状が大型となるため、あまり使用されない。ま
た、圧電素子を用いる加速度センサでは、圧電素子の温
度特性の影響や共振周波数を使用することによる影響な
どから、検出感度など使用上の問題がある。
(Problems to be Solved by the Invention) However, acceleration sensors using a magnet and a coil are not often used because of their large size. Furthermore, acceleration sensors using piezoelectric elements have problems in use, such as detection sensitivity, due to the influence of temperature characteristics of the piezoelectric element and the influence of using a resonant frequency.

それゆえに、この発明の主たる目的は、小型で高感度の
加速度センサを提供することである。
Therefore, the main objective of this invention is to provide a compact and highly sensitive acceleration sensor.

(課題を解決するための手段) この発明は、ケースと、ケース内に収納されケース内の
気流の強さを検出するためのヒータ用薄膜抵抗温度セン
サとを含む、加速度センサである。
(Means for Solving the Problems) The present invention is an acceleration sensor that includes a case and a thin film resistance temperature sensor for a heater that is housed within the case and detects the strength of airflow within the case.

(作用) 加速度に応じた強さの気流が、ケース内に発生する。発
生した気流によってヒータ用薄膜温度センサの熱が奪わ
れ、その抵抗値が変化する。
(Function) An airflow whose strength corresponds to the acceleration is generated within the case. The generated airflow removes heat from the heater thin film temperature sensor, changing its resistance value.

(発明の効果) この発明によれば、小型の薄膜温度センサが用いられる
ため、加速度センサを小型にすることができる。しかも
、信号処理の容易な直流電圧形式で出力信号を得ること
ができる。
(Effects of the Invention) According to the present invention, since a small thin film temperature sensor is used, the acceleration sensor can be made small. Moreover, the output signal can be obtained in a DC voltage format that is easy to process.

この発明の上述の目的、その他の目的、特徴および利点
は、図面を参照して行う以下の実施例の詳細な説明から
一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

(実施例〉 第1図はこの発明の一実施例を示す図解図である。加速
度センサ10はケース12を含む。ケース12は、たと
えば合成樹脂などによって、はぼ密閉された形状に形式
される。
(Embodiment) FIG. 1 is an illustrative diagram showing an embodiment of the present invention. The acceleration sensor 10 includes a case 12. The case 12 is formed into a substantially sealed shape by, for example, synthetic resin. .

ケース12内には、ヒータ用薄膜抵抗温度センサ14が
収納される。ヒータ用薄膜抵抗温度センサ14としては
、たとえば30ミリ秒程度の優れた熱応答性を有する薄
膜白金温度センサなどが用いられる。このヒータ用薄膜
抵抗温度センサ14は、ケースI2内の気流の強さを測
定するためのものである。
A heater thin film resistance temperature sensor 14 is housed within the case 12 . As the heater thin film resistance temperature sensor 14, for example, a thin film platinum temperature sensor having excellent thermal response of about 30 milliseconds is used. This heater thin film resistance temperature sensor 14 is for measuring the strength of the airflow within the case I2.

さらに、ケース12内には、温度補償用温度センサ16
が収納される。この温度補償用温度センサ16は、ケー
ス12内の空気の温度を測定するためのものである。
Furthermore, inside the case 12, a temperature sensor 16 for temperature compensation is provided.
is stored. This temperature compensation temperature sensor 16 is for measuring the temperature of the air inside the case 12.

これらのヒータ用薄膜抵抗温度センサ14および温度補
償用温度センサ16からはリード線18a、13bおよ
び18cが引き出され、加速度を検出するための検出回
路に接続される。
Lead wires 18a, 13b, and 18c are drawn out from the thin film resistance temperature sensor 14 for the heater and the temperature sensor 16 for temperature compensation, and are connected to a detection circuit for detecting acceleration.

この加速度センサ10は、たとえば第2図に示すような
検出回路20に接続される。この検出回路20では、ヒ
ータ用薄膜抵抗温度センサ14゜温度補償用温度センサ
16.抵抗22および抵抗24によってブリッジ回路が
形成される。このブリッジ回路の出力が、オペアンプ2
6の入力側に接続される。さらに、オペアンプ26の出
力側はトランジスタ28のベースに接続される。そして
、トランジスタ28の出力がブリッジ回路にフィードバ
ックされる。
This acceleration sensor 10 is connected to a detection circuit 20 as shown in FIG. 2, for example. This detection circuit 20 includes a thin film resistance temperature sensor 14 for a heater, a temperature sensor 16 for temperature compensation. Resistor 22 and resistor 24 form a bridge circuit. The output of this bridge circuit is the operational amplifier 2
Connected to the input side of 6. Further, the output side of the operational amplifier 26 is connected to the base of a transistor 28. The output of transistor 28 is then fed back to the bridge circuit.

この加速度センサ10では、ヒータ用薄膜抵抗温度セン
サ14に電流を流すことによって、ヒータ用薄膜抵抗温
度センサ14がたとえば約100℃に加熱させられる。
In this acceleration sensor 10, by passing a current through the heater thin film resistance temperature sensor 14, the heater thin film resistance temperature sensor 14 is heated to, for example, about 100°C.

この状態で加速度センサ10に加速度が働くと、ケース
12内に気流が発生する。この気流によってヒータ用薄
膜抵抗温度センサ14の熱が奪われ、ヒータ用薄膜抵抗
温度センサ14の抵抗値が変化する。この抵抗値変化に
よる信号がオペアンプ26に入力され、オペアンプ26
の出力信号から加速度を検出することができる。なお、
この検出回路20では、トランジスタ28からのフィー
ドバックによって、ヒータ用薄膜抵抗温度センサ14の
温度が一定の温度になるように働く。
When acceleration acts on the acceleration sensor 10 in this state, an airflow is generated within the case 12. This airflow removes heat from the heater thin film resistance temperature sensor 14, and the resistance value of the heater thin film resistance temperature sensor 14 changes. A signal resulting from this resistance value change is input to the operational amplifier 26, and the operational amplifier 26
Acceleration can be detected from the output signal. In addition,
This detection circuit 20 works to keep the temperature of the heater thin film resistance temperature sensor 14 at a constant temperature by feedback from the transistor 28.

また、ケース12内の空気の温度による測定誤差をなく
すために、温度補償用温度センサ16によってケース1
2内の空気の温度が検出される。
In addition, in order to eliminate measurement errors due to the temperature of the air inside the case 12, the temperature sensor 16 for temperature compensation
The temperature of the air inside 2 is detected.

ここで、気流の流速をVt+流体の温度をTflヒータ
用薄膜薄膜抵抗温度センサ14度をTh。
Here, the flow velocity of the airflow is Vt + the temperature of the fluid is Tfl, and the thin film resistance temperature sensor for the heater is 14 degrees, Th.

消費電力をPとすると、これらの間には次式の関係があ
る。
Assuming that power consumption is P, there is a relationship between these as shown in the following equation.

P=(A+Bff7) (Tゎ−T、)ただし、この関
係式において、AおよびBは定数である。この関係式か
ら気流の流速vtが求められ、この気流の流速Vtから
加速度が求められる。
P=(A+Bff7) (Tゎ-T,) However, in this relational expression, A and B are constants. From this relational expression, the airflow velocity vt is determined, and from this airflow velocity Vt, the acceleration is determined.

近年、超薄膜温度センサが開発されたことにより、10
0ミリ秒以下のスピードで気流の変化をとらえることが
可能となった。
In recent years, with the development of ultra-thin film temperature sensors, 10
It has become possible to detect changes in airflow at speeds of less than 0 milliseconds.

第1図に示すように、ケース12内にヒータ用薄膜抵抗
温度センサ14および温度補償用温度センサ16を収納
することにより、外部の気流の影響を受けず、ケース1
2内の気流の動きのみを検出することができる。実験の
結果、この発明の加速度センサでは、これを動かす速度
の違い、すなわち加速度の違いにより、それに対応した
出力信号が得られることが確認できた。
As shown in FIG. 1, by housing the heater thin film resistance temperature sensor 14 and the temperature compensation temperature sensor 16 in the case 12, the case 12 is not affected by external airflow.
Only the movement of airflow within 2 can be detected. As a result of experiments, it was confirmed that in the acceleration sensor of the present invention, output signals corresponding to differences in the speed at which the acceleration sensor is moved, that is, differences in acceleration, can be obtained.

この発明の加速度センサでは、ケースの大きさヒータ用
薄膜−抵抗温度センサ、温度補償用温度センサの取り付
は位置およびヒータ用薄膜抵抗温度センサへ印加する電
流量により、検出感度や方向性などを自由に設計するこ
とができる。また、この発明の加速度センサは共振周波
数を利用していないため、圧電式の加速度センサに比べ
て使いやすい。
In the acceleration sensor of the present invention, the detection sensitivity and directionality are determined by the size of the case, the mounting position of the thin film resistance temperature sensor for the heater, and the mounting position of the temperature sensor for temperature compensation, and the amount of current applied to the thin film resistance temperature sensor for the heater. Can be designed freely. Furthermore, since the acceleration sensor of the present invention does not utilize a resonance frequency, it is easier to use than a piezoelectric acceleration sensor.

なお、上述の実施例では、ケース内の空気の温度による
測定誤差を補償するために、温度補償用温度センサを設
けたが、この温度補償用温度センサを使用せずにシステ
ム部分になんらかの補償を設けてもよい。
In the above embodiment, a temperature compensation temperature sensor was provided in order to compensate for measurement errors due to the temperature of the air inside the case. It may be provided.

また、上述の実施例では、ヒータ用薄膜抵抗温度センサ
の温度を約100℃にしたが、この温度は60℃程度で
も、加速度の測定は可能である。
Further, in the above-described embodiment, the temperature of the thin film resistance temperature sensor for the heater was set to about 100°C, but acceleration can be measured even at this temperature of about 60°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す図解図である。 第2図は第1図に示す加速度センサを使用した検出回路
を示す回路図である。 第3図はこの発明の背景となる圧電素子を用いた加速度
センサの一例を示す図解図である。 図において、10は加速度センサ、12はケース、14
はヒータ用薄膜抵抗温度センサを示す。
FIG. 1 is an illustrative view showing an embodiment of the present invention. FIG. 2 is a circuit diagram showing a detection circuit using the acceleration sensor shown in FIG. 1. FIG. 3 is an illustrative diagram showing an example of an acceleration sensor using a piezoelectric element, which is the background of the present invention. In the figure, 10 is an acceleration sensor, 12 is a case, and 14
indicates a thin film resistance temperature sensor for heaters.

Claims (1)

【特許請求の範囲】[Claims]  ケースと、前記ケース内に収納され前記ケース内の気
流の強さを検出するためのヒータ用薄膜抵抗温度センサ
とを含む、加速度センサ。
An acceleration sensor comprising: a case; and a thin film resistance temperature sensor for a heater, which is housed within the case and detects the strength of airflow within the case.
JP31679589A 1989-12-05 1989-12-05 Acceleration sensor Pending JPH03176669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31679589A JPH03176669A (en) 1989-12-05 1989-12-05 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31679589A JPH03176669A (en) 1989-12-05 1989-12-05 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH03176669A true JPH03176669A (en) 1991-07-31

Family

ID=18081014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31679589A Pending JPH03176669A (en) 1989-12-05 1989-12-05 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH03176669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664456A1 (en) * 1994-01-20 1995-07-26 Honda Giken Kogyo Kabushiki Kaisha Acceleration sensor
WO2004005942A1 (en) * 2002-07-05 2004-01-15 Robert Bosch Gmbh Temperature sensing device for detecting an acceleration or shock provided with a heating unit, and associated method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664456A1 (en) * 1994-01-20 1995-07-26 Honda Giken Kogyo Kabushiki Kaisha Acceleration sensor
US5719333A (en) * 1994-01-20 1998-02-17 Honda Giken Kogyo Kabushiki Kaisha Acceleration sensor
US5945601A (en) * 1994-01-20 1999-08-31 Honda Giken Kogyo Kabushiki Kaisha Acceleration sensor with temperature resistor elements
WO2004005942A1 (en) * 2002-07-05 2004-01-15 Robert Bosch Gmbh Temperature sensing device for detecting an acceleration or shock provided with a heating unit, and associated method

Similar Documents

Publication Publication Date Title
JPS60259922A (en) Strain sensor
CN107687890A (en) Vector microphone with horn structure
US5747804A (en) Method and apparatus for sensing infrared radiation utilizing a micro-electro-mechanical sensor
JPH03176669A (en) Acceleration sensor
WO2002006786A1 (en) Pressure sensor
CN112798060B (en) Resonant flow sensor
JPH0515975B2 (en)
CN210166258U (en) Magnetic fluid thermal expansion coefficient measuring system
JP3153787B2 (en) Heat conduction parameter sensing method and sensor circuit using resistor
JPS6029673A (en) Surface potential sensor
JPH11194061A (en) Pressure sensor driving circuit
JPH05157603A (en) Method for correcting flow rate of flowmeter
JPH0516730B2 (en)
JP2642460B2 (en) Heat dissipation type level sensor
JPS6361961A (en) Current detector
SU1138748A1 (en) Strain-gauge acceleration meter
JPS61142415A (en) Angular velocity detector
SU1029011A1 (en) Device for measuring medium parameters
JPS6396563A (en) Wind speed sensor
JPH02272335A (en) Semiconductor pressure sensor
JPS6123813Y2 (en)
JPH03279866A (en) Wind speed sensor
JPH01311241A (en) Crystal heat conduction type vacuum gauge
SU1413457A1 (en) Device for measuring pressure
JPS5937729Y2 (en) Servo type accelerometer