JPH02272335A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPH02272335A
JPH02272335A JP9312389A JP9312389A JPH02272335A JP H02272335 A JPH02272335 A JP H02272335A JP 9312389 A JP9312389 A JP 9312389A JP 9312389 A JP9312389 A JP 9312389A JP H02272335 A JPH02272335 A JP H02272335A
Authority
JP
Japan
Prior art keywords
pressure
temperature
heater
sensitive element
ambient temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9312389A
Other languages
Japanese (ja)
Inventor
Hidenori Kosaka
秀則 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9312389A priority Critical patent/JPH02272335A/en
Publication of JPH02272335A publication Critical patent/JPH02272335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To accurately measure a pressure without an influence of the change of temperature by arranging a heater in the vicinity of each pressure-sensitive element constituting a bridge circuit and detecting the ambient temperature of the pressure-sensitive element and controlling the current flowing to the heater to keep the temperature of the pressure-sensitive element constant. CONSTITUTION:When the ambient temperature falls, the resistance value of a temperature detecting diode 2 rises and a comparator input voltage gets lower than a reference voltage, and therefore, a signal in the high level is outputted from a comparator 3 and heaters H1 to H4 are operated to uniformly heat piezo elements P1 to P4. Thus, erroneous measurement of the pressure due to the variance of temperature characteristics of piezo resistance elements P1 to P4 is prevented. Meanwhile, when the ambient temperature rises, the resistance value of the temperature detecting diode 2 falls and the comparator input voltage gets higher than the reference voltage, and therefore, the output signal from the comparator 3 goes to the low level, and heaters H1 to H4 are not operated.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体圧力センサに係わり、特にその温度補
償に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to semiconductor pressure sensors, and particularly to temperature compensation thereof.

(従来の技術) 従来より、受圧ダイアフラム上に感圧素子によりブリッ
ジ回路を構成し、受圧ダイアフラムの歪みに伴う感圧素
子の抵抗値変化に基づいて圧力信号を取り出す半導体圧
力センサが知られており、圧力(差圧)伝送器や加速度
センサ等として使用されている。
(Prior art) Semiconductor pressure sensors have been known in which a bridge circuit is configured with a pressure-sensitive element on a pressure-receiving diaphragm, and a pressure signal is extracted based on a change in the resistance value of the pressure-sensitive element due to distortion of the pressure-receiving diaphragm. , used as pressure (differential pressure) transmitters, acceleration sensors, etc.

ところが、この種の半導体圧力センサは周囲温度により
特性が異なるため、温度補償をする必要がある。
However, since the characteristics of this type of semiconductor pressure sensor vary depending on the ambient temperature, it is necessary to perform temperature compensation.

第5図は従来の半導体圧力センサにおける温度補償の一
例を示す回路図である。
FIG. 5 is a circuit diagram showing an example of temperature compensation in a conventional semiconductor pressure sensor.

同図に示すように、ピエゾ抵抗素子P1〜P4は受圧ダ
イアフラム(図示せず)上にブリッジ状に構成されてお
り、圧力が印加されるとブリッジの抵抗バランスが崩れ
て差動増幅器1の入力電圧が変化して、変化相当分の信
号が圧力信号として出力される。
As shown in the figure, the piezoresistive elements P1 to P4 are configured in a bridge shape on a pressure receiving diaphragm (not shown), and when pressure is applied, the resistance balance of the bridge is disrupted, causing the input of the differential amplifier 1 The voltage changes, and a signal corresponding to the change is output as a pressure signal.

ピエゾ抵抗素子P1〜P4の周囲温度は温度検出用ダイ
オード2で検出されており、コンパレータ3においてこ
の温度検出信号とツェナーダイオード4、抵抗R1,R
2で構成される基準電圧源の基準信号とが比較されてい
る。
The ambient temperature of the piezoresistive elements P1 to P4 is detected by a temperature detection diode 2, and a comparator 3 combines this temperature detection signal with a Zener diode 4 and resistors R1 and R.
2 is compared with a reference signal from a reference voltage source composed of 2.

そして、温度検出信号が基準信号より低い場合すなわち
、周囲温度が設定温度以下の場合には、電流コントロー
ル回路5により、各ピエゾ抵抗素子P1〜P4に流れる
電流を少なくする。又、周囲温度が高くなって、温度検
出信号が基準信号以上となると、各ピエゾ抵抗素子P1
〜P4に流れる電流を多くする。
When the temperature detection signal is lower than the reference signal, that is, when the ambient temperature is below the set temperature, the current control circuit 5 reduces the current flowing through each piezoresistive element P1 to P4. Moreover, when the ambient temperature becomes high and the temperature detection signal exceeds the reference signal, each piezoresistive element P1
~Increase the current flowing to P4.

このようにして、周囲温度に応じて各ピエゾ抵抗素子P
1〜P4に流す電流を加減し、ブリ・ソジの感度を変え
ることで温度補償がされていた。
In this way, each piezoresistive element P
Temperature compensation was achieved by adjusting the current flowing through P1 to P4 and changing the sensitivity of the buri and soji.

(発明が解決しようとする課題) しかしながら、上記従来例によれば、ピエゾ抵抗素子P
1〜P4の感度は、電流の増減に対してリニアでなく個
々の素子によって異なるので、測定誤差が発生して正確
な圧力n1定ができないという問題点があった。
(Problem to be Solved by the Invention) However, according to the above conventional example, the piezoresistive element P
Since the sensitivities of 1 to P4 are not linear with respect to increases and decreases in current and vary depending on the individual elements, there is a problem in that measurement errors occur and accurate pressure n1 cannot be determined.

本発明は、従来の課題に鑑みて成されたものであり。そ
の目的は、温度変化に依存することなく常に正確な圧力
flPI定ができる半導体圧力センサを提供することに
ある。
The present invention has been made in view of the conventional problems. The purpose is to provide a semiconductor pressure sensor that can always accurately determine pressure flPI without depending on temperature changes.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために本発明は、受圧ダイアフラム
上に感圧素子によりブリッジ回路を構成し、受圧ダイア
フラムの歪みに伴う感圧素子の抵抗値変化に基づいて圧
力信号を取り出す半導体圧力センサにおいて、 前記ブリッジ回路を構成する各感圧素子の近傍にヒータ
を配置するとともに感圧素子の周辺温度を検出し、前記
ヒータに流れる電流を制御して各感圧素子の温度を一定
に保持することを特徴とする。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the present invention configures a bridge circuit using a pressure-sensitive element on a pressure-receiving diaphragm, and reduces the resistance of the pressure-sensitive element due to distortion of the pressure-receiving diaphragm. In a semiconductor pressure sensor that extracts a pressure signal based on a value change, a heater is arranged near each pressure-sensitive element constituting the bridge circuit, and the ambient temperature of the pressure-sensitive element is detected to control the current flowing to the heater. The temperature of each pressure sensitive element is maintained constant.

また、前記ヒータに流れる電流を制御する回路部分をセ
ンサ内に実装したことを特徴とする。
Further, the sensor is characterized in that a circuit portion for controlling the current flowing through the heater is mounted within the sensor.

(作用) 本発明によれば、感圧素子の周辺温度が検出され、その
検出温度が基準温度以下のときにはヒータに流れる電流
を多くし、逆に基準温度以上のときにはヒータに流れる
電流を少なくする。これにより、感圧素子の温度は常に
一定に保持されるので、圧力測定に誤差を生じない。
(Function) According to the present invention, the ambient temperature of the pressure sensitive element is detected, and when the detected temperature is below the reference temperature, the current flowing through the heater is increased, and when the detected temperature is above the reference temperature, the current flowing through the heater is decreased. . As a result, the temperature of the pressure-sensitive element is always kept constant, so that no error occurs in pressure measurement.

また、ヒータ制御回路部分をセンサ内に実装しているの
で、外部ノイズや外部温度変化の影響が少なくなり、正
確な制御が可能となる。
Furthermore, since the heater control circuit portion is mounted within the sensor, the influence of external noise and external temperature changes is reduced, allowing accurate control.

(実施例) 第1図は本発明の一実施例の電気的構成を示す回路図、
第2図は同実施例の機械的構成を示す断面図、第3図は
その分解斜視図である。
(Embodiment) FIG. 1 is a circuit diagram showing the electrical configuration of an embodiment of the present invention.
FIG. 2 is a sectional view showing the mechanical structure of the same embodiment, and FIG. 3 is an exploded perspective view thereof.

第1図に示すように、ピエゾ抵抗素子P1〜P4は受圧
ダイアフラム(図示せず)上にブリッジ状に構成されて
おり、圧力が印加されるとブリッジの抵抗バランスが崩
れて差動増幅器1の入力端子が変化して、変化相当分の
信号が圧力信号として出力されるようになっている。
As shown in FIG. 1, piezoresistive elements P1 to P4 are configured in a bridge shape on a pressure receiving diaphragm (not shown), and when pressure is applied, the resistance balance of the bridge is disrupted and the differential amplifier 1 is The input terminal changes, and a signal corresponding to the change is output as a pressure signal.

ピエゾ抵抗素子P1〜P4の周囲温度は温度検出用ダイ
オード2で検出されており、コンパレータ3においてこ
の温度検出信号がツェナーダイオド4、抵抗R1,R2
で構成される基準電圧源の基準信号と比較されている。
The ambient temperature of the piezoresistive elements P1 to P4 is detected by the temperature detection diode 2, and this temperature detection signal is sent to the Zener diode 4 and the resistors R1 and R2 in the comparator 3.
It is compared with a reference signal of a reference voltage source consisting of .

本実施例では、各ピエゾ抵抗素子P1〜P4に近接して
ヒータH1〜H4が設けられており、ピエゾ抵抗素子P
1〜P4の周辺温度によってヒタH1〜H4が作動し、
これらピエゾ抵抗素子P1〜P4の温度を常に一定に保
持して温度特性のばらつきに起因する圧力測定誤差を生
じないようにしている。
In this embodiment, heaters H1 to H4 are provided close to each piezoresistive element P1 to P4, and piezoresistive element P
The heaters H1 to H4 operate depending on the ambient temperature of 1 to P4,
The temperatures of these piezoresistive elements P1 to P4 are always kept constant to avoid pressure measurement errors due to variations in temperature characteristics.

また、本実施例の半導体圧力センサの機械的構成は、第
2図、第3図に示すように、容器6内に圧力伝達シャフ
ト7を介して組み込まれる台座8と、この台座8上に接
着剤9を介して接続される受圧ダイアフラム10とを備
え、この受圧ダイアフラム10上に形成されたピエゾ抵
抗素子P1〜P4に近接するように、ヒータ付きフィル
ム11が配置される構成となっている。
As shown in FIGS. 2 and 3, the mechanical configuration of the semiconductor pressure sensor of this embodiment includes a pedestal 8 that is incorporated into the container 6 via a pressure transmission shaft 7, and an adhesive bonded onto the pedestal 8. A pressure-receiving diaphragm 10 is connected to the pressure-receiving diaphragm 10 via an adhesive 9, and a heater-equipped film 11 is disposed close to the piezoresistive elements P1 to P4 formed on the pressure-receiving diaphragm 10.

また、第1図に示される前記ヒータH1〜H4に流れる
電流を制御する制御回路14は台座6上に設けられ、こ
の制御回路14とヒータH1〜H4とは信号引き出し線
12により接続されている。
Further, a control circuit 14 for controlling the current flowing through the heaters H1 to H4 shown in FIG. .

そして、前記差動増幅器1から出力される圧力変化信号
は容器6内に埋設された信号引き出しリード線13から
取り出されるようになっている。
The pressure change signal output from the differential amplifier 1 is taken out from a signal extraction lead wire 13 buried in the container 6.

このような構成の半導体圧力センサにおいて、周囲温度
が低下すると、温度検出ダイオード2の抵抗値が上昇し
、コンパレータ入力電圧が基準電圧よりも低くなる。こ
のため、コンパレータ3からはハイレベルの信号が出力
され、これにより各ヒータH1〜H4が作動して各ピエ
ゾ抵抗素子P1〜P4は均一温度に加熱される。このた
め、各ピエゾ抵抗素子P1〜P4の温度特性のばらつき
に起因する圧力の誤測定が防止できる。
In the semiconductor pressure sensor having such a configuration, when the ambient temperature decreases, the resistance value of the temperature detection diode 2 increases, and the comparator input voltage becomes lower than the reference voltage. Therefore, a high level signal is output from the comparator 3, which activates each heater H1 to H4 and heats each piezoresistive element P1 to P4 to a uniform temperature. Therefore, it is possible to prevent erroneous pressure measurements due to variations in the temperature characteristics of the piezoresistive elements P1 to P4.

一方、周囲温度が上昇すると、温度検出ダイオド2の抵
抗値が下降し、コンパレータ入力電圧が基準電圧よりも
高くなる。これにより、コンパレータ3からの出力信号
はローレベルとなり、ヒタH1〜H4は作動しなくなる
On the other hand, when the ambient temperature increases, the resistance value of the temperature detection diode 2 decreases, and the comparator input voltage becomes higher than the reference voltage. As a result, the output signal from the comparator 3 becomes low level, and the heaters H1 to H4 no longer operate.

このように、本実施例によれば、ピエゾ抵抗素子P1〜
P4の近傍にヒータH1〜H4を配置するとともに、ピ
エゾ抵抗素子P1〜P4の周囲温度を検出し、その温度
が基準温度以下になると、ヒータH1〜H4により各ピ
エゾ抵抗素子P1〜P4が均一に加熱されるので、温度
特性のばらつきに起因する圧力測定誤差を生じることな
く正確な7fpI定が可能となる。
In this way, according to this embodiment, the piezoresistive elements P1 to
Heaters H1 to H4 are arranged near P4, and the ambient temperature of piezoresistive elements P1 to P4 is detected. When the temperature falls below the reference temperature, each piezoresistive element P1 to P4 is uniformly heated by heaters H1 to H4. Since it is heated, it is possible to accurately determine 7fpI without causing pressure measurement errors due to variations in temperature characteristics.

また、ヒータの制御回路はセンサ内の台座8上に実装さ
れているので、外部ノイズや外部温度変化の影響が少な
くなり、正確な制御が可能となる。
Furthermore, since the heater control circuit is mounted on the pedestal 8 within the sensor, the effects of external noise and external temperature changes are reduced, allowing accurate control.

第4図は本発明の他の実施例の機械的構成を示す断面図
である。
FIG. 4 is a sectional view showing the mechanical structure of another embodiment of the present invention.

この実施例はヒータHを圧力伝達シャフト7に巻き付け
た例を示すものである。
This embodiment shows an example in which a heater H is wound around a pressure transmission shaft 7.

そして、前記第1実施例同様にヒータHのコントロール
は台座上に組み込まれた制御回路14により行われる。
As in the first embodiment, the heater H is controlled by the control circuit 14 built into the base.

このように構成することにより、より簡単な構成でもっ
て正確な圧力測定が可能となる。
With this configuration, accurate pressure measurement is possible with a simpler configuration.

[発明の効果] 以上説明したように、本発明によれば、感圧素子の温度
特性のばらつきに起因する圧力測定誤差を生じることな
く、正確な圧力測定が可能となる。
[Effects of the Invention] As described above, according to the present invention, accurate pressure measurement is possible without causing pressure measurement errors due to variations in temperature characteristics of pressure sensitive elements.

また、ヒータを制御する回路部分はをセンサ内に実装さ
れているので、外部ノイズや外部温度変化の影響を受け
ることが少なくなり、正確な制御が可能となる。
Furthermore, since the circuit portion that controls the heater is mounted within the sensor, it is less affected by external noise and external temperature changes, allowing for accurate control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の電気的構成を示す回路図、
第2図は同実施例の機械的構成を示す断面図、第3図は
同機械的構成を示す分解斜視図、第4図は本発明の他の
実施例の機械的構成を示す断面図、第5図は従来例の電
気的構成を示す回路図である。 1・・・差動増幅器 2・・・温度検出用ダイオード 3・・・コンパレータ 7・・・圧力伝達シャフト 8・・・台座 10・・・受圧ダイアフラム 11・・・ヒータ付きフィルム 14・・・ヒータの制御回路 P1〜P4・・・ピエゾ抵抗素子 H1〜H4・・・ヒータ
FIG. 1 is a circuit diagram showing the electrical configuration of an embodiment of the present invention;
FIG. 2 is a sectional view showing the mechanical structure of the same embodiment, FIG. 3 is an exploded perspective view showing the same mechanical structure, and FIG. 4 is a sectional view showing the mechanical structure of another embodiment of the present invention. FIG. 5 is a circuit diagram showing the electrical configuration of a conventional example. 1... Differential amplifier 2... Temperature detection diode 3... Comparator 7... Pressure transmission shaft 8... Pedestal 10... Pressure receiving diaphragm 11... Film with heater 14... Heater Control circuits P1 to P4...Piezoresistance elements H1 to H4...Heater

Claims (2)

【特許請求の範囲】[Claims] (1)受圧ダイアフラム上に感圧素子によりブリッジ回
路を構成し、受圧ダイアフラムの歪みに伴う感圧素子の
抵抗値変化に基づいて圧力信号を取り出す半導体圧力セ
ンサにおいて、 前記ブリッジ回路を構成する各感圧素子の近傍にヒータ
を配置するとともに感圧素子の周辺温度を検出し、前記
ヒータに流れる電流を制御して各感圧素子の温度を一定
に保持すること、 を特徴とする半導体圧力センサ。
(1) In a semiconductor pressure sensor in which a bridge circuit is formed by a pressure-sensitive element on a pressure-receiving diaphragm and a pressure signal is extracted based on a change in the resistance value of the pressure-sensitive element due to distortion of the pressure-receiving diaphragm, each sensor forming the bridge circuit A semiconductor pressure sensor comprising: a heater arranged near a pressure element, detecting the ambient temperature of the pressure sensing element, and controlling a current flowing through the heater to maintain a constant temperature of each pressure sensing element.
(2)前記ヒータに流れる電流を制御する回路部分をセ
ンサ内に実装したことを特徴とする請求項1記載の半導
体圧力センサ。
(2) The semiconductor pressure sensor according to claim 1, wherein a circuit portion for controlling the current flowing through the heater is mounted within the sensor.
JP9312389A 1989-04-14 1989-04-14 Semiconductor pressure sensor Pending JPH02272335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9312389A JPH02272335A (en) 1989-04-14 1989-04-14 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9312389A JPH02272335A (en) 1989-04-14 1989-04-14 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPH02272335A true JPH02272335A (en) 1990-11-07

Family

ID=14073746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9312389A Pending JPH02272335A (en) 1989-04-14 1989-04-14 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH02272335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330195A (en) * 2014-10-16 2015-02-04 上海师范大学 High temperature pressure sensor technology based on heavy doping 4H-SiC substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330195A (en) * 2014-10-16 2015-02-04 上海师范大学 High temperature pressure sensor technology based on heavy doping 4H-SiC substrate

Similar Documents

Publication Publication Date Title
US5241850A (en) Sensor with programmable temperature compensation
US4798093A (en) Apparatus for sensor compensation
US4926674A (en) Self-zeroing pressure signal generator
US3967188A (en) Temperature compensation circuit for sensor of physical variables such as temperature and pressure
US5051937A (en) Low cost high precision sensor
EP0697104B1 (en) Strain gage sensor with integral temperature signal
CA2145698C (en) Electronic circuit for a transducer
JPH01501503A (en) Pressure transducer with integrated digital temperature compensation means
US4951236A (en) Low cost high precision sensor
US5877423A (en) Method for providing temperature compensation for a wheatstone bridge-type pressure sensor
US5946642A (en) Air data measurement system with circuit for linearizing pressure transducer output
US3956927A (en) Strain gauge transducer apparatus
US4565097A (en) Method and apparatus for transducer error cancellation
US5048343A (en) Temperature-compensated strain-gauge amplifier
US4414837A (en) Apparatus and methods for the shunt calibration of semiconductor strain gage bridges
US4566320A (en) Fluid flow sensing means with ambient temperature compensation
WO2002006786A1 (en) Pressure sensor
US8893554B2 (en) System and method for passively compensating pressure sensors
JPH02272335A (en) Semiconductor pressure sensor
JP2730152B2 (en) Combined pressure and temperature detector
JPS6222272B2 (en)
JP3358684B2 (en) Thermal dependency detector
JPH0455542B2 (en)
EP0709660A1 (en) Sensor and a method for temperature compensating for span variation in the sensor
JPH11194061A (en) Pressure sensor driving circuit