JPH0317631A - Thin-film diode element - Google Patents

Thin-film diode element

Info

Publication number
JPH0317631A
JPH0317631A JP1152562A JP15256289A JPH0317631A JP H0317631 A JPH0317631 A JP H0317631A JP 1152562 A JP1152562 A JP 1152562A JP 15256289 A JP15256289 A JP 15256289A JP H0317631 A JPH0317631 A JP H0317631A
Authority
JP
Japan
Prior art keywords
film
shielding metal
upper electrode
liquid crystal
lower light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1152562A
Other languages
Japanese (ja)
Inventor
Harutaka Taniguchi
谷口 春隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1152562A priority Critical patent/JPH0317631A/en
Publication of JPH0317631A publication Critical patent/JPH0317631A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the change in photocurrent by incident light so as to diminish the change and to stabilize the image display of a liquid crystal display panel by disposing an a-Si film of thin-film diode (TFD) elements formed of a 3-sheet mask system in such a manner that the exposed end face thereof is positioned on the side inner than the side faces of lower light shielding metal and upper electrodes. CONSTITUTION:An ITO electrode 2 and the lower light shielding metal 17 are formed on a glass substrate 1 and after both are patterned, the a-Si film 4 and an upper electrode 9 are formed thereon. The exposed end face of the a-Si film 4 intrudes to the inner side of the upper electrode 9 and the lower light shielding metal 17 on the side faces thereof and the surface area of the a-Si film 4 decreases if an anisotropic etching is executed by using the resist and the upper electrode 9 as a mask. The a-Si film is so constituted that the exposed end face thereof introduces to the inner side than the side face of the lower light shielding metal and the upper electrode in such a manner and, therefore, the incident light is shielded by the lower light shielding metal and the upper electrode even if the incident light is scattered light. The image change by the photocurrent is thus minimized and the image display of the liquid crystal display panel is stabilized to an easily visible state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示パネル等の駆動に非線形表示素子と
して用いる薄膜ダイオード素子に関する.〔従来の技術
〕 現在広く使われている液晶表示パネルの駆動方式には、
スイノチング素子を含まないパッシブ型と、スインチン
グ素子をもつアクティブ型がある.最近は薄膜アクティ
ブ素子によるアクティブ・マトリンクスが高密度表示と
して有望視されている.このアクティブ素子には、薄膜
トランジスタ (TPT)や薄膜ダイオード (TFD
)などが用いられ、特に非晶質シリコン (a−Si)
を用いたTFDを並列逆接続、即ちダイオードリング接
続した非線形素子として各画素に配した液晶表示パネル
、およびa−SlのTFDを用いた場合の効果などにつ
いて、例えば雑誌、Proc.IEE[!,Vol−5
9, p.15661579.などにより、既に知られ
ている.第4図は、上記文献に記載された非線形素子の
ダイオードリングの等価回路を示したものである.TF
Dの順方向しきい{i電圧Vいは、材料にもよるが0,
3〜1.O Vであり、液晶表示パネル用としては、よ
り高電圧が好ましいことから、このような直列多段接続
された2列のTFD群を用い、双方向性を持たせるため
に、2列のTFD群の接点間に逆行に接続している. さらに、TFD素子は、光によって光電流が変化するこ
とは衆知であり、その対策として、4枚マスク方式で作
製された構造も知られている.第5図はその構造を示し
た模式断面図であり、この構造は、ガラス基板1の上に
、透明電極CITO電極)2、両面に遮光膜3をもつa
 −Si膜工を備え、このa−St膜工は、n層5とl
層6とp層7とからなるp−i−n接合を有し、この上
にSiNxの絶縁膜8と、最上部に位置する上電極9が
形成されている.この構或は、a −St膜土の上下遮
光膜3により上下両方向の遮光を行ない、一方aSi膜
4の側面では、絶縁膜8によってシール構造としている
ため、光に対する遮光性を高めたものであり、また、液
晶表示パネルに使用する場合、a−St膜土が液晶材料
と直接接触することがないので、液晶材料中の不純物や
、ガラス基板およびTFD基板形威遇程で残存する不純
物、もしくは異物による悪影響をなくした構造となって
いる.マスクはそれぞれ1枚目でITO電8i2.2枚
目で遮光膜3とa−SiWi4土,3枚目で絶縁膜8.
4枚目で上電極9が形威される. 次に、この4枚マスク方式のTFD素子を用いた液晶表
示パネルの構造を示す。第6図は、その一部切断斜視図
であり、これを製造過程を含めて述べる.第6図におい
て、TFDIOを形威したガラス基板l1と、ガラス基
板l2上にカラーフィルター13およびITOtlil
4をこの順に形成したこれら三つの部分からなる対向基
板とに、それぞれ印刷技術を用いて、各対向面に凛晶材
料を配向するためのポリイミド樹脂を、数100〜20
00人程度のfl[膜となるように印刷する.ボリイご
ド樹脂を熱処理した後、液晶l5の配向方向を任意の方
向とするため、ラビング機により、樹脂面に浅い筋目を
つけるラビングを施す.得られた上下両基板の一方であ
るガラス基板lI側の画面部に、両基坂間のギャップを
調整する、例えばガラスロノドまたはプラスチックボー
ルなどからなる隙間調整剤をスペーサとして適当にばら
まき、その後、TFDIO側基板11の画素電極パター
ンと、対向基板側の電極パターンを位置合わせしてから
、液晶注入口を除く画面周辺部に、シール用接着剤で上
下基板を接着する.次いで上下両基板を真空容器中に入
れ、上下基板の隙間を減圧した後大気圧に解放し、液晶
をその瞬間一杯に注入する。この後、紫外線樹脂で注入
口を塞ぐ.かくして出来上がった上下両基板を、所定の
大きさに切断して、表示部分の上下にプラスチノクフィ
ルムの偏向板16を張り付けることにより第6図の液晶
表示パネルが得られる.この液晶表示パネルに、第6図
に矢印で示した光を当て、それぞれの画素に画像信号の
電圧を印加し、上下基板間に電界をかけると、信号電圧
レヘルに応して、液晶表示パネルの電圧・透過率特性に
より、光を遮断または透過させて画像を表示する。カラ
ーフィルター13を色の三原色である赤,青.緑を形威
したもので表示すると、その色の表示の組み合わせによ
り、フルカラー表示が可能となる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film diode element used as a nonlinear display element for driving a liquid crystal display panel or the like. [Conventional technology] The drive method for liquid crystal display panels that is currently widely used is as follows:
There are passive types that do not include a switching element and active types that have a switching element. Recently, active matrices using thin-film active elements have been viewed as promising for high-density display. These active elements include thin film transistors (TPTs) and thin film diodes (TFDs).
) etc. are used, especially amorphous silicon (a-Si)
For example, a magazine, Proc. IEE [! , Vol-5
9, p. 15661579. It is already known from Figure 4 shows an equivalent circuit of the diode ring of the nonlinear element described in the above literature. TF
Forward threshold of D {i voltage V is 0, depending on the material,
3-1. O V, and a higher voltage is preferable for liquid crystal display panels, so two rows of TFD groups connected in series in multiple stages are used, and in order to have bidirectionality, two rows of TFD groups are used. The contacts are connected in a reverse direction. Furthermore, it is well known that the photocurrent of a TFD element changes due to light, and as a countermeasure for this, a structure fabricated using a four-mask method is also known. FIG. 5 is a schematic cross-sectional view showing the structure. This structure consists of an a
-Si film process, and this a-St film process consists of n layer 5 and l layer.
It has a p-i-n junction consisting of a layer 6 and a p-layer 7, on which an insulating film 8 of SiNx and an upper electrode 9 located at the top are formed. In this structure, the upper and lower light-shielding films 3 made of a-St film block light in both the upper and lower directions, while the sides of the a-Si film 4 are sealed with insulating films 8, which improves the light-shielding properties. In addition, when used in a liquid crystal display panel, the a-St film does not come into direct contact with the liquid crystal material, so it is free from impurities in the liquid crystal material and impurities remaining in the glass substrate and TFD substrate. Or, it has a structure that eliminates the negative effects of foreign substances. The first mask is ITO wire 8i2, the second mask is light shielding film 3 and a-SiWi4 soil, and the third mask is insulating film 8.
The upper electrode 9 is formed in the fourth image. Next, the structure of a liquid crystal display panel using this four-mask type TFD element will be shown. Fig. 6 is a partially cutaway perspective view of the same, which will be described including the manufacturing process. In FIG. 6, there is a glass substrate l1 on which TFDIO is formed, a color filter 13 and an ITOtliil on the glass substrate l2.
Using a printing technique, several hundred to twenty polyimide resins for orienting the Rin crystal material are applied to each of the opposing surfaces on the opposing substrate consisting of these three parts formed in this order.
Approximately 00 fl [Print to form a film. After the boiled resin is heat-treated, the resin surface is rubbed with shallow lines using a rubbing machine in order to align the liquid crystal 15 in a desired direction. A gap adjusting agent made of, for example, glass iron or plastic balls, which adjusts the gap between the two substrates, is appropriately scattered as a spacer on the screen portion of the glass substrate II side, which is one of the upper and lower substrates obtained, and then the TFDIO side is After aligning the pixel electrode pattern on the substrate 11 and the electrode pattern on the opposing substrate side, the upper and lower substrates are adhered to the periphery of the screen, excluding the liquid crystal injection port, using a sealing adhesive. Next, both the upper and lower substrates are placed in a vacuum container, and the gap between the upper and lower substrates is depressurized and then released to atmospheric pressure, and liquid crystal is instantly injected to the full. After this, seal the injection port with ultraviolet resin. The liquid crystal display panel shown in FIG. 6 is obtained by cutting both the upper and lower substrates thus completed into a predetermined size, and pasting polarizing plates 16 of plastic film on the upper and lower sides of the display area. When this liquid crystal display panel is irradiated with the light shown by the arrow in Fig. 6, an image signal voltage is applied to each pixel, and an electric field is applied between the upper and lower substrates, the liquid crystal display panel changes according to the signal voltage level. Depending on the voltage and transmittance characteristics of , images are displayed by blocking or transmitting light. The color filter 13 is used to filter the three primary colors of red and blue. When displayed using green, a full-color display is possible by combining the displayed colors.

しかし、以上の4枚マスク方式ダイオード素子構造は、
使用するマスクの数が多いことから製造工数が増し、そ
の結果、製品コストが高価になるという点もあり、その
対策として、マスク枚数を1枚減らした3枚マスク方式
のTFD素子構造も提案されている. 第7図は、その構造を示した模式断面図であり、第5図
と共通する部分を同一符号で表わす.第7図において、
ガラス基板l上の第1層目はITO電極2であり、その
上にa−Si膜土と上電極9を順に形威したものである
が、a−Si膜4を上iai9をマスクとするドライエ
ッチングにより、側面が厚さ方向に対して垂直形状とな
るように加工してある.このような3枚マスク方式のT
FD素子構造も、例えば第6図に示した液晶表示パネル
に用いられるが、その製造過程で、液晶材料を配向させ
る膜を、TFD側の基板のTFD素子上面を含む画像表
示画面部に塗布するとき、a−Si膜4が厚さ方向に垂
直形状となっているため、配向膜が隙間なく、この画像
表示画面部に埋められ形成される. 〔発明が解決しようとする課題〕 以上、液晶表示パネルに使用するTFD素子を主体に述
べてきたが、3枚マスク方式のTFD素子構造にも、な
お次のような問題がある。
However, the above four-mask type diode element structure is
The large number of masks used increases manufacturing man-hours, resulting in higher product costs.As a countermeasure, a three-mask TFD element structure has been proposed, in which the number of masks is reduced by one. ing. Fig. 7 is a schematic cross-sectional view showing the structure, and parts common to Fig. 5 are indicated by the same symbols. In Figure 7,
The first layer on the glass substrate l is an ITO electrode 2, on which an a-Si film and an upper electrode 9 are formed in order. The side surfaces are processed by dry etching so that they are perpendicular to the thickness direction. T of this kind of three-mask method
The FD element structure is also used, for example, in the liquid crystal display panel shown in FIG. 6, but in the manufacturing process, a film for orienting the liquid crystal material is applied to the image display screen portion of the TFD side substrate, including the upper surface of the TFD element. At this time, since the a-Si film 4 has a vertical shape in the thickness direction, the alignment film is formed filling the image display screen portion without any gaps. [Problems to be Solved by the Invention] The above discussion has mainly focused on TFD elements used in liquid crystal display panels, but the three-mask type TFD element structure still has the following problems.

TFDには、前に述べたように、光による光電流が生ず
るので、第6図に示したような液晶表示パネルに組み込
んで画像表示したとき、視聴環境の照度レベルによって
、画像が変化しないことが望まれる.しかし、一般的に
室内視聴の場合は、照度が3000ルクス (以下L×
と記す)以下であり、屋外においては、人は10.00
0Lx以上の環境下で見ることになる.屋外の照度10
.ooOLX以上では、液晶表示パネルのガラス面の表
面反射が強《なり、画像が見づらくなるので、およそ1
0,OOOLκ程度の照度に対する遮光特性が必要とな
る。
As mentioned earlier, a photocurrent is generated in a TFD due to light, so when it is incorporated into a liquid crystal display panel like the one shown in Figure 6 to display an image, the image does not change depending on the illuminance level of the viewing environment. is desired. However, for indoor viewing, the illuminance is generally 3000 lux (hereinafter referred to as L×
10.00 or less when outdoors.
It will be viewed in an environment of 0Lx or higher. Outdoor illuminance 10
.. At ooOLX or higher, the surface reflection of the glass surface of the liquid crystal display panel becomes strong, making it difficult to see the image, so approximately 1
A light shielding property is required for illuminance of about 0,OOOLκ.

そこで、第7図に示したような3枚マスク方弐のTFD
素子構造のITO’t極2上に、下遮光メタルを形成し
て遮光することも、既に提案されており、基本的には第
5図に示した4枚マスク方式の構造と同じ目的に基づく
ものである。しかし、このようにしたとき、前述のよう
に、a−SiIl9I4の側面形状は厚さ方向に垂直と
なっており、この場合は、TFD素子への入射光が平行
光束のときは、下遮光メタルの遮光性能により遮光され
るとしても、a−Si膜4の側面に散乱光が入射した場
合には、その入射量に応したTFDのI−V特性の一定
電圧におけるt流変化が生ずる.このt流変化は入射光
量に依存するので、できるだけパネルの表示状態を悪く
しないためには、電流変化が小さく、前に述べた通り室
内光で3000Lκ.室外光で10,OOOLκ程度と
いう環境下で、画像表示が変わらないよう、もしくはそ
の変化が極めて小さくなるようにしなければならない. 本発明は、上述の点に鑑みてなされたものであり、その
目的は、入射光による光t2it変化が小さくなるよう
に抑制し、液晶表示パネルの画像表示を安定させること
が可能なTFD素子を提供することにある. 〔課題を解決するための手段〕 上記の課題を解決するために、本発明のTFD素子は、
3枚マスク方式で形威するTFD素子のa−sillを
、その露出端面が下遮光メタルと上電極の側面より内側
になるように配置したものである. 〔作用〕 本発明のTFD素子は、上記のように構威したために、
a−Si膜が下遮光メタルと上電極より弓っ込んでいる
ので、入射した光が直接a −Siに照射されることな
く、光による光′t流変化を低減させる.即ち平行光束
の場合は、下遮光メタルと上電極によって遮光され、散
乱光の場合には、入射する光の入射角度がある程度まで
遮光されることにより、光電流変化を抑制し画像表示に
悪影響が出にくいように作用する。
Therefore, a TFD with three masks as shown in Figure 7 is used.
It has already been proposed to form a lower light-shielding metal on the ITO pole 2 of the element structure to shield light, and this is basically based on the same purpose as the four-mask structure shown in Figure 5. It is something. However, when doing this, as mentioned above, the side shape of a-SiIl9I4 is perpendicular to the thickness direction, and in this case, when the incident light to the TFD element is a parallel beam, the lower light shielding metal Even if the light is blocked by the light blocking performance of the a-Si film 4, when scattered light is incident on the side surface of the a-Si film 4, a change in the t current at a constant voltage of the IV characteristic of the TFD occurs depending on the amount of incident light. This change in t current depends on the amount of incident light, so in order to keep the display condition of the panel as low as possible, the change in current must be small, and as mentioned earlier, 3000 Lκ under indoor light. It is necessary to ensure that the image display does not change, or that the change is extremely small, under an environment where the outdoor light is around 10,000K. The present invention has been made in view of the above-mentioned points, and its purpose is to provide a TFD element capable of suppressing changes in light t2it caused by incident light to be small and stabilizing image display on a liquid crystal display panel. The purpose is to provide. [Means for Solving the Problems] In order to solve the above problems, the TFD element of the present invention has the following features:
The a-sill of the TFD element, which is implemented using a three-mask method, is arranged so that its exposed end face is inside the side surfaces of the lower light-shielding metal and the upper electrode. [Function] Since the TFD element of the present invention is constructed as described above,
Since the a-Si film is recessed from the lower light-shielding metal and the upper electrode, the incident light does not directly irradiate the a-Si, reducing changes in the light flow due to light. In other words, in the case of parallel light flux, the light is blocked by the lower light shielding metal and the upper electrode, and in the case of scattered light, the incident angle of the incident light is blocked to a certain extent, suppressing photocurrent changes and adversely affecting image display. It works to prevent it from coming out.

(実施例) 以F、本発明を実施例に基づき説明する。(Example) Hereinafter, the present invention will be explained based on examples.

第1図(A).(B)は、本発明のTFD素子の模式断
面図を表わし、それぞれ互いに直角方向から見た断面図
として、第7図と共通する部分を同一符号で示してある
。第1図(A)が第7図と異なる所は、下遮光メタルl
7を用いたことと、p−i−n接合のa−Si膜工の露
出端面が、上電極9と下燻光メタルl7の側面より内側
に位Wbていることである. TFD素子をこのように横戒すると、矢印方向から光が
入射したとき、平行光束は勿論、散乱光の場合でもある
程度の入射角度まで、下遮光メタルl7と上it−19
で遮光されるようになる。
Figure 1 (A). (B) shows a schematic cross-sectional view of the TFD element of the present invention, each of which is a cross-sectional view seen from a direction perpendicular to each other, and parts common to those in FIG. 7 are designated by the same reference numerals. The difference between Fig. 1 (A) and Fig. 7 is that the lower light-shielding metal l
7 was used, and the exposed end surface of the a-Si film of the pin junction was positioned Wb inward from the side surfaces of the upper electrode 9 and the lower smoked metal 17. When the TFD element is horizontally controlled in this way, when light enters from the direction of the arrow, the lower light-shielding metal l7 and the upper it-19
The light will be blocked by

次に、本発明のTFD素子の製造方法について述べる.
本発明のTFD素子は、3枚マスク方式によって製造す
ることができ、第2図(A)〜(D)および(l!)〜
(H)は、その主な製造過程を示した模式断面図であり
、それぞれ互いに直角方向から見た場合として対応させ
てある.また、ここでも第7図と共通部分には同一符号
を用いてある.先ず、ガラス基板l上に、ITOqi2
をスパッタ法もしくはエレクトロン・ビーム蒸着法によ
り、厚さ約1000人,シート抵抗20Ω/口程度に或
膜し、次にこの上にこれら或膜法により、厚さ約100
0〜2000人の膜を下遮光メタル17として形戒する
.この後第1のマスクパターンを用いて、フォトリソグ
ラフ工程を経て、ウエノトエッチング法により下遮光メ
タル17をパターンサイズとなるようにエッチングする
.続いてエッチング液を変え、ITO電極2を下遮光メ
タル17と同し大きさにエッチングする〔第2図(A)
,(E) )。
Next, the method for manufacturing the TFD element of the present invention will be described.
The TFD element of the present invention can be manufactured by a three-mask method, and FIGS. 2(A) to (D) and (l!) to
(H) is a schematic cross-sectional view showing the main manufacturing process, and each corresponds to the other when viewed from a perpendicular direction. In addition, the same reference numerals are used here as well for parts common to those in Fig. 7. First, ITOqi2 was placed on a glass substrate l.
A film with a thickness of about 1,000 Ω and a sheet resistance of 20 Ω/hole is formed by sputtering or electron beam evaporation, and then a film with a thickness of about 100 Ω/hole is formed using these methods.
The membrane of 0 to 2000 people is used as the lower light-shielding metal 17. Thereafter, using the first mask pattern, the lower light-shielding metal 17 is etched to the pattern size by a photolithography process and then by an etching method. Next, the etching solution is changed and the ITO electrode 2 is etched to the same size as the lower light-shielding metal 17 [Figure 2 (A)]
, (E) ).

次に、この上にa −Sl膜工を形或するために、プラ
ズマCVD法によりp層7を数100〜400Al層6
を数1000 〜3000人,n層5を数lOO〜4o
o人の順に堆積させる.このp層にはボロンを、n層に
は燐をそれぞれ所定量ドープする.次いで第2マスクパ
ターンを用いてフォトリソグラフ工程を経た後、ドライ
エッチング装置に移し、cl24に10%の酸素を加え
たエッチングガスを導入して、高周波(RF)i力50
0Wを印加し、ガス圧0.I Torrのもとてドライ
エンチングする〔第2図(B). (F) ) .その
後、この上に、上電極9を、スパッタ法またはエレクト
ロン・ビーム蒸着法で約iooo人程度の厚さに形威し
、第3のマスクパターンを用い、フォトリソグラフ工程
を経て、ウエットエッチングを行なう〔第2図(C),
(G) ) ,さらに、ドライエッチング装置に移し、
CF.に10%のIII IR jr ?n合したガス
を導入し図示してないレジストおよび上電極9をマスク
として、RF電力300 〜750 W,0.1〜0.
2 Torrのガス圧力下で、等方性エンヂングを行な
う.かくして、a −Si膜土の露出端面は、上電8i
9と下遮光メタル17の側面でこれら双方の内側に入り
、a −Sill土の表面積も小さくなる〔第2図(D
),(l{) ) .なお、第2図(D) , (H)
+のドライエッチングの過程で、反応性イオンエッチン
グ法により、CCI.に数%の酸素を混合したガスを導
入して、RF出力300W.ガス圧力0.I Torr
で、異方性エフチングを行なうことも可能である.この
ようにすると、a−SiM4の露出端面は、厚さ方向に
対して垂直な形状となる.それを、さらにオーバーエッ
チングしてその時間管理により、垂直形状のままa−s
+膜土の露出端面を、上電極9と下遮光メタルl7の内
側までもってくることができる.この場合のTFD素子
の模式断面図を第3図cA) , (B)に示す.〔発
明の効果〕 TFD素子を組み込んだ液晶表示パネルは、従来、入射
光による光電流が生ずることから、室内外の視聴環境の
照度レベルによっては、画儂が変化して見づらくなるこ
とがあったが、これに対して本発明では、実施例で述べ
たように、TFD素子のa−Sillを、その露出端面
が下遮光メタルと上t8iの側面より内側に入るように
構威したため、入射光が平行光束の場合も、散乱光の場
合も、下遮光メタルと上電極とによって遮光され、視Q
!環境の照度レヘル3,000〜10, 000Lxの
範囲で、光電流による画像変化が極めて小さく、液晶表
示パネルの画像表示を見やすい状態に、安定させること
ができたものである.
Next, in order to form an a-Sl film on this, the p layer 7 is formed by several hundred to 400 Al layers 6 by plasma CVD method.
1000 to 3000 people, n layer 5 to several lOO to 4o
Deposit in the order of o people. The p-layer is doped with boron, and the n-layer is doped with phosphorus. Next, after going through a photolithography process using the second mask pattern, it was transferred to a dry etching device, and an etching gas of 10% oxygen added to Cl24 was introduced, and a radio frequency (RF) i force of 50 was applied.
Apply 0W and reduce the gas pressure to 0. Dry enching under I Torr [Figure 2 (B). (F)). Thereafter, the upper electrode 9 is formed on top of this by sputtering or electron beam evaporation to a thickness of approximately 100 mm, and wet etching is performed using a third mask pattern through a photolithography process. [Figure 2 (C),
(G) ), further transferred to a dry etching device,
C.F. 10% III IR jr? RF power of 300 to 750 W and 0.1 to 0.0 W was introduced using a resist and upper electrode 9 (not shown) as masks.
Perform isotropic engineing under a gas pressure of 2 Torr. Thus, the exposed end face of the a-Si film soil is
9 and the side surface of the lower light-shielding metal 17, and the surface area of the a-Sill soil becomes smaller [Fig. 2 (D
), (l{) ) . In addition, Fig. 2 (D) and (H)
During the dry etching process of CCI. A gas mixed with several percent oxygen was introduced into the RF output of 300W. Gas pressure 0. I Torr
It is also possible to perform anisotropic etching. In this way, the exposed end face of the a-SiM4 has a shape perpendicular to the thickness direction. Then, by further over-etching and managing the time, it is possible to keep the vertical shape as it is.
+The exposed end surface of the membrane soil can be brought inside the upper electrode 9 and the lower light-shielding metal l7. A schematic cross-sectional view of the TFD element in this case is shown in Figure 3cA) and (B). [Effects of the Invention] Conventionally, liquid crystal display panels incorporating TFD elements generate photocurrent due to incident light, so depending on the illuminance level of the indoor and outdoor viewing environment, the image may change and become difficult to see. However, in the present invention, as described in the embodiment, the a-Sill of the TFD element is constructed so that its exposed end face is inside the side surface of the lower light-shielding metal and the upper t8i, so that the incident light is Whether it is parallel light flux or scattered light, it is blocked by the lower light-shielding metal and the upper electrode, and the visual Q.
! In the environmental illuminance range of 3,000 to 10,000 Lx, the image change due to photocurrent is extremely small, and the image display on the liquid crystal display panel can be stabilized in an easy-to-see state.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図(A)は、本発明のTFD素子の構造を示す模式
断面図、第1図(B)は、第1図(A)の直角方向から
見た模式断面図.第2図(A)〜(D)は、本発明のT
FD素子の製造工程図、第2図([!)〜()I)は、
それぞれ第2図(A)〜(D)の直角方向から見た模式
断面図、第3図(A)は、第1図とは異なる形状を示し
た模式断面図、第3図(B)は、同じく第3図(A)の
直角方向から見た模式断面図、第4図は、TFD素子の
ダイオードリング等価回路図、第5図は、4枚マスク方
式で作製された従来のTFD素子の模式断面図、第6図
は、従来のTFD素子の一部切断斜視図、第7図は、3
枚マスク方式で作製された従来のTFD素子の模式断面
図である. 1,11,12  :ガラス基板、2,14:ITO[
極、lfi光膜、4 : a−Si膜、5:n層、6:
i@,7:p層、Ilifi緑膜、9:上電極、10:
TFD、13:カラ− 7 イ/L/夕一、l5:液晶
、16:偏向板、17二下遮光メタル. 第3図 第4図 第5図 099999合合 第6図 第7図
FIG. 1(A) is a schematic cross-sectional view showing the structure of the TFD element of the present invention, and FIG. 1(B) is a schematic cross-sectional view viewed from a direction perpendicular to FIG. 1(A). FIGS. 2(A) to (D) show T of the present invention.
The manufacturing process diagram of the FD element, Figure 2 ([!) to ()I), is
Fig. 2 (A) to (D) are schematic cross-sectional views seen from the right angle direction, Fig. 3 (A) is a schematic cross-sectional view showing a shape different from that in Fig. 1, and Fig. 3 (B) is a schematic cross-sectional view showing a shape different from that in Fig. 1. , also a schematic cross-sectional view seen from the right angle direction of FIG. 3(A), FIG. 4 is a diode ring equivalent circuit diagram of a TFD element, and FIG. A schematic cross-sectional view, FIG. 6 is a partially cutaway perspective view of a conventional TFD element, and FIG.
1 is a schematic cross-sectional view of a conventional TFD element manufactured using a single mask method. 1, 11, 12: Glass substrate, 2, 14: ITO [
Pole, lfi optical film, 4: a-Si film, 5: n layer, 6:
i@, 7: p layer, Ilifi green film, 9: upper electrode, 10:
TFD, 13: Color 7 I/L/Yuichi, 15: Liquid crystal, 16: Polarizing plate, 17 Lower light shielding metal. Figure 3 Figure 4 Figure 5 099999 combination Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1)基板上に下遮光メタル、p−i−n接合を有する非
晶質シリコンおよび上電極を備え、液晶表示パネルの各
画素に非線形表示素子として用いて、この液晶表示パネ
ルを駆動する薄膜ダイオード素子であって、前記非晶質
シリコンの露出端面が前記下遮光メタルおよび前記上電
極の側面より内側に位置することを特徴とする薄膜ダイ
オード素子。
1) A thin film diode that is provided with a lower light-shielding metal, amorphous silicon having a pin junction, and an upper electrode on a substrate, and is used as a nonlinear display element in each pixel of a liquid crystal display panel to drive this liquid crystal display panel. 1. A thin film diode element, wherein an exposed end surface of the amorphous silicon is located inside a side surface of the lower light-shielding metal and the upper electrode.
JP1152562A 1989-06-15 1989-06-15 Thin-film diode element Pending JPH0317631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1152562A JPH0317631A (en) 1989-06-15 1989-06-15 Thin-film diode element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152562A JPH0317631A (en) 1989-06-15 1989-06-15 Thin-film diode element

Publications (1)

Publication Number Publication Date
JPH0317631A true JPH0317631A (en) 1991-01-25

Family

ID=15543194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152562A Pending JPH0317631A (en) 1989-06-15 1989-06-15 Thin-film diode element

Country Status (1)

Country Link
JP (1) JPH0317631A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690729A (en) * 1994-09-21 1997-11-25 Materials Technology, Limited Cement mixtures with alkali-intolerant matter and method
KR20010032543A (en) * 1997-11-28 2001-04-25 모리시타 요이찌 Reflection-type display device and image device using reflection-type display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690729A (en) * 1994-09-21 1997-11-25 Materials Technology, Limited Cement mixtures with alkali-intolerant matter and method
KR20010032543A (en) * 1997-11-28 2001-04-25 모리시타 요이찌 Reflection-type display device and image device using reflection-type display device

Similar Documents

Publication Publication Date Title
KR100628679B1 (en) Array panel, method for fabricating a Liquid crystal display device
KR100270127B1 (en) Lcd apparatus
US11294218B2 (en) Array substrate and its maufacturing method, liquid crystal display panel and its manufacturing method
KR100449772B1 (en) Electrooptical device, manufacturing method for manufacturing electrooptical device, and electronic equipment
CN105655290B (en) Liquid crystal display panel, array substrate and its manufacturing method
KR20010015210A (en) Liquid crystal display device and method of manufacturing the same
KR20160013486A (en) Mother Substrate For Display Device, Display Device and Method of manufacturing the same
KR20030010022A (en) liquid crystal display and manufacturing method of the same
KR20120107269A (en) Liquid crystal display device and method for fabricating the same
JP2001337334A (en) Production method for liquid crystal display device
JPH11153798A (en) Active matrix type liquid crystal display device
JP2003186022A (en) Liquid crystal display device and its manufacturing method
US5237436A (en) Active matrix electro-optic display device with light shielding layer and projection and color employing same
JP2758410B2 (en) Matrix type display device
GB2307088A (en) Liquid crystal display
US7202924B1 (en) Liquid crystal display and a fabricating method thereof
JPH0317631A (en) Thin-film diode element
CN110488546A (en) Array substrate, liquid crystal display panel and liquid crystal display
US6157431A (en) Liquid crystal display apparatus suppressed of orientation defect having metal film and photosensitive resin as a columnar spacer and fabrication method thereof
JPH08101400A (en) Liquid crystal display device
JPH05226654A (en) Etching processing method for tft array
KR100603852B1 (en) Method for manufacturing liquid crystal display device using diffraction exposure technique
JP3853946B2 (en) Active matrix liquid crystal display device
KR20040060602A (en) Sputter for deposition of metal layer and method of fabricating liquid crystal display device using sputter
KR20120107560A (en) Liquid crystal display device and method for fabricating the same