JPH03174366A - Boride/alumina-based sintered body and production thereof - Google Patents

Boride/alumina-based sintered body and production thereof

Info

Publication number
JPH03174366A
JPH03174366A JP1313949A JP31394989A JPH03174366A JP H03174366 A JPH03174366 A JP H03174366A JP 1313949 A JP1313949 A JP 1313949A JP 31394989 A JP31394989 A JP 31394989A JP H03174366 A JPH03174366 A JP H03174366A
Authority
JP
Japan
Prior art keywords
boride
aluminum oxide
volume
sintered body
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1313949A
Other languages
Japanese (ja)
Other versions
JP2742620B2 (en
Inventor
Katsura Hayashi
桂 林
Masashi Sakagami
勝伺 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1313949A priority Critical patent/JP2742620B2/en
Publication of JPH03174366A publication Critical patent/JPH03174366A/en
Application granted granted Critical
Publication of JP2742620B2 publication Critical patent/JP2742620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To enhance strength by mixing boride of one or more kinds selected from among groups IVa, Va, VIa metallic elements in the periodic table, two or more kinds of compds. selected from among these metallic elements, boron and O2 and Al2O3 at the ratio of specified volume and molding the mixture and roasting the molded body. CONSTITUTION:A powdery raw material is obtained by mixing 30-95vol.% (hereinafter shown in %) boride of one or more kinds of groups IVa, Va, VIa metallic elements such as TiB2 having <=3mum mean particle diameter, <=20% compd. of two or more kinds selected from among the above-mentioned metallic elements, boron and O2 such as B2O3 having <=2mum mean particle diameter and 5-70% Al2O3 powder having <=3mum mean particle diameter or substance such as 9Al2O3.B2O3 wherein Al2O3 is produced by roasting and one or all parts thereof consist of acicular particles and thereafter grinding the mixture. This powdery raw material is pressure-molded and thereafter the molded body is roasted at 1400-1900 deg.C in the reductive atmosphere wherein inert gas such as Ar or carbon is present. Thereby a boride/Al2O3-based sintered body is obtained wherein 5% or more consist of a circular particles having >=1.5 aspect ratio.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は、金属元素の硼化物および酸化アルミニウムを
主成分とするセラミックスに関し、より詳細には耐摩耗
性および靭性に優れた、特に製鉄精錬関連治工具、非鉄
精錬アルミニウム溶湯用治具及び切削工具用として適し
たセラミックスに関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to ceramics whose main components are metal elements boride and aluminum oxide, and more specifically, ceramics with excellent wear resistance and toughness, particularly for use in iron manufacturing and refining. Related jigs and tools, jigs for nonferrous refined aluminum molten metal, and ceramics suitable for cutting tools.

[従来技術及びその問題点1 アルミナ(AlzCh)質焼結体をはじめとするセラミ
ック材料は、従来から金属材料などに比較して耐摩耗性
等の機械的特性に優れていることから金属材料に代わる
材料として各種の構造用部品として使用されている。
[Prior art and its problems 1 Ceramic materials such as alumina (AlzCh) sintered bodies have traditionally been used as metal materials because they have superior mechanical properties such as wear resistance compared to metal materials. It is used as an alternative material for various structural parts.

しかしながら、最近に至ってはセラミックスに対してさ
らに高い特性が要求されており、アル果す質焼結体に対
しても他のセラミックスと複合化することにより各種の
改善が提案されている。
However, in recent years, ceramics have been required to have even higher properties, and various improvements have been proposed for aluminum sintered bodies by combining them with other ceramics.

また、セラくツクスの中でも特に耐摩耗性に優れた材料
として、硼化チタンや硼化ジルコニウムなどの硼化物の
研究開発が盛んに行われている。
Moreover, research and development of borides such as titanium boride and zirconium boride are being actively conducted as materials with particularly excellent wear resistance among ceramics.

[発明が解決しようとする問題点1 しかしながら、このような硼化物を主体とするセラミッ
クスは高い硬度を有する反面、強度や靭性が低く応用分
野が限られていた。
[Problem to be Solved by the Invention 1] However, although such boride-based ceramics have high hardness, their strength and toughness are low, and their fields of application are limited.

硼化チタンは硬度が高く、熱伝導性が良いことから切削
工具用材料として有望と考えられていたが、靭性を改善
する方法を見出すことが出来ず実用には到っていない。
Titanium boride has high hardness and good thermal conductivity, so it was thought to be a promising material for cutting tools, but it has not been put into practical use because no method has been found to improve its toughness.

近年になり、靭性改善のため金属と混合して焼結させる
ことも試みられているが、この方法では高温での強度が
極端に低下し金属硼化物の特性を活用することができな
いという問題があった。
In recent years, attempts have been made to mix it with metal and sinter it to improve its toughness, but this method has the problem that the strength at high temperatures drops dramatically and the properties of metal borides cannot be utilized. there were.

また、硼化ジルコニウムは金属との反応性が低いことか
ら金属溶湯用るつぼ等としての応用が期待されているが
、強度が低いことから構造材料としての応用分野は限ら
れている。
Furthermore, since zirconium boride has low reactivity with metals, it is expected to be used as crucibles for molten metal, but its low strength limits its application as a structural material.

[問題点を解決するための手段1 本発明者は上記の問題点に対し、検討を重ねた結果、硼
化物の結合剤として酸化アルミニウムと少量の酸化硼素
を添加することにより上記問題を解決し得ることを知見
した。
[Means for Solving the Problems 1] As a result of repeated studies, the inventor solved the above problems by adding aluminum oxide and a small amount of boron oxide as a binder for boride. I found out that I can get it.

更に、本発明者等は金属元素の硼化物に添加する酸化ア
ルミニウムを針状粒子とすることによって靭性面での上
記欠点を解消し、高温に到るまで高い硬度と靭性を維持
する材料を得た。
Furthermore, the present inventors solved the above-mentioned drawbacks in terms of toughness by forming acicular particles of aluminum oxide added to boride, a metal element, and obtained a material that maintains high hardness and toughness even at high temperatures. Ta.

即ち、本発明は製造方法として周期律表第1Va、Va
、VIa族金属元素から選ばれる少なくとも1種の硼化
物30〜95体積%と、酸化アルミニウムあるいは焼成
のよって酸化アルミニウムを生成する物質5〜70体積
%と、酸化硼素20体積%以下からなる混合物を成形後
、1400〜190O℃の温度で焼成するものであり、
焼結体として前記金属硼化物と、酸化アルミニウム並び
に前記金属元素、硼素、酸素から選ばれる少なくとも2
種からなる化合物とから構成されることを特徴とするも
ので、望ましくは上記酸化アルミニウムのうち少なくと
も5体積%がアスペクト比1.5以上の針状粒子より成
る硼化物−酸化アルミニウム質焼結体を特徴とするもの
である。
That is, the present invention uses Va and Va of the periodic table as a manufacturing method.
, a mixture consisting of 30 to 95 volume % of at least one boride selected from group VIa metal elements, 5 to 70 volume % of aluminum oxide or a substance that produces aluminum oxide by firing, and 20 volume % or less of boron oxide. After molding, it is fired at a temperature of 1400 to 190°C,
The sintered body contains the metal boride, aluminum oxide, and at least two selected from the metal elements, boron, and oxygen.
A boride-aluminum oxide sintered body in which at least 5% by volume of the aluminum oxide is comprised of acicular particles having an aspect ratio of 1.5 or more. It is characterized by:

以下、本発明を詳述する。The present invention will be explained in detail below.

本発明の焼結体は、周期律表第1Va、Va、■a族金
属元素から選ばれる少なくとも1種の硼化物及び酸化ア
ルミニウムに少量の酸化硼素を混合し、成形後、焼結さ
せて作成する。
The sintered body of the present invention is produced by mixing a small amount of boron oxide with at least one type of boride selected from metallic elements of groups 1 Va, Va, and ■a of the periodic table and aluminum oxide, molding, and then sintering the mixture. do.

前記金属元素の硼化物粉末は、平均粒径3μm以下、望
ましくはlμ謙以下がよい。この硼化物としては具体的
には、TiB、、ZrB、、HfB2、TaB 。
The boride powder of the metal element has an average particle size of 3 μm or less, preferably 1 μm or less. Specific examples of this boride include TiB, ZrB, HfB2, and TaB.

NbBz、CrB、、WB、 MO!05等が挙げられ
、これらは非化学量論組成の金属元素の硼化物であって
もよく、また2種以上の混合物であってもよい。
NbBz, CrB,, WB, MO! 05, etc., and these may be borides of metal elements having a non-stoichiometric composition, or may be a mixture of two or more thereof.

一方、酸化アルミニウム粉末は平均粒径3μm以下、望
ましくは1μm以下がよい。また、酸化アル亀ニウム粉
末の代わりに、焼成によって酸化アルミニウムを生成す
る物質、例えばアルミニウム金属或いは9A1zOs・
B2O3または2A1203・2BzO3等で表される
硼酸アルミニウムを用いることもできる。
On the other hand, the average particle size of aluminum oxide powder is preferably 3 μm or less, preferably 1 μm or less. In addition, instead of the alkhenium oxide powder, a substance that generates aluminum oxide upon firing, such as aluminum metal or 9A1zOs.
Aluminum borate represented by B2O3 or 2A1203.2BzO3 can also be used.

また、上記金属硼化物成分と酸化アルミニウム成分から
なる主成分に対し、酸化硼素を焼結助剤として添加する
。この酸化硼素は平均粒径5μm以下が望ましい。
Further, boron oxide is added as a sintering aid to the main component consisting of the metal boride component and aluminum oxide component. This boron oxide preferably has an average particle size of 5 μm or less.

これらの粉末は、周期律表第1Va、Va、VIa族金
属元素から選ばれる少なくとも1種の硼化物が30〜9
5体積%、特に50〜85体積%、酸化アルミニウムあ
るいは焼成のよって酸化アルミニウムを生成する物質を
酸化アルミニウムに換算して5〜70体積%、特に15
〜50体積%、酸化硼素が20体積%以下、特に1〜5
体積%の割合で混合される。前記金属硼化物が95体積
%を越えるかまたは前記酸化アルミニウム成分が5体積
%未満では焼結が難しく、逆に前記金属硼化物が30体
積%未満かまたは酸化アルミニウム成分が70体積%を
越えると得られる焼結体の硬度が低下し金属硼化物の特
性が発揮できなくなるからである。また、酸化硼素が2
0体積%を越えると焼結体の特性を劣化させる。
These powders contain at least one boride selected from metal elements in groups 1 Va, Va, and VIa of the periodic table.
5% by volume, especially 50-85% by volume, 5-70% by volume of aluminum oxide or a substance that produces aluminum oxide by calcination, especially 15% by volume.
~50% by volume, boron oxide not more than 20% by volume, especially 1-5
Mixed in volume %. Sintering is difficult when the metal boride exceeds 95 volume % or the aluminum oxide component exceeds 5 volume %, and conversely, when the metal boride exceeds 30 volume % or the aluminum oxide component exceeds 70 volume %. This is because the hardness of the obtained sintered body decreases and the properties of the metal boride cannot be exhibited. In addition, boron oxide is 2
If it exceeds 0% by volume, the properties of the sintered body will deteriorate.

また、本発明によれば、酸化アルミニウム成分の全部ま
たはその一部を針状粒子に置き換えることにより、焼結
体の靭性をさらに向上させることができる。用いられる
針状粒子としては酸化アルミニウムウィスカーや焼結時
の加熱によりアルミナウィスカーを生成する物質、例え
ば9Al□0.・2B202の化学式を有する硼酸アル
ミニウムウィスカー等が挙げられる。これらはその平均
径(短径)が2μm以下、特に0.2乃至0.7μmが
好ましく、また長径/短径で表わされるアスペクト比の
平均が3〜100、特に10乃至30のものが好適に用
いられる。この針状粒子は、焼結体においてアスペクト
比1.5以上の粒子が全体に対し5体積%以上、特に2
0体積%以上になるように配合することが望ましい。
Further, according to the present invention, the toughness of the sintered body can be further improved by replacing all or part of the aluminum oxide component with acicular particles. The acicular particles used include aluminum oxide whiskers and substances that generate alumina whiskers when heated during sintering, such as 9Al□0. - Aluminum borate whiskers having the chemical formula 2B202, etc. can be mentioned. These preferably have an average diameter (breadth axis) of 2 μm or less, particularly 0.2 to 0.7 μm, and an average aspect ratio expressed by major axis/breadth axis of 3 to 100, particularly preferably 10 to 30. used. These acicular particles have an aspect ratio of 1.5 or more in the sintered body, and the proportion of the particles is 5% by volume or more, especially 2% by volume.
It is desirable to mix it so that it is 0 volume% or more.

平均径を上記の範囲に限定したのは、2μm以下では焼
結時の粒成長が過大にならず、高い抗折強度を維持でき
るからであり、2μmより大きいと焼結時の結晶粒子の
粒成長が著しく、粒子径のコントロールが難しくなり、
強度が低下し靭性にばらつきが生じ、また切削工具とし
て用いた際に逃げ面の境界摩耗が大きくなる傾向にある
The reason why the average diameter is limited to the above range is that if it is 2 μm or less, grain growth during sintering will not become excessive and high bending strength can be maintained. The growth is significant, making it difficult to control the particle size.
Strength decreases, toughness varies, and boundary wear on the flank surface tends to increase when used as a cutting tool.

一方、アスペクト比の平均が3より小さいと繊維強化の
効果が少なく靭性が低下し、lOOより大きいと原料の
取扱が難しく、均一に分散できないために靭性が低下す
る傾向にあるが、この場合は一部を粉砕しながら混合す
れば問題なく使用できる。
On the other hand, if the average aspect ratio is smaller than 3, the effect of fiber reinforcement is small and the toughness decreases, and if it is larger than 100, it is difficult to handle the raw material and cannot be uniformly dispersed, so the toughness tends to decrease. You can use it without any problem if you mix it while crushing some of it.

上記の各原料粉末は、前述の範囲で混合した後に衆知の
成形手段、例えばブレス成形、押し出し成形、射出成形
、鋳込み成形、冷間静水圧成形等により所望の形状に成
形した後に焼成する。
The above-mentioned raw material powders are mixed within the above-mentioned range, then molded into a desired shape by well-known molding means such as press molding, extrusion molding, injection molding, cast molding, cold isostatic pressing, etc., and then fired.

焼成手段としては、普通焼成法、ホットプレス法、熱間
静水圧焼成法等が適用され、1400乃至1900℃の
温度でAr、 He等の不活性ガスもしくはカーボン等
の存在する還元性雰囲気およびそれらの加圧もしくは減
圧雰囲気で0.5乃至6.0時間行えばよく、特に高密
度の焼結体を得るためには、普通焼成法やホットプレス
法によって対理論密度比96%以上の焼結体を作威し、
さらに熱間静水圧焼成すればよい。
As the firing method, a normal firing method, a hot press method, a hot isostatic pressure firing method, etc. are applied, and the firing method is a reducing atmosphere in which an inert gas such as Ar or He or carbon, etc. is present at a temperature of 1400 to 1900°C. In order to obtain a particularly high-density sintered body, sintering with a theoretical density ratio of 96% or more can be performed using the normal sintering method or the hot press method. Power your body,
Further, hot isostatic pressure firing may be performed.

上記の焼成によれば、金属硼化物および酸化アル案ニウ
ムの殆どはそのまま残存し焼結するが、一部金属硼化物
が分解し、系中の酸素と反応し、前記金属の酸化物や酸
化硼素等が生成される。
According to the above calcination, most of the metal boride and aluminum oxide remain as they are and are sintered, but some of the metal boride decomposes and reacts with oxygen in the system, resulting in the formation of metal oxides and oxides. Boron etc. are generated.

一方、酸化アルミニウムに代わりにアルミニウム金属を
用いた場合は、焼結中に系中の酸素もしくは硼素と反応
しAIB、等の硼化アルミニウムもしくは酸化アルミニ
ウムを生成し、また硼酸アルミニウムを用いた場合は、
硼酸アルミニウムは1400°C付近で酸化アルミニウ
ムと酸化硼素に分離する。
On the other hand, when aluminum metal is used instead of aluminum oxide, it reacts with oxygen or boron in the system during sintering to produce aluminum boride or aluminum oxide such as AIB, and when aluminum borate is used, ,
Aluminum borate separates into aluminum oxide and boron oxide at around 1400°C.

原料中に添加される酸化硼素は、焼結過程において他の
原料から分離生成した酸化硼素とともに1500℃以上
では蒸発するが、いずれも焼結助剤としての効果を示し
焼結体の高緻密化を促進する。しかし、酸化硼素は焼結
体中に多く含有されると焼結体の硬度や強度を低下させ
るので、その含有量は20体積%以下、望ましくは5体
積%以下にするのがよい。
Boron oxide added to the raw material evaporates at temperatures above 1500°C along with boron oxide separated from other raw materials during the sintering process, but both act as sintering aids and help increase the density of the sintered body. promote. However, if a large amount of boron oxide is contained in the sintered body, it will reduce the hardness and strength of the sintered body, so the content is preferably 20% by volume or less, preferably 5% by volume or less.

上記の製造方法によって得られる焼結体は、酸化アルミ
ニウム相、周期律表第1Va 、 Va 、■a族金属
元素の硼化物からなる相、および焼結過程において生成
された酸化硼素や前記金属酸化物等の前記金属、硼素、
酸素から選ばれる少なくとも2種以上からなる化合物相
から構成される。本発明によれば、酸化アルミニウムを
5〜70体積%、特に15〜50体積%、前記金属硼化
物を30〜95体積%、特に50〜85体積%ならびに
前記金属、硼素、酸素から選ばれる少なくとも2種以上
からなる化合物相を20体積%以下、特に1〜5体積%
の割をで存在させることにより、優れた特性が得られる
The sintered body obtained by the above manufacturing method contains an aluminum oxide phase, a phase consisting of borides of Group 1 Va, Va, and ■a metal elements of the periodic table, and boron oxide produced in the sintering process and the metal oxides. The above-mentioned metals such as boron,
It is composed of a compound phase consisting of at least two or more types selected from oxygen. According to the invention, aluminum oxide is contained in an amount of 5 to 70% by volume, in particular 15 to 50% by volume, said metal boride is contained in an amount of 30 to 95% by volume, in particular 50 to 85% by volume, and at least one selected from said metals, boron and oxygen. The compound phase consisting of two or more types is 20% by volume or less, especially 1 to 5% by volume.
Excellent properties can be obtained by having a proportion of .

また、本発明によれば、原料中に酸化アル旦ニウム成分
として前述した針状物質を用いて焼結体中にAlzO+
ウィスカー等の針状粒子を分散させた微構造の焼結体を
作成すことにより、更に焼結体の靭性を高めることがで
きる。具体的には、焼結体中にアスペクト比1.5以上
の酸化アルミニウム結晶粒子が全体に対し5体積%以上
、特に20体積%以上の割合で存在させることが望まし
い。
Further, according to the present invention, AlzO +
By creating a sintered body with a fine structure in which acicular particles such as whiskers are dispersed, the toughness of the sintered body can be further improved. Specifically, it is desirable that aluminum oxide crystal particles having an aspect ratio of 1.5 or more are present in the sintered body in a proportion of 5% by volume or more, particularly 20% by volume or more, based on the whole.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

[実施例1 原料として、酸化アルミニウム粉末(平均粒径1μm以
下、純度99.9%以上)、周期律表第1Va、Va、
Via族金属元素の硼化物(粒径200メツシユ以下)
、酸化硼素(粒径200メツシユ以下)、酸化アルミニ
ウムウィスカー(平均粒径0.7μm、平均アスペクト
比15)および硼酸アルミニウムウィスカー(平均粒径
0.7μm、平均アスペクト比20)を用い、第1表に
示す割合に秤量後、回転ミルで12時間混合粉砕した。
[Example 1 As raw materials, aluminum oxide powder (average particle size 1 μm or less, purity 99.9% or more), periodic table 1 Va, Va,
Boride of Via group metal element (particle size 200 mesh or less)
, using boron oxide (particle size 200 mesh or less), aluminum oxide whiskers (average particle size 0.7 μm, average aspect ratio 15) and aluminum borate whiskers (average particle size 0.7 μm, average aspect ratio 20), Table 1. After weighing in the proportions shown, the mixture was mixed and ground in a rotary mill for 12 hours.

混合後のスラリーを乾燥してホットプレス用原料とした
The slurry after mixing was dried and used as a raw material for hot pressing.

この原料をカーボン型に充填し、所定の温度で1時間、
300Kg/cm”の圧力でホットプレス坑底して、J
ISに基づく抗折試験片を作成した。
This raw material is filled into a carbon mold and kept at a predetermined temperature for 1 hour.
Hot press bottom hole with a pressure of 300Kg/cm
A bending test piece based on IS was prepared.

得られた各試料を研磨してJISR1601に基づく3
点曲げ抗折強度を、また鏡面状態にポリッシングして1
M法でKICおよびビッカース硬度を測定した。
Each obtained sample was polished to 3 based on JISR1601.
The point bending strength is improved by polishing to a mirror finish.
KIC and Vickers hardness were measured by M method.

さらに、電子顕微鏡写真から酸化アルミニウム粒子中で
アスペクト比1.5以上の粒子の含有率を求めた。
Furthermore, the content of particles with an aspect ratio of 1.5 or more in the aluminum oxide particles was determined from the electron micrograph.

結果は第1表に示す。The results are shown in Table 1.

(以下余白) 第1表によれば、金属硼化物単体からなる試料1.9.
12.19〜23はいずれも焼結性に乏しく、特性上に
も抗折強度が35 kg/im”以下であり、靭性及び
ビッカース硬度はボイドのために測定ができなかった。
(Left below) According to Table 1, sample 1.9 consisting of a single metal boride.
All of No. 12.19 to No. 23 had poor sinterability, and their flexural strength was 35 kg/im" or less, and their toughness and Vickers hardness could not be measured due to voids.

また、酸化硼素の量が20体積%を越える試料Nα8は
特性の改善効果は認められず、さらに酸化アルミニウム
成分の量が70体積%を越える試料咀 は硬度が低く本
発明の目的は達成されない。
Further, in the case of sample Nα8 in which the amount of boron oxide exceeds 20% by volume, no improvement effect on the properties is observed, and furthermore, in the case of sample Nα8 in which the amount of aluminum oxide exceeds 70% by volume, the hardness is low and the object of the present invention cannot be achieved.

これに対し、本発明の試料はいずれも優れた特性を示し
、抗折強度35 Kg/m1以上、靭性(K+c)3.
5 MPa・+a””以上、ビッカース硬度1750以
上が達成された。
In contrast, all the samples of the present invention exhibited excellent properties, with a bending strength of 35 Kg/m1 or more and a toughness (K+c) of 3.
A hardness of 5 MPa·+a'' or more and a Vickers hardness of 1750 or more were achieved.

[発明の効果1 以上詳述した通り、本発明によれば周期律表第1Va、
Va、VIa族金属元素の硼化物に対し、酸化アルミニ
ウムおよび酸化硼素を添加することによりその焼結性を
改善し高い硬度、強度、靭性を兼ね備えた複合焼結体を
得ることができる。
[Effect of the invention 1 As detailed above, according to the present invention, the periodic table No. 1 Va,
By adding aluminum oxide and boron oxide to borides of group Va and VIa metal elements, the sinterability can be improved and a composite sintered body having high hardness, strength, and toughness can be obtained.

この焼結体は、その特性上から製鉄精錬関連治工具、 非鉄精錬アルミニウム溶湯用治具及び切削工具用として
優れた効果を発揮するが、その他各 種産業用部品材料等への応用も可能である。
Due to its characteristics, this sintered body exhibits excellent effects as a tool for iron refining, a jig for non-ferrous refined aluminum molten metal, and a cutting tool, but it can also be applied to various other industrial parts and materials. .

Claims (4)

【特許請求の範囲】[Claims] (1)周期律表第IVa、Va、VIa族金属元素から選ば
れる少なくとも1種の硼化物30〜95体積%と、酸化
アルミニウム5〜70体積%と、前記金属元素、硼素、
酸素から選ばれる少なくとも2種からなる化合物20体
積%以下とからなる硼化物−酸化アルミニウム質焼結体
(1) 30 to 95 volume % of at least one boride selected from group IVa, Va, and VIa metal elements of the periodic table, 5 to 70 volume % of aluminum oxide, and the metal element, boron,
A boride-aluminum oxide sintered body comprising 20% by volume or less of a compound comprising at least two species selected from oxygen.
(2)前記焼結体のうち少なくとも5体積%がアスペク
ト比1.5以上の針状粒子よりなる特許請求の範囲第1
項記載の硼化物−酸化アルミニウム質焼結体。
(2) At least 5% by volume of the sintered body is comprised of acicular particles having an aspect ratio of 1.5 or more.
A boride-aluminum oxide sintered body as described in 2.
(3)周期律表第IVa、Va、VIa族金属元素から選ば
れる少なくとも1種の硼化物30〜95体積%と、酸化
アルミニウムあるいは焼成によって酸化アルミニウムを
生成する物質5〜70体積%と、酸化硼素20体積%以
下とからなる混合物を成形後、1400〜1900℃の
温度で焼成することを特徴とする硼化物−酸化アルミニ
ウム質焼結体の製造方法。
(3) 30 to 95 volume % of at least one boride selected from group IVa, Va, and VIa metal elements of the periodic table; 5 to 70 volume % of aluminum oxide or a substance that produces aluminum oxide upon firing; 1. A method for producing a boride-aluminum oxide sintered body, which comprises molding a mixture comprising 20% by volume or less of boron and then firing it at a temperature of 1400 to 1900°C.
(4)前記酸化アルミニウムあるいは焼成によって酸化
アルミニウムを生成する物質の一部あるいはその全部が
針状粒子からなる特許請求の範囲第3項記載の硼化物−
酸化アルミニウム質焼結体の製造方法。
(4) The boride according to claim 3, wherein part or all of the aluminum oxide or the substance that generates aluminum oxide upon firing is comprised of acicular particles.
A method for producing an aluminum oxide sintered body.
JP1313949A 1989-12-01 1989-12-01 Boride-aluminum oxide sintered body and method for producing the same Expired - Fee Related JP2742620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1313949A JP2742620B2 (en) 1989-12-01 1989-12-01 Boride-aluminum oxide sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313949A JP2742620B2 (en) 1989-12-01 1989-12-01 Boride-aluminum oxide sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03174366A true JPH03174366A (en) 1991-07-29
JP2742620B2 JP2742620B2 (en) 1998-04-22

Family

ID=18047437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313949A Expired - Fee Related JP2742620B2 (en) 1989-12-01 1989-12-01 Boride-aluminum oxide sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2742620B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113651628A (en) * 2021-06-23 2021-11-16 重庆科技学院 Method for preparing aluminum borate whisker reinforced non-metal-based composite material by adopting hot pressing and hot isostatic pressing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692161A (en) * 1979-12-22 1981-07-25 Dijet Ind Co Ltd Ceramic tool material
JPS6452683A (en) * 1987-06-09 1989-02-28 Sandvik Ab Whisker of like reinforced ceramic cutting tool material
JPH01252583A (en) * 1988-03-31 1989-10-09 Aisin Seiki Co Ltd High tough ceramics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692161A (en) * 1979-12-22 1981-07-25 Dijet Ind Co Ltd Ceramic tool material
JPS6452683A (en) * 1987-06-09 1989-02-28 Sandvik Ab Whisker of like reinforced ceramic cutting tool material
JPH01252583A (en) * 1988-03-31 1989-10-09 Aisin Seiki Co Ltd High tough ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113651628A (en) * 2021-06-23 2021-11-16 重庆科技学院 Method for preparing aluminum borate whisker reinforced non-metal-based composite material by adopting hot pressing and hot isostatic pressing
CN113651628B (en) * 2021-06-23 2023-06-02 重庆科技学院 Method for preparing aluminum borate whisker reinforced nonmetal-based composite material by hot pressing and hot isostatic pressing

Also Published As

Publication number Publication date
JP2742620B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
JPS5924751B2 (en) Sintered shaped body
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
EP0170889B1 (en) Zrb2 composite sintered material
US4933308A (en) High strength high toughness TiB2 ceramics
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JP3051603B2 (en) Titanium compound sintered body
JPH0437653A (en) Production of ceramics sintered body
JP2759290B2 (en) Manufacturing method of aluminum oxide sintered body
JP2997320B2 (en) Fiber reinforced ceramics
JPS61270265A (en) High strength high tougness tib2 base composite sintered body
JP2004107691A (en) High strength titanium alloy and its production method
JPH03228867A (en) Aluminum oxide-based sintered body and production thereof
JP2794122B2 (en) Fiber reinforced ceramics
JP2720093B2 (en) Fiber reinforced ceramics
JP2931916B2 (en) Ceramic sintered body
JPS6337069B2 (en)
JP2533854B2 (en) ZrO2-based ceramics sintered body for wear resistant structural material
JPS6337068B2 (en)
JPH04132658A (en) Ceramic sintered compact and production thereof
CA1189094A (en) Ceramic composition
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPS6126570A (en) Boride sintered body and manufacture
JPH04349165A (en) Fiber reinforced ceramics
JPH0483753A (en) Ceramic reinforced with alumina fiber
JPH05170520A (en) Fiber-reinforced ceramics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees