JPH03173782A - Method for working material body - Google Patents

Method for working material body

Info

Publication number
JPH03173782A
JPH03173782A JP31173589A JP31173589A JPH03173782A JP H03173782 A JPH03173782 A JP H03173782A JP 31173589 A JP31173589 A JP 31173589A JP 31173589 A JP31173589 A JP 31173589A JP H03173782 A JPH03173782 A JP H03173782A
Authority
JP
Japan
Prior art keywords
resist layer
material body
projecting part
pattern
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31173589A
Other languages
Japanese (ja)
Inventor
Takeshi Okada
健 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP31173589A priority Critical patent/JPH03173782A/en
Publication of JPH03173782A publication Critical patent/JPH03173782A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To efficiently form high-precision recessed and projecting parts in the surface of a material body in a relatively short time by applying ion implantation to a resist layer formed on the surface of a material body to form a projecting part pattern and then removing the resist layer other than the above projecting part pattern. CONSTITUTION:A conductive coating material, etc., are applied to the surface 2 of a material body 1 consisting, e.g. of SiC and is dried and cured, by which a resist layer 3 of about 1-3mu film thickness is uniformly formed. Subsequently, ions are implanted from the position above the resist layer 3 into this resist layer 3 to form a projecting part pattern 4. At this time, e.g. Si<+> and C<+> ions of about 150KeV are implanted by using a target having a composition equal to that of the material body 1 because this material body 1 is made of SiC. Then, the layer 3 free from the pattern 4 is irradiated with O2 reactive ion etching power and removed. By this method, a groove 5 as a recessed part and the projecting part 4 can be formed at a velocity, e.g. of >=2mum/Hr.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、金属・非金属等の物体の表面、特に高速Φ
高圧用の非接触ガスシールの端面の溝や気体軸受の溝(
スパイラルグループ)等の形成に好適な物体の加工方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention is applicable to surfaces of objects such as metals and non-metals, especially high-speed Φ
Grooves on the end face of high-pressure non-contact gas seals and grooves on gas bearings (
This invention relates to a method for processing objects suitable for forming spiral groups.

(従来の技術) 従来、この種のfJ(凹部及び凸部)形成においては、
ダイヤモンド等の硬質粒子を用いたブラスト法が採用さ
れていたが、形成される溝の寸法公差(深さ1幅等)と
、溝形成後の表面粗さの点で要求される精度に加工する
ことができない場合が多い、そこで近年は金属や非金属
の表面を化学的または電気的に腐食させることにより、
溝を形成するエツチング法がドライ、ウェットの双方か
ら検討され注目を浴びている。
(Prior art) Conventionally, in this type of fJ (concave and convex) formation,
A blasting method using hard particles such as diamond has been adopted, but it is necessary to process the groove to the required precision in terms of dimensional tolerances (depth, width, etc.) and surface roughness after the groove is formed. However, in recent years, the surface of metals and nonmetals has been chemically or electrically corroded.
Etching methods for forming grooves have been studied for both dry and wet etching and are attracting attention.

(発明が解決しようとする課題) しかしながら、上記エツチング法を用いて溝加工を行っ
たとしても次のような問題点があった。
(Problems to be Solved by the Invention) However, even if groove processing is performed using the above-mentioned etching method, there are the following problems.

即チ、ウェットエツチング法によれば比較的安価な設備
で容易に溝加工を行えるが、サイドエツチングの問題や
エツチング面の粗さ自体の調整等が行ないにくく、その
向上は技術的に限界がある。
According to the wet etching method, grooves can be easily machined using relatively inexpensive equipment, but there are technical limits to the improvement due to the problem of side etching and the difficulty in adjusting the roughness of the etched surface itself. .

また、ドライエツチング法はエツチングの均一性を保つ
ことが難しいばかりでなく、エツチング速度が遅い(I
JLmの加工に1〜2Hrの時間を要する)ため、加工
時間が長くなってしまうという問題がある。
In addition, with the dry etching method, it is not only difficult to maintain etching uniformity, but also the etching speed is slow (I
(JLm processing takes 1 to 2 hours), there is a problem in that the processing time becomes long.

この発明は上記課題を解決するためのもので。This invention is intended to solve the above problems.

比較的短時間(2JL m / Hr以上)で物体の表
面に精度の高い凹凸部を形成できるとともに、凹凸部形
成面の粗さの調整の容易な物体の加工方法を提供するこ
とを目的としている。
The purpose of the present invention is to provide an object processing method that can form highly accurate uneven portions on the surface of an object in a relatively short time (2JL m/Hr or more) and that allows easy adjustment of the roughness of the surface on which the uneven portions are formed. .

(課題を解決するための手段) 上記目的を達成するためこの発明は、物体の表面にレジ
スト層を形成する第一工程と、レジスト層にイオンを注
入して凸部パターンを形成する第二工程と、凸部パター
ン以外のレジスト層を除去して凹部を形成する第三工程
とを有する物体の加工方法を構成した。
(Means for Solving the Problem) In order to achieve the above object, the present invention includes a first step of forming a resist layer on the surface of an object, and a second step of forming a convex pattern by implanting ions into the resist layer. and a third step of removing the resist layer other than the convex pattern to form concave portions.

(作 用) 上記構成に基づくこの発明は、第一工程で物体の表面に
レジスト層が形成される。第二工程ではレジスト層にイ
オンを注入し、このレジスト層に凸部パターンを形成す
る。第三工程では凸部パターン以外のレジスト層を除去
する。その結果、物体の表面に凹凸部が形成される。
(Function) In the present invention based on the above configuration, a resist layer is formed on the surface of the object in the first step. In the second step, ions are implanted into the resist layer to form a convex pattern in the resist layer. In the third step, the resist layer other than the convex pattern is removed. As a result, uneven portions are formed on the surface of the object.

(実施例) 次に、この発明を添付図面に示す実施例に基づいて説明
する。
(Example) Next, the present invention will be described based on an example shown in the accompanying drawings.

第1図において、lは物体としての炭化けい素であり、
その表面2は予め洗浄等の前処理を施しである。この発
明に係る第一工程では、第2図のように炭化けい素1の
表面z上に導電性塗料等を塗布するとともに、これを乾
燥硬化させて膜厚l〜3IL程度のレジスト層3を均一
に形成する。
In FIG. 1, l is silicon carbide as an object,
The surface 2 has been previously subjected to pretreatment such as cleaning. In the first step according to the present invention, as shown in FIG. 2, a conductive paint or the like is applied on the surface z of silicon carbide 1, and this is dried and hardened to form a resist layer 3 with a film thickness of about 1 to 3 IL. Form evenly.

次に、第二工程では第3図に示すように、レジスト層3
の上方から当該レジスト層3内へイオンの注入を行ない
、凸部パターン4を形成する0本実施例では、物体が炭
化けい素製であるため、それと同等の組成を有するター
ゲット(図示せず)により1例えば、150KeV程度
のSi・ 、C・イオンを注入している。
Next, in the second step, as shown in FIG.
Ions are implanted into the resist layer 3 from above to form the convex pattern 4. In this embodiment, since the object is made of silicon carbide, a target (not shown) having the same composition as the object is used. For example, Si·, C· ions of about 150 KeV are implanted.

そして、第三工程で凸部パターン4のないレジスト層3
に、Ozリアクティブイオンエッチングバワーを1例え
ばtooowとしてガス圧70〜100Paを照射し、
当該レジスト層3を除去(スパッタリング)すれば、第
4図に示すような凹部としての溝5及び凸部4aが形成
される(たとえば2 p、 m / Hr以上の速度で
)こととなる。
Then, in a third step, a resist layer 3 without a convex pattern 4 is formed.
, irradiate with a gas pressure of 70 to 100 Pa with an Oz reactive ion etching power of 1, for example, too low,
If the resist layer 3 is removed (sputtered), grooves 5 as recesses and protrusions 4a as shown in FIG. 4 are formed (for example, at a rate of 2 p, m/Hr or more).

上記第二工程のイオン注入及び第三工程のイオンエツチ
ングによるレジスト層3の非凸部パターン4の除去は、
収束イオンビームを用いて行なう、この収束イオンビー
ムのレジスト層3への照射は、実際に凸部パターン4の
形成状態を検鏡しながら行なうことができるし、従来の
スパッタリングの逆の方法、即ち、−旦形成したレジス
ト層3の除去であることから、レジスト層3の厚さと注
入イオンに保有させる電圧との関係から、レジスト層3
の厚さに対応したイオン注入、即ち凸部パターン4の深
さを51Lm以下を任意に選択し、高精度かつ容易に形
成することができる。これは、収束イオンビーム自体、
比較的低電流密度で照射できるとともに、収束の度合い
も0.lILm程度まで絞り込むことが可能だからであ
る。
The removal of the non-convex pattern 4 of the resist layer 3 by the ion implantation in the second step and the ion etching in the third step is as follows:
Irradiation of the resist layer 3 with the focused ion beam using a focused ion beam can be performed while actually observing the formation state of the convex pattern 4, and can be performed using a method opposite to the conventional sputtering method, i.e. , -Since this is the removal of the previously formed resist layer 3, from the relationship between the thickness of the resist layer 3 and the voltage held by the implanted ions, the resist layer 3 is removed.
By performing ion implantation corresponding to the thickness of , that is, by arbitrarily selecting the depth of the convex pattern 4 to be 51 Lm or less, it is possible to form it easily and with high precision. This is the focused ion beam itself,
It can be irradiated with relatively low current density and the degree of convergence is 0. This is because it is possible to narrow down the number to about lILm.

また、 02によるレジスト層3の除去時においても、
その溝5の形成面粗さの調整は凸部パターン4の形成程
度及びレジスト層3の厚さ等の初期設定に依存して比較
的高い状態に維持することができる。
Also, when removing the resist layer 3 using 02,
Adjustment of the surface roughness of the grooves 5 can be maintained at a relatively high level depending on initial settings such as the degree of formation of the convex pattern 4 and the thickness of the resist layer 3.

第5図は上記加工方法により形成したスラスト気体軸受
6を示している。軸7の周囲に配置した軸受6の内周に
は溝(スパイラルグループ)5が形成しである。
FIG. 5 shows a thrust gas bearing 6 formed by the above processing method. A groove (spiral group) 5 is formed on the inner periphery of the bearing 6 arranged around the shaft 7.

第7図は同様にしてラジアル気体軸受8に支持される軸
9のジャーナル部に溝5(へりングボーン)を形成した
ものである− 第7UgJは高速・高圧用の環状非接触ガスシール部材
10の端面に1本発明により溝5を形成した例である。
FIG. 7 shows a groove 5 (herring bone) formed in the journal portion of a shaft 9 supported by a radial gas bearing 8 in the same manner. - No. 7 UgJ is an annular non-contact gas seal member 10 for high speed and high pressure applications. This is an example in which a groove 5 according to the present invention is formed on the end face.

なお、上記実施例においては、物体が炭化けい素である
例を説明しているが、用途に応じて樹脂1合金等にも適
用できることは勿論である。
In the above embodiments, an example is explained in which the object is silicon carbide, but it goes without saying that the object can also be applied to resin 1 alloy etc. depending on the application.

(発明の効果) この発明は以上のように構成したものであるから、比較
的短時間で効率よく物体の表面に加工精度の高い凹凸部
を形成できるとともに、凹凸部形成面の粗さを容易に調
整できるという優れた効果を奏する。
(Effects of the Invention) Since the present invention is configured as described above, it is possible to efficiently form uneven portions on the surface of an object with high processing accuracy in a relatively short time, and to easily reduce the roughness of the surface on which the uneven portions are formed. It has the excellent effect of being adjustable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明に係る物体の加工工程を示す略
示的正面断面図、第5図、第6図は物体の具体例を示す
正面断面図、第7図は同じく斜視図である。 符号の説明 1・・・炭化けい素(物体) 2・・・物体の表面  3・・・レジスト層4・・・凸
部パターン 4a・・・凸部5・・・溝(凹部) 第2図 第3図 雰f 4 ”TW 第5図
1 to 4 are schematic front sectional views showing processing steps of an object according to the present invention, FIGS. 5 and 6 are front sectional views showing specific examples of the object, and FIG. 7 is a perspective view as well. It is. Explanation of symbols 1...Silicon carbide (object) 2...Surface of object 3...Resist layer 4...Protrusion pattern 4a...Protrusion 5...Groove (recess) Fig. 2 Figure 3 Atmosphere f4”TW Figure 5

Claims (1)

【特許請求の範囲】[Claims] 物体の表面にレジスト層を形成する第一工程と、レジス
ト層にイオンを注入して凸部パターンを形成する第二工
程と、凸部パターン以外のレジスト層を除去して凹部を
形成する第三工程とを有する物体の加工方法。
A first step of forming a resist layer on the surface of an object, a second step of implanting ions into the resist layer to form a convex pattern, and a third step of forming a concave portion by removing the resist layer other than the convex pattern. A method of processing an object having a process.
JP31173589A 1989-11-30 1989-11-30 Method for working material body Pending JPH03173782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31173589A JPH03173782A (en) 1989-11-30 1989-11-30 Method for working material body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31173589A JPH03173782A (en) 1989-11-30 1989-11-30 Method for working material body

Publications (1)

Publication Number Publication Date
JPH03173782A true JPH03173782A (en) 1991-07-29

Family

ID=18020842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31173589A Pending JPH03173782A (en) 1989-11-30 1989-11-30 Method for working material body

Country Status (1)

Country Link
JP (1) JPH03173782A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161717A (en) * 1985-01-10 1986-07-22 Mitsubishi Electric Corp Formation of gate electrode pattern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161717A (en) * 1985-01-10 1986-07-22 Mitsubishi Electric Corp Formation of gate electrode pattern

Similar Documents

Publication Publication Date Title
Glöersen Ion− beam etching
US6267869B1 (en) Electrode design for electrochemical machining of grooves
JP2932650B2 (en) Manufacturing method of microstructure
WO1999019527A3 (en) Apparatus and method for utilizing a plasma density gradient to produce a flow of particles
WO2000058953A3 (en) Reactive ion beam etching method and a thin film head fabricated using the method
EP0804638A1 (en) Polishing diamond surface
US8092560B2 (en) Lapping tool and method for manufacturing the same
JPH03173782A (en) Method for working material body
US3869368A (en) Methods of sputter deposition of materials
US3904462A (en) Method of manufacturing etched structures in substrates by ion etching
JPS61292000A (en) Formation of groove/fin pattern to support surface of dynamical bearing
US6194048B1 (en) Magnetic recording disk
JP2007190593A (en) Substrate holding device and substrate working device
US4157465A (en) Gas-lubricated bearings
US3684678A (en) Methods of machining
Chou et al. The fabrication of millimeter-wavelength accelerating structures
JP2972368B2 (en) Al2O3-based sliding material and method of manufacturing the same
JPH0770513B2 (en) Etching method and etching apparatus
JP3478739B2 (en) Ion beam processing method and workpiece by the same
WO2005001919A1 (en) Dry etching method and information recording medium
JP2985230B2 (en) Plasma equipment
JP2003003262A (en) Method of manufacturing member coated with hard carbon film
JPH09204624A (en) Manufacture of magnetic head slider
SU1624549A1 (en) Method for manufacture of contact plating of contacting parts of magnetically-controlled hermetically sealed contacts
SU718497A1 (en) Bearing production device