JPH03173060A - Sealed battery - Google Patents

Sealed battery

Info

Publication number
JPH03173060A
JPH03173060A JP1313588A JP31358889A JPH03173060A JP H03173060 A JPH03173060 A JP H03173060A JP 1313588 A JP1313588 A JP 1313588A JP 31358889 A JP31358889 A JP 31358889A JP H03173060 A JPH03173060 A JP H03173060A
Authority
JP
Japan
Prior art keywords
groove
battery case
battery
case
explosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1313588A
Other languages
Japanese (ja)
Other versions
JP2870067B2 (en
Inventor
Tomokazu Mitamura
知一 三田村
Shuichi Nishino
西野 秀一
Hiroshi Fukuda
浩 福田
Kenichi Morigaki
健一 森垣
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1313588A priority Critical patent/JP2870067B2/en
Publication of JPH03173060A publication Critical patent/JPH03173060A/en
Application granted granted Critical
Publication of JP2870067B2 publication Critical patent/JP2870067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To obtain an explosion-proof function having high safety and high productivity by forming a groove whose cross section is a pentagon in the bottom of a battery case as a thin part. CONSTITUTION:A groove 10 whose cross section is a pentagon is formed on the outside of the bottom 1a of a battery case 1. By forming the groove 10 whose cross section is a pentagon connected by points a-e, a thin part 16 is installed. By specifying angles theta1-theta4 when the groove is formed, the case material flows along the slope of a punch corresponding to sides ab, ae, bc, and de. An explosion-proof function having high safety and high productivity can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、防爆安全装置を備えた密閉形電池に関し、特
に、オキシハロゲン化物系の液体活物質を用い、ハーメ
チックシールを採用した密閉形電池に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sealed battery equipped with an explosion-proof safety device, and more particularly to a sealed battery using an oxyhalide-based liquid active material and employing a hermetic seal. It is.

従来の技術 塩化チオニル−リチウム電池で代表されるような、正極
活物質としてオキシハロゲン化物を用い、負極活物質と
してアルカリ金属を用いる電池では、活物質が水分と非
常に反応しやすいため、電池ケースをハーメチックシー
ルにより封口する完全密閉構造が採用されている。
Conventional technology In batteries that use oxyhalide as the positive electrode active material and alkali metal as the negative electrode active material, such as thionyl chloride-lithium batteries, the active material reacts very easily with moisture, so the battery case A completely hermetic structure is used to seal the area with a hermetic seal.

このようなハーメチックシールを採用した電池では、密
閉性が高い反面、高温加熱下に置かれたり、高電圧で充
電されるなどの事態に遭遇すると、電池の内部圧力が異
常に上昇して破裂に至り、電池使用機器を破損するおそ
れがある。そこで、種々の防爆安全装置が提案されてき
たが、特に電池ケースの底部に溝を加工し薄肉部を形成
したものが多かった。
Batteries that use such hermetic seals have a high degree of airtightness, but if they are placed under high temperature heating or charged at high voltage, the internal pressure of the battery will rise abnormally and the battery may explode. This may result in damage to equipment using batteries. Therefore, various explosion-proof safety devices have been proposed, but in particular, many of them have a groove formed in the bottom of the battery case to form a thin wall portion.

塩化チオニル−リチウム電池では、正極活物質の強い腐
食性に酎えるために電池ケースにはステンレス鋼などの
硬度の高い耐食性金属が使用され、特に溝の加工をプレ
ス成形で行う場合、ステンレス鋼が加工硬化してポンチ
が損傷を受は易く、ポンチの耐久性面と防爆性能面の両
方を満足させる溝の設計が要求される。
In lithium thionyl chloride batteries, a hard and corrosion-resistant metal such as stainless steel is used for the battery case due to the strong corrosivity of the positive electrode active material. The punch is easily damaged by work hardening, and a groove design that satisfies both the durability and explosion-proof performance of the punch is required.

従来、この種の密閉形電池は、第5図に示すような構成
であった。第5図において、塩化チオニル−リチウム電
池の発電要素、例えばリチウム負極11.セパレータ1
2,19,20.炭素多孔質成形体正極13などを収納
した電池ケース1の開口部にガラス層16を介して正極
端子17を設けた電池蓋15を溶接してあり、正極端子
17はパイプ状をしていて、その上端部を電解液18を
注入した後正極集電体14の上部と溶接して封止してあ
った。電池ケース1の底部2に、底部が平坦な断面倒立
台形状で少なくとも1箇所の交点を有する複数本の溝3
(実施例においては平面形状が十字状)が形成されてい
た。第6図は、第5図に示す従来の構成による密閉形電
池に用いた電池ケースの底部に形成された溝、薄肉部お
よびその近傍の拡大断面図である。第6図において、電
池ケース1の底部2に、溝3の形成によって薄肉部4を
設け、更に、該薄肉部4の溝3の交点3bに位置する部
分4aの厚さtlを、薄肉部4の溝3の交点3b以外の
ところに位置する部分4bの厚さt2よりも厚< (1
,05〜1.5倍)にしていた(特開昭63−2946
65号公報)。
Conventionally, this type of sealed battery has had a configuration as shown in FIG. In FIG. 5, a power generating element of a thionyl chloride-lithium battery, such as a lithium negative electrode 11. Separator 1
2, 19, 20. A battery cover 15 with a positive electrode terminal 17 provided thereon is welded to the opening of the battery case 1 containing a carbon porous molded positive electrode 13 through a glass layer 16, and the positive electrode terminal 17 has a pipe shape. After the electrolytic solution 18 was injected into the upper end thereof, the upper end was welded to the upper part of the positive electrode current collector 14 and sealed. A plurality of grooves 3 are formed on the bottom 2 of the battery case 1 in the shape of a raised trapezoid with a flat bottom and having at least one intersection point.
(In the example, the planar shape was a cross). FIG. 6 is an enlarged cross-sectional view of a groove formed in the bottom of a battery case used in the conventional sealed battery shown in FIG. 5, a thin wall portion, and the vicinity thereof. In FIG. 6, a thin wall portion 4 is provided in the bottom portion 2 of the battery case 1 by forming grooves 3, and the thickness tl of a portion 4a of the thin wall portion 4 located at the intersection 3b of the grooves 3 is The thickness < (1
, 05 to 1.5 times)
Publication No. 65).

発明が解決しようとする課題 このような従来の構成では、溝をプレス成形する際、第
6図に示す、4aと4bが同じ厚さの場合よりも、交点
部に相当するポンチの損傷が軽減されてはいるが、溝底
部に平坦部があるためケース材料が逃げにくいので、薄
く加工しようとするほど加工荷重が大きくなり、ポンチ
に負担がかかる。また防爆機能面をみると、電池の内部
圧力が異常に上昇し電池ケースの底部が外方向へ膨張し
た時、一番引張応力の加わる交点部分が肉厚になればな
るほど破壊されにくくなり、交点近傍の薄肉部に亀裂が
生じても、交点部で寸断され亀裂が拡大せず、内部圧力
の逸散能力におくれをきたすという課題があった。
Problems to be Solved by the Invention With such a conventional configuration, when press forming a groove, damage to the punch corresponding to the intersection point is reduced compared to the case where 4a and 4b have the same thickness as shown in FIG. However, since there is a flat part at the bottom of the groove, it is difficult for the case material to escape, so the thinner the case is made, the greater the processing load becomes, which puts a strain on the punch. In addition, in terms of explosion-proof function, when the internal pressure of the battery rises abnormally and the bottom of the battery case expands outward, the thicker the wall at the intersection where the most tensile stress is applied, the less likely it will be destroyed. Even if a crack occurs in a nearby thin-walled portion, the problem is that the crack is broken at the intersection and does not expand, resulting in a slowdown in the ability to dissipate internal pressure.

本発明はこのような課題を解決するもので、電池ケース
の底部の溝形状を改良し、プレス成形による薄肉加工を
安定化させることにより、安全性及び量産性の高い防爆
機能を備えた密閉形電池を提供することを目的とするも
のである。
The present invention solves these problems by improving the groove shape at the bottom of the battery case and stabilizing the thin wall processing by press forming, thereby creating a sealed type with explosion-proof function that is highly safe and suitable for mass production. The purpose is to provide batteries.

課題を解決するための手段 この課題を解決するために本発明は、金属製の有底電池
ケースを用いた密閉形電池において、該電池ケースの底
部に、断面形状が五角形である溝を形成して薄肉部を設
けたものである。好ましくは前記溝が交わらない3本の
溝より構成され、そのうちの1本は該電池ケースの底部
の中心部を通り、他の2本は該中心部を通る溝を中心線
として線対称の位置関係にあり、かつ該中心部を通る溝
の中点より垂直方向に延びる線上に形成することにより
、防爆機能を持たせたものである。
Means for Solving the Problem In order to solve this problem, the present invention provides a sealed battery using a metal battery case with a bottom, in which a groove having a pentagonal cross-sectional shape is formed in the bottom of the battery case. A thin wall portion is provided. Preferably, the grooves are composed of three grooves that do not intersect, one of which passes through the center of the bottom of the battery case, and the other two are arranged in line-symmetrical positions with respect to the groove that passes through the center. By forming the groove on a line extending perpendicularly from the midpoint of the groove passing through the center, an explosion-proof function is provided.

作用 この構成により、溝加工時に断面形状五角形の4辺に相
当するポンチの斜面に沿ってケースの材料が逃げ易いの
で、従来の技術にみるような溝の底部に平坦部を有する
場合の溝加工よりも加工荷重が小さくて済み、ポンチの
負担が軽減されるため、ポンチの先端に角度を持っては
いるものの耐久性は差がない。また、断面形状が三角形
(7字状)の溝加工と比べると、ポンチの先端が肉厚で
あるため、ポンチ自体の強度が保たれ、耐久性がある。
Effect: With this configuration, the material of the case easily escapes along the slopes of the punch corresponding to the four sides of the pentagonal cross-section during groove machining. The machining load is smaller than that of the conventional method, and the burden on the punch is reduced, so there is no difference in durability even though the tip of the punch has an angle. Furthermore, compared to groove machining with a triangular (7-shaped) cross-sectional shape, the tip of the punch is thicker, so the punch itself maintains its strength and is durable.

そして、防爆機能の作動性においては、ケースの板厚内
にある断面形状五角形の三つの角がそれぞれ切欠効果を
発揮し、電池の内部圧力が上昇し、ケースの底部が膨張
することによる引張力が、最も薄肉の部分を破壊し、亀
裂が溝に沿って走り、十分な内部圧力の逸散ができる。
In terms of the operability of the explosion-proof function, the three corners of the pentagonal cross-section within the thickness of the case each exert a notch effect, which increases the internal pressure of the battery and causes the bottom of the case to expand, causing a tensile force. ruptures the thinnest part, and the crack runs along the groove, allowing sufficient internal pressure to dissipate.

更に、前述の交わらない3本の溝の構成においては、ケ
ース底部の膨張に伴い、線対称の2本の溝に相当する薄
肉部分で折れ曲がり、このことが底部の中心部を通る溝
に沿った亀裂の拡大を助長することとなり、量産性もあ
りかつより逸散能力の優れた防爆機能を得ることとなる
Furthermore, in the configuration of the three non-intersecting grooves described above, as the bottom of the case expands, it bends at the thin wall portion corresponding to the two line-symmetrical grooves, and this causes the bending along the groove passing through the center of the bottom. This will encourage the expansion of cracks, resulting in an explosion-proof function that is mass-producible and has better dissipation ability.

実施例 第1図は本発明の一実施例による密閉形電池の半裁断面
図であり、第1図において、金属リチウム2をステンレ
ス製の電池ケース1の内周面に圧着し、この金属リチウ
ム2の内側には、ガラス繊維不繊布からなるセパレータ
3.上紙3a、底紙3bを介して炭素成形体(正極)4
を収納する。
Embodiment FIG. 1 is a half-cut sectional view of a sealed battery according to an embodiment of the present invention. In FIG. Separator 3 made of glass fiber nonwoven fabric is placed inside the separator 3. A carbon molded body (positive electrode) 4 is passed through the top paper 3a and the bottom paper 3b.
to store.

四塩化アルミニウムリチウムを含む塩化チオニル溶液5
の一部を、前記セパレータ3.上紙3a。
Thionyl chloride solution containing lithium aluminum tetrachloride 5
A part of the separator 3. Top page 3a.

底紙3b、及び炭素成形体4が含浸している。The bottom paper 3b and the carbon molded body 4 are impregnated.

ニッケル製集電体6は、下部大半を炭素成形体4に埋設
してあり、上部先端はステンレス製パイプ7の上部先端
と溶接している(溶接部11)。他極性端子を兼ねるス
テンレス製バイブ7は、ガラスハーメチック層8を介し
て電池蓋9に挿着されている。電池蓋9の周縁端部は、
電池ケース1の開口部に溶接され(溶接部12)、完全
密閉構造になっている。電池ケース1の底部1aの外面
に断面形状が五角形の溝10を形成している。第2図(
A)は、第1図に示す本発明の実施例による密閉形電池
に用いた電池ケースの半裁断面図であり、第2図(B)
は、電池ケースの底部の平面図である。第2図(A)及
び第2図(B)に示すように、断面形状が五角形の溝1
0が電池ケースの底部1aの中心部を通るように設けら
れている。
Most of the lower part of the nickel current collector 6 is buried in the carbon molded body 4, and the upper tip is welded to the upper tip of the stainless steel pipe 7 (welded part 11). A stainless steel vibrator 7, which also serves as a terminal of the other polarity, is inserted into a battery lid 9 via a glass hermetic layer 8. The peripheral edge of the battery cover 9 is
It is welded to the opening of the battery case 1 (welded part 12) and has a completely sealed structure. A groove 10 having a pentagonal cross-section is formed on the outer surface of the bottom portion 1a of the battery case 1. Figure 2 (
A) is a half-cut sectional view of a battery case used in the sealed battery according to the embodiment of the present invention shown in FIG.
FIG. 2 is a plan view of the bottom of the battery case. As shown in FIG. 2(A) and FIG. 2(B), the groove 1 has a pentagonal cross-sectional shape.
0 is provided so as to pass through the center of the bottom portion 1a of the battery case.

第3図は、本発明の実施例による電池ケースの要部拡大
断面図である。第3図において、板厚Tの電池ケースの
底部1aに、断面形状が点a−bc−d−eで結ばれた
五角形の溝10を形成することにより、薄肉部1bを設
けている。溝加工時には、角度θ1〜θ4の設定によっ
て、辺ab。
FIG. 3 is an enlarged sectional view of a main part of a battery case according to an embodiment of the present invention. In FIG. 3, a thin wall portion 1b is provided in the bottom portion 1a of a battery case having a plate thickness T by forming a pentagonal groove 10 having a cross-sectional shape connected by points a-bc-de. During groove machining, side ab is determined by setting angles θ1 to θ4.

ae、bc、及びdeに相当するポンチの斜面に沿って
ケース材料が逃げる。第4図(A)は、本発明の他の実
施例による密閉形電池に用いた電池ケースの半裁断面図
であり、第4図(B)は、第4図(A)に示す電池ケー
スの底部の平面図である。第4図(A)及び第4図(B
)に示すように、交わらない3本の溝10,11.12
が電池ケースの底部1aに形成され、各々が断面形状が
五角形であり、溝11と12は、溝10を中心線として
線対称の位置関係にあり、かつ溝10の中点10aより
垂直方向に延びる線上に形成している。
Case material escapes along the slopes of the punch corresponding to ae, bc, and de. FIG. 4(A) is a half-cut sectional view of a battery case used in a sealed battery according to another embodiment of the present invention, and FIG. 4(B) is a half-cut sectional view of the battery case shown in FIG. 4(A). It is a top view of a bottom part. Figure 4 (A) and Figure 4 (B)
), three grooves 10, 11, 12 that do not intersect
are formed on the bottom part 1a of the battery case, each having a pentagonal cross-sectional shape, and the grooves 11 and 12 are in a line-symmetrical positional relationship with respect to the center line of the groove 10, and in the vertical direction from the midpoint 10a of the groove 10. It is formed on an extending line.

量産対応における防爆機能の作動の安定性を以下の方法
で評価した。電池ケースの材料にステンレス鋼(SVS
304.厚ミT=0.3+ti)を用い、溝加工ポンチ
の材質に超硬合金を用い、電池ケースの底部の溝加工を
実施した。まず本発明による電池ケースの溝加工では、
第3図において、角度θ1.θ2は20°で角度θ3.
θ4は25゜に、辺ab、aeの長さは各々0.8閣に
設定し、加工後の薄肉部1bの厚さtが0.06mmに
なるように加工荷重を調節した。尚、断面形状が五角形
a−b−c−d−eの溝10の平面図における長さを8
mlとした。以上の本発明の電池ケースを(イ)とする
。次に本発明の他の実施例の溝加工については、電池ケ
ース(イ)に、更に第4図(A)、(B)に示すように
溝11.12(但し、溝11.12は溝lOと同じ断面
形状であり、平面図における長さを各々3 miとし、
溝10から0.5順の距離にある。)を付加形成してい
る。
The operational stability of the explosion-proof function for mass production was evaluated using the following method. Stainless steel (SVS) is used as the material for the battery case.
304. A groove was formed on the bottom of the battery case using a thickness T=0.3+ti) and a cemented carbide as the material of the groove punch. First, in the groove machining of the battery case according to the present invention,
In FIG. 3, the angle θ1. θ2 is 20° and the angle θ3.
θ4 was set to 25°, the lengths of sides ab and ae were each set to 0.8 degrees, and the processing load was adjusted so that the thickness t of the thin portion 1b after processing was 0.06 mm. In addition, the length in the plan view of the groove 10 having a pentagonal cross-sectional shape is 8.
ml. The battery case of the present invention described above is referred to as (A). Next, regarding groove machining in another embodiment of the present invention, grooves 11.12 (however, grooves 11.12 are They have the same cross-sectional shape as IO, and each has a length of 3 mi in the plan view,
It is located at a distance of 0.5 order from the groove 10. ) are additionally formed.

他の実施例による電池ケースを(ロ)とする。次に従来
の技術による電池ケースの溝形状にっいては、第6図に
おいて、t+=0.0(3+nm。
A battery case according to another embodiment is designated as (b). Next, regarding the groove shape of the battery case according to the conventional technology, in FIG. 6, t+=0.0 (3+nm).

tz=o、075nn、 W=0.16M、θ5=50
゜になるように溝加工を行った。この従来の技術による
電池ケースを(ハ)とする。以上、本発明による電池ケ
ース(イ)、(ロ)、従来の技術による電池ケース(ハ
)の3種類について評価することにした。(イ)、(ロ
)、(ハ)の3種8(7)li!池ケースについて、各
々1万個の溝加工を実施し、次に加工した10個を抜き
取り、作動圧の測定と溝加工ポンチの損傷を調べた。次
に、5万個の溝加工を実施し、次に加工した10個を抜
き取り、作動圧の測定と溝加工ポンチの損傷を調べた結
果を表1に示す。
tz=o, 075nn, W=0.16M, θ5=50
The groove was machined so that the angle was . The battery case according to this conventional technique is referred to as (c). As described above, three types of battery cases (A) and (B) according to the present invention and a battery case (C) according to the conventional technology were evaluated. Types (a), (b), and (c) 8 (7) li! For each pond case, 10,000 grooves were machined, and then the 10 machined pieces were extracted, and the working pressure was measured and the damage to the groove punch was examined. Next, 50,000 grooves were machined, the next 10 machined grooves were extracted, and the working pressure was measured and damage to the groove punch was investigated. Table 1 shows the results.

尚、作動圧測定前に電池ケースは全て1010℃、10
分間の熱処理を施した。
In addition, all battery cases were heated to 1010℃ and 10℃ before measuring the operating pressure.
Heat treatment was performed for 1 minute.

表1に示すように、数万個レベルの量産対応において、
従来の技術と本発明による場合とでは、溝加工ポンチの
損傷状況に差はなく、切欠効果が安定して確保できてお
り、本発明の方が作動圧の変化が若干少なく、より安定
している。
As shown in Table 1, in mass production at the level of tens of thousands of units,
There is no difference in damage to the grooving punch between the conventional technology and the present invention, and the notch effect can be stably secured, and the present invention has slightly fewer changes in working pressure and is more stable. There is.

次に、5万個加工後、更に抜き取った電池ケース(イ)
、(ロ)、(ハ)の3種を用いて試作した塩化チオニル
−リチウム電池を各々(イ)(ロ)’、  (ハ)°と
して、各10個を火中投入した。その結果を表2に示す
Next, after processing 50,000 pieces, the battery case (A) was further removed.
Thionyl chloride-lithium batteries prototyped using the three types (b), (c), (a), (b)', and (c)° (10 each) were thrown into the fire. The results are shown in Table 2.

表2に示すように、従来の技術による試作電池(ハ)゛
は、火中投中で10個中1個破裂した。破裂した電池の
ケースを調べてみると、ケースの円筒部分が裂けており
、底部の溝加工部を見ると、第6図に示す4aと4bの
連結部分に小さな亀裂が生じているだけで、どうも逸散
能力が不十分であったために破裂に至ったものと思われ
る。(イ)゛(ロ)゛については、全て亀裂が大キ<、
(1:l)’ノ方が(イ)゛よりも更に大きく、逸散能
力が十分であり、破裂に至らなかった。
As shown in Table 2, one out of ten prototype batteries (c) according to the prior art exploded when thrown into a fire. When we examined the case of the burst battery, we found that the cylindrical part of the case was torn, and when we looked at the grooved part at the bottom, we found that there was only a small crack at the connecting part of 4a and 4b shown in Figure 6. It appears that the explosion occurred because the dissipation capacity was insufficient. As for (a) and (b), the cracks are all major <,
(1:l)' was even larger than (a)', had sufficient dissipation ability, and did not result in rupture.

発明の効果 以上のように本発明によれば、プレス成形による薄肉加
工時に、溝の断面形状の五各形の4辺に相当するポンチ
の斜面に沿ってケースの材料が逃げ、また交点部もない
ので、加工荷重が小さくて済み、ポンチの負担が軽減で
きる。そこで、ポンチの耐久性の比較において、断面形
状が三角形(7字状)の溝を加工する場合よりは、ポン
チの先端が肉厚で強度があるため耐久性があり、断面形
状が倒立台形状で溝の底部に平坦部を有する場合と差が
ない。
Effects of the Invention As described above, according to the present invention, during thin-wall processing by press forming, the material of the case escapes along the slopes of the punch corresponding to the four sides of each of the five cross-sectional shapes of the groove, and the intersection part also escapes. Since there is no punch, the processing load is small and the burden on the punch can be reduced. Therefore, when comparing the durability of punches, we found that the tip of the punch is thicker and stronger, making it more durable than when machining a groove with a triangular cross-sectional shape (7-shaped), and the cross-sectional shape is an inverted trapezoid shape. There is no difference from the case where the bottom of the groove has a flat part.

そして、防爆機能面では、交点のある断面倒立台形状の
溝を加工した電池ケースよりも、本発明による電池ケー
スを用いた方が、電池の火中投入テストにおいて、薄肉
部の亀裂が大きく発生するため、電池の内部圧力の逸散
能力が優れている。
In terms of explosion-proof functionality, the battery case of the present invention caused more cracks in the thin-walled part in a test of putting the battery into a fire than a battery case with grooves in the cross-sectional truncated trapezoidal shape having intersection points. Therefore, the battery has an excellent ability to dissipate internal pressure.

すなわち、本発明を採用した密閉形電池は、安全性が高
く、且つ量産時にも安定した防爆機能を備えることがで
きるという効果が得られる。
That is, the sealed battery employing the present invention has the advantage of being highly safe and having a stable explosion-proof function even during mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

蓋、10・・・・・・断面形状五角形の溝。 Lid, 10... Groove with pentagonal cross section.

Claims (2)

【特許請求の範囲】[Claims] (1)金属製の有底電池ケースを用いた密閉形電池にお
いて、該電池ケースの底部に断面形状が互角形である溝
を形成することにより薄肉部を設けたことを特徴とする
密閉形電池。
(1) A sealed battery using a metal battery case with a bottom, characterized in that a thin wall portion is provided by forming a groove with an evenlygonal cross-sectional shape in the bottom of the battery case. .
(2)断面形状が五角形の溝は、交わらない3本の溝よ
り構成され、そのうちの1本は前記電池ケースの底部の
中心部を通り、他の2本は前記中心部を通る溝を中心線
として線対称の位置関係にあり、かつ前記中心部を通る
溝の中点より垂直方向に延びる線上に形成したことを特
徴とする特許請求の範囲第1項記載の密閉形電池。
(2) The groove with a pentagonal cross-sectional shape is composed of three grooves that do not intersect, one of which passes through the center of the bottom of the battery case, and the other two are centered around the groove that passes through the center. 2. The sealed battery according to claim 1, wherein the battery is formed on a line having a line-symmetric positional relationship and extending perpendicularly from the midpoint of the groove passing through the center portion.
JP1313588A 1989-12-01 1989-12-01 Sealed battery Expired - Fee Related JP2870067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1313588A JP2870067B2 (en) 1989-12-01 1989-12-01 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313588A JP2870067B2 (en) 1989-12-01 1989-12-01 Sealed battery

Publications (2)

Publication Number Publication Date
JPH03173060A true JPH03173060A (en) 1991-07-26
JP2870067B2 JP2870067B2 (en) 1999-03-10

Family

ID=18043123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313588A Expired - Fee Related JP2870067B2 (en) 1989-12-01 1989-12-01 Sealed battery

Country Status (1)

Country Link
JP (1) JP2870067B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154957A (en) * 2010-01-28 2011-08-11 Fuji Hatsujo Kk Sealing plate for battery, method and metal mold for manufacturing the same
CN104716279A (en) * 2015-03-19 2015-06-17 苏州市职业大学 Dry battery being easy to take out

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154957A (en) * 2010-01-28 2011-08-11 Fuji Hatsujo Kk Sealing plate for battery, method and metal mold for manufacturing the same
CN104716279A (en) * 2015-03-19 2015-06-17 苏州市职业大学 Dry battery being easy to take out

Also Published As

Publication number Publication date
JP2870067B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
JPS5817332Y2 (en) sealed battery
WO1997016859A1 (en) Explosion-proof seal plate for enclosed type cell and production method thereof
EP0862229A1 (en) Breakable safety valve for metal-made container
JP3853461B2 (en) Explosion-proof sealing plate for sealed battery and method for manufacturing the same
US8741487B1 (en) Electrode current collector with stress-relieving mesh structure
JPH03173060A (en) Sealed battery
JP4393932B2 (en) Non-aqueous secondary battery
JPH01309253A (en) Sealed battery
TW496004B (en) Sealed battery
JPH02281552A (en) Sealed battery
JPS6386243A (en) Hermetic seal type liquid active material battery
EP4401208A1 (en) Cylindrical secondary battery
JPH01231262A (en) Sheathed can and battery using it
JPS63285859A (en) Nonaqueous liquid active material battery
JPH0355754A (en) Sealed battery
JPS59154742A (en) Sealed type battery
CN115441102B (en) Outer package and battery
CN118523011B (en) Battery cell shell, battery cell and power device
JPH03134950A (en) Sealed cell
JPS6386246A (en) Manufacture of battery container for explosion-proof type sealed battery
JPH10162798A (en) Safety structure of sealed battery
JPH07105219B2 (en) Non-aqueous liquid active material battery
JPH07105221B2 (en) Method for manufacturing non-aqueous liquid active material battery
JPS63294665A (en) Non-liquid active material battery
JPH09167605A (en) Safety structure of sealed battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees