JPS59154742A - Sealed type battery - Google Patents
Sealed type batteryInfo
- Publication number
- JPS59154742A JPS59154742A JP58029772A JP2977283A JPS59154742A JP S59154742 A JPS59154742 A JP S59154742A JP 58029772 A JP58029772 A JP 58029772A JP 2977283 A JP2977283 A JP 2977283A JP S59154742 A JPS59154742 A JP S59154742A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- cathode
- sealed
- negative electrode
- outer periphery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/342—Non-re-sealable arrangements
- H01M50/3425—Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Primary Cells (AREA)
Abstract
Description
この発明はリチウムを陰極活物質とする一方オキシ・・
ロゲン化物を′電解液の溶媒および陽極活物質とする密
閉型電池に関する。
この種の電池では、鑞池要素を内填した陰極缶をステン
レス鋼の探しぼり加工缶で構成してその開口部にガラス
シールを施した金属蓋を挿入し、缶内周面と金属蓋外周
面とを溶接する、いわゆるハーメチックシールによる密
閉構造を採用している。このため、苛酷な条件下でも漏
液しないという特徴を有し、この特徴から一般に電解液
の溶媒と陽極活物質とを兼備する液状のオキシ・・ロゲ
ン化物を電池内に多量に充填したり、また用途面では高
温雰囲気下での使用が検討てれている。
ところが、オキシハロゲン化物が電池内の空間容量との
合計量中細≠手≠牢75容量%以上通常95容量%まで
もの高充填率とされたときには、これが熱的に膨張しま
た内部短絡などに起因したガス発生により電池容器にふ
くれが生じ、最終的には急激な内圧の上昇で激しく爆発
する危険性がある。すなわち、この種の電池には密閉型
であることによるすぐれた耐副液性が得られる反面、経
日保存ないし取扱い上の問題から膚に爆発という危険性
をさけて通れないのが現状である。
この発明は、上記の観点から防爆構造とした密閉型電池
を提供せんとするもので、その要旨とするところは、リ
チウムを陰極活物質とする一方オキシ・・ロゲン化物を
電解液の溶媒および陽極活物質とし、これら電池要素を
内填させた陰極缶をステンレス鋼の探しはり加工化で構
成してその開口部に金属蓋を溶接して密閉構造とし、こ
の密閉構造内の空間6融と上記オキシ・・ロゲン化物の
6暇との合計量中に占める上記オキシハロゲン化物の容
量が75容量%以上となるようにされた密閉型電池にお
いて、上記陰極缶の側面外周に環状の溝部を設けると共
に、この陰極缶全体を被覆する熱収縮性樹脂チューブを
設けたことを特徴とする密閉型電池にある。
以下、この発明の一実施例を図面を参考にして説明する
。
第1図および第2図において、1はリチウムよりなる陰
極、2はガラス繊維不織布の如きセパレータ、3はアセ
タップラックに結着剤としてポリテトラフルオルエチレ
ンを添加して成形した炭素多孔質成形体の如き陽極、4
はステンレス鋼製の陽極集′醒体、5はステンレス鋼の
探しぼり加工化よりなる陰極缶、6はステンレス鋼など
よりなる金属蓋で、この金属蓋6の外周側は陰極缶5の
開口部内周面と溶接きれ、また金属蓋6の内周側にはが
ラスシール7が形成されこのシール7にあらか]二め溶
着でれている金属パイプ8から電解液を注入したのち、
陽極集電体4と金属パイプ8とを溶接して電池内部が密
閉構造とされている。
上記電解液は塩化アルミニウムや塩化リチウムなどの電
解質を塩化チオニル(5OC12)、塩化スルフリル(
SO2Ct)、塩化フオスフオリル(POCta)など
のオキシハロゲン化物に溶解させてなるものであり、上
記オキシ・・ロゲン化物は電解質の溶媒の役割と共に陽
極活物質としての作用を果すものである。そして、この
オキシハロゲン化物の容量は、密閉構造とされた電池内
部の空間6縫との合計量中に占める割合が75容量%以
上通詣95容量%までとされており、これをこよって′
電池のエネルギー密度を大きくしている。上記空間6敏
とは、′覗池内の総内容積より陰極1.セパレータ2゜
陽極3.陽極集電体4および電解液などの電池内填物の
合計gt(真比重と重量とから算出)を差し引いたもの
である。
9は上記陰極缶5のi!111fi外周の軸方向におけ
るほぼ中央付近に形成された環状の溝部であり、セ。
んばんなどの切削加工やプレス加工This invention uses lithium as the cathode active material while oxy...
This invention relates to a sealed battery using a halide as an electrolyte solvent and anode active material. In this type of battery, the cathode can containing the Azuike element is constructed from a stainless steel can with a hollowed-out surface, and a metal lid with a glass seal is inserted into the opening of the can, and the inner circumferential surface of the can and the outer circumference of the metal lid are connected to each other. It uses a hermetically sealed structure in which the surfaces are welded together using a so-called hermetic seal. For this reason, it has the characteristic of not leaking even under severe conditions, and because of this characteristic, it is common to fill the battery with a large amount of liquid oxylogenide, which serves as both the solvent for the electrolyte and the positive electrode active material. In terms of applications, use in high-temperature atmospheres is also being considered. However, when the oxyhalide is filled with a high filling rate of 75% by volume or more, usually up to 95% by volume, which is the total amount of space inside the battery, it expands thermally and can cause internal short circuits. The resulting gas generation causes the battery container to bulge, and there is a risk of a violent explosion due to the sudden rise in internal pressure. In other words, although this type of battery has excellent secondary liquid resistance due to being a sealed type, it is currently impossible to avoid the risk of explosion on the skin due to storage issues and handling issues. . The present invention aims to provide a sealed battery with an explosion-proof structure from the above point of view. A cathode can containing these battery elements as an active material is constructed by processing stainless steel, and a metal lid is welded to the opening of the cathode can to create a sealed structure, and the space within this sealed structure and the above-mentioned In a sealed battery in which the capacity of the oxyhalide in the total amount of the oxyhalide is 75% by volume or more, an annular groove is provided on the outer periphery of the side surface of the cathode can, and , there is provided a sealed battery characterized in that a heat-shrinkable resin tube is provided to cover the entire cathode can. An embodiment of the present invention will be described below with reference to the drawings. In Figures 1 and 2, 1 is a cathode made of lithium, 2 is a separator such as a glass fiber non-woven fabric, and 3 is a carbon porous molded material formed by adding polytetrafluoroethylene as a binder to aceta-plat. Anode like a body, 4
5 is a cathode can made of stainless steel, and 6 is a metal lid made of stainless steel. The outer periphery of this metal lid 6 is inside the opening of the cathode can 5. A glass seal 7 is formed on the inner circumferential side of the metal lid 6, which is completely welded to the circumferential surface, and after injecting electrolyte from the metal pipe 8 which is slightly welded to this seal 7,
The anode current collector 4 and the metal pipe 8 are welded together to form a sealed structure inside the battery. The above electrolyte contains electrolytes such as aluminum chloride and lithium chloride, thionyl chloride (5OC12), sulfuryl chloride (
SO2Ct), phosphoryl chloride (POCta), and other oxyhalides are dissolved therein, and the oxyhalides serve as an electrolyte solvent as well as an anode active material. The capacity of this oxyhalide is defined as 75% by volume or more and up to 95% by volume in the total volume of the six spaces inside the battery, which has a sealed structure.
The energy density of the battery is increased. The above-mentioned space 6 is defined as 'the cathode 1.' from the total internal volume of the pond. Separator 2° Anode 3. The total gt (calculated from true specific gravity and weight) of battery filling materials such as anode current collector 4 and electrolyte is subtracted. 9 is the i! of the above cathode can 5! 111fi is an annular groove formed near the center of the outer periphery in the axial direction. Cutting and press processing such as banbans
【こより形成された
ものである。溝部9の深さとしては、陰極缶5を構成す
るステンレス鋼の厚み(探しぼり加工前)がたとえは0
3間の場合溝部形成後の缶の残厚が0.1.5 mm以
下通當0.05mmまでとなるような深てときれる。残
厚があまりに薄くなりすぎると電池作製工程電番こ上記
溝部から破損をきたす心配がある。なお、図面では、溝
部9の形状を断面三角形としているが、半円形、矩形な
どの任意の形状とすることができる。
10は上記陰極缶5全体を被覆するポリ塩化ビニル樹脂
その他の熱収縮性樹脂チューブであり、前記金属蓋6と
陰極缶開口部との溶接および金属パイプ8と陽極集電体
4との溶接後金属蓋6を被覆する如く樹脂ないしゴム製
の絶縁材料11を法人同化させたのち、缶側面に必要に
応じて紙製ないしアルミ製のラベルを貼り付f」この上
に前記チューブ10を被装し熱収縮σせてなるものであ
る。
以上の構成から明らかなように、この発明はステンレス
鋼の探しぼり加工化から構成てれた陰極缶5の側面外周
に環状の溝部9を設けているから、この溝部での缶厚が
それだけ薄くなって強度的に弱くなり、その結果電池内
圧の急増による爆発という事態に至る前に上記溝部で割
れが生じ、ここより内部に充満したガスが未然に排出さ
れる。
また、上記実施例では環状の溝部9を陰極缶5の軸方向
におけるほぼ中央部に設けているから、この部分に均等
な内圧がかかることとなって予め実測した缶の割れ強度
から電池の寿命をほぼ正確に予測することが可能となる
。さらに、このように軸方向中央部への溝部形成はその
切削加工ないしプレス加工が容易で、電池作製上有利と
なる。
なお、前記溝部9を切削加工ないしプレス加工により形
成したのち、缶全体を固溶化熱処理してステンレス鋼の
探しぼり加工時および上記溝部形成のための加工時に生
じた歪をなくすことば好ましい手段である。特に探しぼ
り加工時には缶の軸方向に歪みが生じやすく、上記固溶
化熱処理によってかかる歪みをなくすと缶軸方向の強度
が安定化され、前記溝部での割れ発生を確実なものとす
ることができる。上記固溶化熱処理としては、ステンレ
ス鋼がSUS 3 Q 4である場合を例にとれば一般
に1000〜ll00℃で1〜4時間の熱処理を行なっ
たのぢ急冷すれはよい。
つぎに、この発明の前記構成においては、」1記溝部9
を形成した陰極缶5全体を被覆する熱収縮性樹脂チュー
ブ10を設けたことによって、前記溝部9の割れでガス
と共に排出てれる電池内容物を上記チューブ】01こよ
り保持させることができ、これによって外部機器などへ
の悪影響を効果的に防ぐことができる。
以上詳述したとおり、この発明によれば、電池の内圧が
急増して爆発という事態に至る前に陰極缶の側面外周に
形成された溝部で割れを生じさせてここより内部に充満
したガスを未然に排出できると共に、上記ガスと一緒に
排出される電池内容物を熱収縮性梅脂チューブで保持し
つるようにした防爆構造を有する密閉型電池を提供する
ことができる。[It was formed from this. The depth of the groove portion 9 is determined by assuming that the thickness of the stainless steel forming the cathode can 5 (before drilling) is 0.
In the case of 3 mm, the depth can be cut so that the remaining thickness of the can after forming the groove is 0.1.5 mm or less, and up to 0.05 mm in total. If the remaining thickness becomes too thin, there is a risk that damage may occur from the grooves in the battery manufacturing process. In addition, although the shape of the groove part 9 is triangular in cross section in the drawing, it can be made into arbitrary shapes, such as a semicircle and a rectangle. 10 is a polyvinyl chloride resin or other heat-shrinkable resin tube that covers the entire cathode can 5, and after welding the metal lid 6 and the cathode can opening and welding the metal pipe 8 and the anode current collector 4. After assimilating the insulating material 11 made of resin or rubber to cover the metal lid 6, a label made of paper or aluminum is pasted on the side of the can as necessary, and the tube 10 is covered thereon. It is made by shrinking due to heat shrinkage. As is clear from the above structure, in this invention, the annular groove 9 is provided on the outer periphery of the side surface of the cathode can 5, which is made of stainless steel. As a result, before an explosion occurs due to a sudden increase in the internal pressure of the battery, cracks occur in the grooves, and the gas filled inside is discharged from the grooves. In addition, in the above embodiment, since the annular groove 9 is provided almost at the center of the cathode can 5 in the axial direction, an even internal pressure is applied to this part, which increases the lifespan of the battery based on the cracking strength of the can measured in advance. can be predicted almost accurately. Furthermore, forming the groove in the axially central portion in this manner facilitates cutting or pressing, which is advantageous in battery production. It is preferable to form the groove 9 by cutting or pressing and then subject the entire can to solution heat treatment to eliminate the distortion that occurs during the drilling process of the stainless steel and the process for forming the groove. . In particular, distortion is likely to occur in the axial direction of the can during the digging process, and by eliminating such distortion through the solution heat treatment, the strength in the axial direction of the can can be stabilized, making it possible to ensure that cracks do not occur in the grooves. . For example, when the stainless steel is SUS 3 Q4, the solution heat treatment is generally performed at 1000 to 100° C. for 1 to 4 hours, and then quenched. Next, in the configuration of the present invention, "1 groove portion 9
By providing the heat-shrinkable resin tube 10 that covers the entire cathode can 5 formed with 01, the battery contents discharged together with the gas due to cracks in the groove 9 can be retained from the tube 01. It is possible to effectively prevent adverse effects on external devices, etc. As detailed above, according to the present invention, before the internal pressure of the battery rapidly increases and an explosion occurs, a crack is generated in the groove formed on the outer periphery of the side surface of the cathode can, and the gas filling the inside is released from there. It is possible to provide a sealed battery having an explosion-proof structure in which the battery contents can be discharged in advance and are suspended with a heat-shrinkable plum tube.
第1図はこの発明の密閉型電池の一例を示す部分断面図
、第2図はこの発明の密閉型電池の要部を拡大して示す
断面図である。
1・・・陰極、5・・・陰極缶、6・・・金属蓋、9・
・・溝部、10・・・熱収縮性樹脂チューブ。
特許出願人 日立マクセル株式会社第1
1ぐ
1o□
−8
□11
「:FIG. 1 is a partial cross-sectional view showing an example of a sealed battery of the present invention, and FIG. 2 is a cross-sectional view showing an enlarged main part of the sealed battery of the present invention. 1... Cathode, 5... Cathode can, 6... Metal lid, 9...
... Groove, 10... Heat-shrinkable resin tube. Patent Applicant Hitachi Maxell Co., Ltd. No. 1 1 o□ -8 □11
Claims (1)
化物を電解液の溶媒および陽極活物質とし、(れら電池
要素を内填させた陰極缶をステンレス鋼の探しぼり加工
缶で構成してその開口部に金属蓋を溶接して密閉構造と
し、この密閉構造内の空間谷隈と上記オキシハロゲン化
物の容量との合計量中に占める上記オキシハロゲン化物
の容量が75容量%以上となるようにされた密閉型電池
において、上記陰極缶の側面外周に環状の溝部を設ける
と共に、この陰極缶全体を被覆する熱収縮性樹脂チュー
ブを設けたことを特徴とする密閉型電池。tl) Lithium is used as the cathode active material, while oxyhalide is used as the solvent of the electrolyte and the anode active material, (the cathode can containing these battery elements is constructed from a stainless steel machined can with its opening A metal lid is welded to the part to form a sealed structure, and the volume of the oxyhalide is 75% by volume or more in the total volume of the space valley in the sealed structure and the volume of the oxyhalide. 1. A sealed battery comprising: an annular groove provided on the outer periphery of a side surface of the cathode can; and a heat-shrinkable resin tube covering the entire cathode can.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58029772A JPS59154742A (en) | 1983-02-23 | 1983-02-23 | Sealed type battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58029772A JPS59154742A (en) | 1983-02-23 | 1983-02-23 | Sealed type battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59154742A true JPS59154742A (en) | 1984-09-03 |
Family
ID=12285322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58029772A Pending JPS59154742A (en) | 1983-02-23 | 1983-02-23 | Sealed type battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59154742A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1011156A1 (en) * | 1998-11-10 | 2000-06-21 | Japan Storage Battery Company Limited | Battery cell with a safety valve |
WO2005055342A2 (en) * | 2003-01-03 | 2005-06-16 | The Gillette Company | Alkaline cell with flat housing |
WO2005124894A1 (en) * | 2004-06-08 | 2005-12-29 | The Gillette Company | Alkaline cell with flat housing |
CN100466336C (en) * | 2003-11-26 | 2009-03-04 | 吉莱特公司 | Alkaline cell with flat housing |
JP2010160977A (en) * | 2009-01-08 | 2010-07-22 | Hitachi Maxell Ltd | Battery and its manufacturing method |
US8518568B2 (en) | 2005-03-14 | 2013-08-27 | Johnson Controls Technology Company | Battery system |
-
1983
- 1983-02-23 JP JP58029772A patent/JPS59154742A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1011156A1 (en) * | 1998-11-10 | 2000-06-21 | Japan Storage Battery Company Limited | Battery cell with a safety valve |
WO2005055342A2 (en) * | 2003-01-03 | 2005-06-16 | The Gillette Company | Alkaline cell with flat housing |
WO2005055342A3 (en) * | 2003-01-03 | 2006-05-26 | Gillette Co | Alkaline cell with flat housing |
CN100466336C (en) * | 2003-11-26 | 2009-03-04 | 吉莱特公司 | Alkaline cell with flat housing |
WO2005124894A1 (en) * | 2004-06-08 | 2005-12-29 | The Gillette Company | Alkaline cell with flat housing |
US8518568B2 (en) | 2005-03-14 | 2013-08-27 | Johnson Controls Technology Company | Battery system |
JP2010160977A (en) * | 2009-01-08 | 2010-07-22 | Hitachi Maxell Ltd | Battery and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3841912A (en) | Sodium sulfur storage battery | |
US20230387514A1 (en) | Button battery shell and button battery | |
JPS59154742A (en) | Sealed type battery | |
US4182028A (en) | Hermetically sealed button-type electrochemical cell and method for making same | |
JPS59154743A (en) | Sealed type battery | |
JPH117923A (en) | Nonaqueous solvent battery | |
US3765945A (en) | Electric cells and batteries | |
CN212303778U (en) | Button cell or column cell | |
US3694267A (en) | Leakproof closure seal for battery | |
JPS59154741A (en) | Sealed type battery | |
CN213520236U (en) | Button cell and electronic equipment | |
CN212848603U (en) | Hard-shell button cell | |
JPH048607Y2 (en) | ||
JPS59154744A (en) | Sealed type battery | |
CN211062594U (en) | Totally enclosed button type ultracapacitor system | |
JPS5912557A (en) | Manufacture of battery | |
JPH0621172Y2 (en) | Sealed battery | |
JPS57138774A (en) | Battery | |
CN220368005U (en) | Battery case | |
JP2870067B2 (en) | Sealed battery | |
CN216389475U (en) | Button cell with positive electrode ring | |
CN213520131U (en) | Lithium battery with good wear resistance | |
CN217426827U (en) | Novel column lithium cell | |
CN220400726U (en) | Moistureproof alkaline battery | |
JP2792144B2 (en) | Collective battery |