JPH0317234A - Method for preventing integranular corrosion of stainless steel - Google Patents
Method for preventing integranular corrosion of stainless steelInfo
- Publication number
- JPH0317234A JPH0317234A JP1150459A JP15045989A JPH0317234A JP H0317234 A JPH0317234 A JP H0317234A JP 1150459 A JP1150459 A JP 1150459A JP 15045989 A JP15045989 A JP 15045989A JP H0317234 A JPH0317234 A JP H0317234A
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- sensitized
- intergranular corrosion
- region
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 27
- 239000010935 stainless steel Substances 0.000 title claims abstract description 26
- 230000007797 corrosion Effects 0.000 title claims abstract description 24
- 238000005260 corrosion Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims description 13
- 238000001816 cooling Methods 0.000 claims abstract description 21
- 238000002844 melting Methods 0.000 claims abstract description 11
- 230000008018 melting Effects 0.000 claims abstract description 11
- 238000010894 electron beam technology Methods 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 abstract description 16
- 239000002344 surface layer Substances 0.000 abstract description 5
- 230000002950 deficient Effects 0.000 abstract description 2
- 206010070834 Sensitisation Diseases 0.000 description 12
- 230000008313 sensitization Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000866 electrolytic etching Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
- B23K2103/05—Stainless steel
Landscapes
- Laser Beam Processing (AREA)
- Heat Treatment Of Articles (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は例えばオーステナイト系ステンレス鋼の粒界腐
食防止方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for preventing intergranular corrosion of, for example, austenitic stainless steel.
(従来の技術)
溶接などの製作時に鋭敏化したオーステナイト系ステン
レス鋼、例えばSUS304ステンレス鋼の溶接部は海
水,高温純水中などの環境においてり粒界腐食が発生し
易い。とくに溶接後において腐食性流体に接する面の溶
接熱影響部の鋭敏化を解消し、粒界腐食を防止すること
が必要である。(Prior Art) Welded parts of austenitic stainless steel, such as SUS304 stainless steel, which has become sensitized during manufacturing by welding, are susceptible to intergranular corrosion in environments such as seawater and high-temperature pure water. In particular, it is necessary to eliminate the sensitization of the weld heat-affected zone on the surface in contact with corrosive fluid after welding, and to prevent intergranular corrosion.
オーステナイト系ステンレス鋼例えばSUS304鋼、
SUS316鋼はJIS規格よれば重量で0.08%以
下のCを含有している。これらステンレス鋼は約550
℃〜850℃の温度にある時間保持されると、その結晶
粒界にC r 23C 6炭化物を析出し、粒界付近に
通常、重量%で18〜20%含有されるCrが同じ<1
3%以下になる領域(Cr欠乏層)を生じる。この領域
の耐食性が悪いことから結晶粒界に沿った腐食(粒界腐
食)または割れを生じやすくなることが知られており、
また、しばしばこれに起因する損傷を経験する。Austenitic stainless steel, e.g. SUS304 steel,
According to the JIS standard, SUS316 steel contains 0.08% or less of C by weight. These stainless steels are approximately 550
When kept at a temperature between ℃ and 850℃ for a certain period of time, Cr23C6 carbide is precipitated at the grain boundaries, and Cr, which is normally contained at 18-20% by weight, near the grain boundaries is the same <1
A region (Cr-deficient layer) where the amount of Cr becomes 3% or less is generated. It is known that corrosion resistance in this region is poor, making corrosion along grain boundaries (intergranular corrosion) or cracking more likely to occur.
They also often experience damage due to this.
前述したように粒界に沿ってCr欠乏層を生じ、粒界腐
食を発生しやすくなることを鋭敏化と称するが、この鋭
敏化はオーステナイト系ステンレス鋼では溶接熱影響部
に生じることが周知である。As mentioned above, the formation of Cr-depleted layers along grain boundaries, which makes intergranular corrosion more likely to occur, is called sensitization, and it is well known that this sensitization occurs in the weld heat-affected zone in austenitic stainless steel. be.
このような溶接熱影響部の鋭敏化に起因する損傷を防止
する方法としては、溶接後に固溶化熱処理(通常105
0°C〜1150℃に加熱保持後急冷して、粒界に析出
した炭化物を再固溶させる)を行うか、または溶接によ
っては鋭敏化しない金属を溶接前にあらかじめ熱影響を
受ける範囲に合わせ材として接合する方法が従来開発さ
れている。As a method to prevent damage caused by such sensitization of the weld heat affected zone, solution heat treatment (usually 105
After heating and holding at a temperature of 0°C to 1150°C, the carbide precipitated at the grain boundaries is re-dissolved by rapid cooling), or metals that do not become sensitized by welding are adjusted to the range that will be affected by heat before welding. Conventionally, methods have been developed to join these materials together.
(発明が解決しようとする課題)
しかしながら、これらの方法は前者の場合、例えば固溶
化処理によって配管全体に酸化スケールが付き、これを
除去する工程を伴う。(Problems to be Solved by the Invention) However, in the former case, these methods involve a step of removing oxidized scale that is deposited on the entire pipe by, for example, solid solution treatment.
また、固溶化熱処理によって歪を生じる。さらに、大型
あるいは複雑な形状をもつ溶接構造物には適用できない
などの課題があり、そのうえコストも上昇する。In addition, distortion occurs due to solution heat treatment. Further, there are problems such as the inability to apply this method to welded structures having large or complicated shapes, and the cost also increases.
一方、後者の場合にもあらかじめ合せ材を接合し、接合
に伴い生じる鋭敏化を固溶化熱処理によって解消する工
程が含まれ、大幅なコストの上昇は避けられない。On the other hand, in the latter case as well, a step is included in which the laminates are joined in advance and the sensitization caused by joining is eliminated by solution heat treatment, which inevitably increases the cost significantly.
さらに、特に重要なことは前記両方法は製作を終了し、
据付けたもの、または供用を開始したものには適用でき
ない課題がある。Furthermore, what is particularly important is that both of the above methods finish the production;
There are issues that cannot be applied to those that have been installed or put into service.
本発明は前記課題を解決するためになされたもので、比
較的安価で、且つ、製作,据付けが終了した物について
も適用できる前記溶接熱影響部の鋭敏化に起因するステ
ンレス鋼の粒界腐食の防止方法を提供することにある。The present invention has been made to solve the above-mentioned problems, and is relatively inexpensive and can be applied even to products that have been manufactured and installed. The objective is to provide a method for preventing this.
[発明の構成]
(課題を解決するための手段)
本発明はステンレス鋼の溶接熱影響部の鋭敏化域を表面
層50am以上の深さでレーザーまたは電子ビーム照射
によって溶融し、10℃/Sec以上で急速に凝固冷却
することを特徴とする。[Structure of the Invention] (Means for Solving the Problems) The present invention melts the sensitized region of the weld heat affected zone of stainless steel by laser or electron beam irradiation at a depth of 50 am or more in the surface layer, and The above method is characterized by rapid solidification and cooling.
(作 用)
本発明においては、粒界腐食またはこれと類似の損傷は
前記鋭敏化部が直接腐食媒体にさらされることによって
発生すること、つまり腐食媒体にさらされる表面層が鋭
敏化してなければ損傷を防止できること、および鋭敏化
の解消は固溶化熱処理のかわりに溶融・凝固・急速冷却
によっても可能であることの知見にもとづいている。(Function) In the present invention, intergranular corrosion or similar damage occurs when the sensitized portion is directly exposed to a corrosive medium, that is, unless the surface layer exposed to the corrosive medium is sensitized. This is based on the knowledge that damage can be prevented and that sensitization can be eliminated by melting, solidifying, and rapid cooling instead of solution heat treatment.
すなわち、本発明は鋭敏化したステンレス鋼の表面にレ
ーザーまたは電子ビームを照射して該表面層の501I
m以上の領域を溶融し、そのまま凝固させることによっ
て表面層の鋭敏化を解消し、粒界腐食を防止する。That is, the present invention irradiates the surface of sensitized stainless steel with a laser or an electron beam to remove 501I of the surface layer.
By melting a region of m or more and solidifying it as it is, the sensitization of the surface layer is eliminated and intergranular corrosion is prevented.
ここで、溶融熱源としてレーザーまたは電子ビームを用
いるのは入射エネルギー密度が高く、急速溶融・凝固・
冷却が可能なためである。Here, using a laser or electron beam as a melting heat source has a high incident energy density, resulting in rapid melting, solidification, and
This is because cooling is possible.
ここで、重要なことは均一に50μm以上の溶融●凝固
層が得られることと、冷却速度が高く、処理部の隣接領
域が溶融凝固処理中およびその冷却中ならびに凝固部が
冷却中に鋭敏化しないことである。実際的な入熱条件は
処理しようとするステンレス鋼の板厚や温度などを勘案
して決めることができる。この場合、冷却速度は凝固部
および隣接母材部で500℃までの平均で10℃/!u
c以上であれば良い。What is important here is that a uniformly melted and solidified layer of 50 μm or more is obtained, and that the cooling rate is high so that the area adjacent to the treated area becomes sensitized during the melting and solidifying process and during its cooling, as well as during the cooling of the solidified area. Don't do it. Practical heat input conditions can be determined by taking into account the thickness and temperature of the stainless steel to be treated. In this case, the cooling rate is 10°C/! on average up to 500°C in the solidified part and the adjacent base metal part. u
It is sufficient if it is equal to or higher than c.
一方、溶融凝固部の深さよりも少なくとも一結晶粒以上
の深さ、あるいはステンレス鋼製造時の鏡鈍および酸洗
により生じる表面の凹凸以上の深さが必要であり、一般
的な鍛造ステンレス鋼では数100μm1ステンレス鋼
管では数10tw+で十分である。On the other hand, the depth needs to be at least one grain or more deeper than the depth of the molten solidified part, or more than the surface irregularities caused by mirror dulling and pickling during stainless steel manufacturing. For a stainless steel pipe of several 100 μm, several 10 tw+ is sufficient.
冷却速度をlO℃/Sec以上に選んだ理由はつぎのと
おりである。The reason why the cooling rate was selected to be 10° C./Sec or more is as follows.
すなわち、ステンレス鋼を溶融して表面の鋭敏化部を解
消しても、溶融後の冷却速度が遅いと冷却中に再びCr
炭化物を析出して鋭敏化することがある。通常、鋭敏化
する温度は500〜850℃の間とされているので、冷
却中50[1’C以上での冷却速度が早ければよい。冷
却中に鋭敏化しないために必要な冷却速度は板厚,温度
,人熱などの施工条件のほか材料の金属的な組織によっ
ても微妙に変化する。In other words, even if stainless steel is melted to eliminate the sensitized parts on its surface, if the cooling rate after melting is slow, Cr will regenerate during cooling.
Carbides may precipitate and cause sensitization. Usually, the temperature at which sensitization occurs is between 500 and 850°C, so the faster the cooling rate at 50 [1'C or higher during cooling, the better. The cooling rate required to prevent sensitization during cooling varies slightly depending on construction conditions such as plate thickness, temperature, and human heat, as well as the metallic structure of the material.
(実施例)
鋭敏化したSUS304ステンレス鋼の表面をYAGレ
ーザー照射によって溶融・凝固処理を施した例について
説明する。(Example) An example in which the surface of sensitized SUS304 stainless steel was melted and solidified by YAG laser irradiation will be described.
ステンレス鋼は重量%で、C:0.058%,Cr:l
8.6%, Ni : 8.7%および残部Feな
らびに不可避的不純物を若干量含んでおり、板厚は5+
nmである。このステンレス鋼に1l00℃で15分間
加熱保持したのち水冷によって室温まで冷却した後、さ
らに620℃に24時間加熱保持したのち、大気中で放
冷する熱処理を行い試験板とした。この試験板に所定の
条件でYAGレーザーを照射した後、第2図(a)およ
び(b)に示した寸法に切断して、断面を研磨し、10
%シュウ酸液中で電解エッチングを行い、光学顕微鏡で
試験片1の金属組織と、溶融凝固層2の深さを調べた。Stainless steel is weight%, C: 0.058%, Cr: l
8.6%, Ni: 8.7%, the balance contains Fe and some unavoidable impurities, and the plate thickness is 5+
It is nm. This stainless steel was heat-treated at 1100° C. for 15 minutes, cooled to room temperature by water cooling, further heated and held at 620° C. for 24 hours, and then heat-treated by cooling in the atmosphere to prepare a test plate. After irradiating this test plate with a YAG laser under predetermined conditions, it was cut into the dimensions shown in Figures 2 (a) and (b), and the cross section was polished.
Electrolytic etching was performed in a % oxalic acid solution, and the metal structure of the test piece 1 and the depth of the molten solidified layer 2 were examined using an optical microscope.
その結果、試験片1の未溶融・溶体化部3の組織は溶接
熱影響部の組織と同じで鋭敏化したステンレス鋼のもの
となっていることが確認された。As a result, it was confirmed that the structure of the unmelted/solution-treated portion 3 of the test piece 1 was the same as that of the weld heat affected zone, and was that of sensitized stainless steel.
また、溶融凝固層2の深さとレーザー照射による入熱条
件の関係を第1図に示す。レーザー光による人熱量が大
きくなればそれに伴って溶融凝固層の深さも大きくなる
。またこれらの試験板の表面付近から第2図(0および
(b)に示したように試験片1を採取し、JISGO5
75に規定される粒界腐食試験を行った。即ち、試験片
1を試験溶液(脱イオン水に硫酸100mlと硫酸銅1
00gを溶解し、1000mlにしたもの)に浸漬し、
連続16時間沸騰した。この後、試験片{を取り出し表
面の溶融凝固層2の面が外側になるように、曲げ半径4
mlI1で曲げ、曲げた外側の面(表面の溶融凝固層)
を光学顕微鏡( IGO〜2fl[l倍)で粒界腐食に
基づく割れの有無を調べたこの結果を表に示す。Further, FIG. 1 shows the relationship between the depth of the molten solidified layer 2 and the heat input conditions by laser irradiation. As the amount of human heat generated by the laser beam increases, the depth of the molten solidified layer also increases. In addition, test pieces 1 were taken from near the surface of these test plates as shown in Figure 2 (0 and (b)), and JISGO5
The intergranular corrosion test specified in 75 was conducted. That is, test piece 1 was mixed with a test solution (100 ml of sulfuric acid and 1 ml of copper sulfate in deionized water).
00g dissolved to make 1000ml),
Boiling continued for 16 hours. After this, the test piece {is taken out and bent with a radius of 4 so that the surface of the molten solidified layer 2 on the surface is on the outside.
Bending with mlI1, bent outer surface (melted solidified layer on the surface)
The presence or absence of cracks due to intergranular corrosion was examined using an optical microscope (IGO ~ 2 fl [l times)]. The results are shown in the table.
表は試験片lから7までについて、入熱1溶融凝固層深
さおよび粒界腐食試験結果を示している。The table shows the heat input 1 molten solidified layer depth and intergranular corrosion test results for test specimens 1 to 7.
なお、試験片1はレーザー照射してない例を示している
。Note that test piece 1 shows an example in which no laser irradiation was performed.
表から明らかなように表面溶融凝固処理なしの試験片(
1)と、溶融凝固層の深さ3G+1111の試験片(2
)では割れが認められて粒界腐食感受性を示している。As is clear from the table, the specimen without surface melting and solidification treatment (
1) and a test piece (2) with a melted solidified layer depth of 3G + 1111
), cracks were observed, indicating susceptibility to intergranular corrosion.
これに対して試験片(3)から(7)の処理深さ5lb
+m以上の場合には、割れはなく、この面での粒界腐食
感受性は解消していることが認められた。In contrast, the treatment depth for test pieces (3) to (7) was 5 lb.
In the case of +m or more, there was no cracking, and it was recognized that the susceptibility to intergranular corrosion on this surface had been resolved.
なお、本実施例ではレーザ・一による表面の溶融凝固処
理にはArガスをシールドガスとして用い、レーザー出
力は+3QOWとした。In this example, Ar gas was used as a shielding gas for the surface melting and solidification treatment by laser 1, and the laser output was set to +3QOW.
本発明は表面の急速溶融・凝固処理によって鋭敏化を解
消することにポイントがあるため、304ステンレス鋼
のみでなく、SUS316,SUS347,SUS32
1鋼に対しても有効であり、NCF600のようなNt
基合金でも同様である。The key point of the present invention is to eliminate sensitization through rapid melting and solidification treatment of the surface, so it can be applied not only to 304 stainless steel but also to SUS316, SUS347, SUS32
1 steel, such as NCF600.
The same applies to base alloys.
また、本発明はこれらのステンレス鋼からなる配管の溶
接部のみならず、容器の接液部,容器と管の溶接部にも
有効であり、第3図に示すように管3の外側と容器1の
穴を溶接する構造の管内面の鋭敏化部に適用するのに特
に適している。In addition, the present invention is effective not only at welded parts of pipes made of stainless steel, but also at liquid-contacted parts of containers and welded parts between containers and pipes, and as shown in FIG. It is particularly suitable for application to the sensitized part of the inner surface of a tube in a structure in which one hole is welded.
すなわち、第3図は容器4の壁をステンレス鋼管5が貫
通しており、溶接金属6によってステンレス鋼管5が容
器4に取付けられた構造物の縦断面を示している。That is, FIG. 3 shows a longitudinal section of a structure in which a stainless steel pipe 5 passes through the wall of a container 4 and is attached to the container 4 by a weld metal 6.
このような構造では溶接金属6に近いステンレス鋼管は
鋭敏化し鋭敏化領域を形成してしまう。In such a structure, the stainless steel pipe close to the weld metal 6 becomes sensitized and forms a sensitized region.
ステンレス鋼管5の内面が海水または高温純水に接する
とき、鋭敏化領域7は粒界腐食または粒界応力腐食割れ
を生じる可能性がある。When the inner surface of the stainless steel tube 5 comes into contact with seawater or high-temperature pure water, the sensitized region 7 may undergo intergranular corrosion or intergranular stress corrosion cracking.
そこで、ステンレス鋼管3の内面のうち鋭敏化領域7に
相当する部分にレーザー照射によって溶融凝固層8を形
或する。Therefore, a molten solidified layer 8 is formed on a portion of the inner surface of the stainless steel pipe 3 corresponding to the sensitized region 7 by laser irradiation.
この溶融凝固層8によって粒界腐食または粒界応力腐食
割れを防止することができる。この例から明らかなよう
に本発明方法は製作を終了し据付けたもの、または供用
を開始したものにも適用することができる。This molten solidified layer 8 can prevent intergranular corrosion or intergranular stress corrosion cracking. As is clear from this example, the method of the present invention can be applied to products that have been manufactured and installed, or to products that have begun to be put into service.
[発明の効果コ
本発明によれば、ステンレス鋼の溶接熱影響部の鋭敏化
を除去し、粒界腐食を防止することができる。また、ス
テンレス鋼製構造物の溶接施工後、または供用開始後に
おいてもステンレス鋼の鋭敏化部の粒界腐食を防止する
ことができる。[Effects of the Invention] According to the present invention, sensitization of the weld heat affected zone of stainless steel can be eliminated and intergranular corrosion can be prevented. Furthermore, intergranular corrosion of the sensitized portion of the stainless steel can be prevented even after welding of the stainless steel structure or after the start of service.
第1図から第3図は本発明に係る方法の実施例を示すも
ので、第1図は溶融凝固層深さとレーザーによる入熱と
の関係を示す特性図、第2図(0は試験片の幅方向を示
す縦断面図、第2図(b)は試験片の長さ方向を示す縦
断面図、第3図は容器にステンレス鋼管を溶接する例を
示す部分断面図である。
1・・・試験片
2・・・溶融凝固層
3・・・未溶融・溶体化部
4・・・容器
5・・・ステンレス鋼管
6・・・溶融金属
7・・・鋭敏化領域
8・・・表面溶融凝固処理層1 to 3 show examples of the method according to the present invention. 2(b) is a longitudinal sectional view showing the length direction of the test piece, and FIG. 3 is a partial sectional view showing an example of welding a stainless steel pipe to a container.1. ...Test piece 2...Melted solidified layer 3...Unmelted/solutionized portion 4...Container 5...Stainless steel tube 6...Molten metal 7...Sensitized region 8...Surface Melt solidification treatment layer
Claims (1)
μm以上の深さでレーザーまたは電子ビーム照射によっ
て溶融し、10℃/Sec以上で急速に凝固冷却するこ
とを特徴とするステンレス鋼の粒界腐食防止方法。The sensitized area of the weld heat affected zone of stainless steel is
A method for preventing intergranular corrosion of stainless steel, which is characterized by melting by laser or electron beam irradiation at a depth of .mu.m or more and rapidly solidifying and cooling at 10.degree. C./Sec or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1150459A JPH0317234A (en) | 1989-06-15 | 1989-06-15 | Method for preventing integranular corrosion of stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1150459A JPH0317234A (en) | 1989-06-15 | 1989-06-15 | Method for preventing integranular corrosion of stainless steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0317234A true JPH0317234A (en) | 1991-01-25 |
Family
ID=15497390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1150459A Pending JPH0317234A (en) | 1989-06-15 | 1989-06-15 | Method for preventing integranular corrosion of stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0317234A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60165323A (en) * | 1984-02-09 | 1985-08-28 | Univ Nagoya | Prevention of weld decay in stainless steel welded part |
JPS61177325A (en) * | 1985-01-31 | 1986-08-09 | Sumitomo Metal Ind Ltd | Improvement of corrosion resistance or stainles steel weld zone |
JPS6353210A (en) * | 1986-08-22 | 1988-03-07 | Sumitomo Metal Ind Ltd | Method for improving stress corrosion cracking resistance of stainless steel |
JPS63277722A (en) * | 1987-05-07 | 1988-11-15 | Nippon Steel Corp | Manufacture of resistance welded tube excellent in corrosion resistance in weld zone |
-
1989
- 1989-06-15 JP JP1150459A patent/JPH0317234A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60165323A (en) * | 1984-02-09 | 1985-08-28 | Univ Nagoya | Prevention of weld decay in stainless steel welded part |
JPS61177325A (en) * | 1985-01-31 | 1986-08-09 | Sumitomo Metal Ind Ltd | Improvement of corrosion resistance or stainles steel weld zone |
JPS6353210A (en) * | 1986-08-22 | 1988-03-07 | Sumitomo Metal Ind Ltd | Method for improving stress corrosion cracking resistance of stainless steel |
JPS63277722A (en) * | 1987-05-07 | 1988-11-15 | Nippon Steel Corp | Manufacture of resistance welded tube excellent in corrosion resistance in weld zone |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8322592B2 (en) | Austenitic welding material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for intergranular corrosion, using same | |
US4234119A (en) | Method of making a structure immune against stress corrosion cracking | |
Brooks et al. | Selection of wrought austenitic stainless steels | |
Roshith et al. | Investigations on induced residual stresses, mechanical and metallurgical properties of CO2 laser beam and pulse current gas tungsten arc welded SMO 254 | |
US4398966A (en) | Corrosion of type 304 stainless steel by laser surface treatment | |
JP2657437B2 (en) | Stress corrosion cracking resistant austenitic material and method for producing the same | |
Mohan Kumar et al. | Effect of heat input and weld chemistry on mechanical and microstructural aspects of double side welded austenitic stainless steel 321 grade using tungsten inert gas arc welding process | |
JPH0317234A (en) | Method for preventing integranular corrosion of stainless steel | |
Fidan et al. | Laser parameter optimization for surface texturing of inconel 625 | |
JP2000254776A (en) | Stress corrosion crack prevention method for atomic reactor-inside piping welded part | |
JP2005023354A (en) | Piping welded joint of low carbon stainless steel and its producing method | |
JPH0545664B2 (en) | ||
JPH02258190A (en) | Method for reforming welded part of austenitic stainless steel | |
Adesanmi et al. | Microstructural and Corrosion Characteristics of a Heat Treatable Stainless-SteelWeldments | |
Sulaiman | Structure of properties of the heat affected zone of P91 creep resistant steel | |
JP4412533B2 (en) | Method for improving and repairing stress corrosion cracking of high nickel alloy | |
McCaul | Evaluation of intergranular corrosion susceptibility in an as welded high alloy austenitic stainless steel casting | |
Ahn et al. | Directed Energy Deposition of UNS S31603 Materials by Wire Arc Energy for Nuclear Application | |
JP3501922B2 (en) | Prevention of peeling crack of pressure vessel | |
Lipodaev et al. | Resistance of the metal in multipass austenitic welds to the formation of hot cracks | |
JPS61126972A (en) | Prevention of crack in build up weld zone | |
JPH04264293A (en) | Manufacture of corrosion-resistant apparatus of nuclear fuel reprocessing plant | |
JPH07188737A (en) | Corrosion resistant treatment of corrosion resistant apparatus for nuclear fuel reprocessing plant | |
Tarasov et al. | Vacuum heat treatment of welded and soldered magnetic circuits | |
JPS6250531B2 (en) |