JPH02258190A - Method for reforming welded part of austenitic stainless steel - Google Patents

Method for reforming welded part of austenitic stainless steel

Info

Publication number
JPH02258190A
JPH02258190A JP1315291A JP31529189A JPH02258190A JP H02258190 A JPH02258190 A JP H02258190A JP 1315291 A JP1315291 A JP 1315291A JP 31529189 A JP31529189 A JP 31529189A JP H02258190 A JPH02258190 A JP H02258190A
Authority
JP
Japan
Prior art keywords
stainless steel
welding
austenitic stainless
heat
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1315291A
Other languages
Japanese (ja)
Other versions
JP2865749B2 (en
Inventor
Hiroshi Tsujimura
辻村 浩
Yasukata Tamai
玉井 康方
Hideyo Saito
英世 斉藤
Masahiro Kobayashi
正宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1315291A priority Critical patent/JP2865749B2/en
Publication of JPH02258190A publication Critical patent/JPH02258190A/en
Application granted granted Critical
Publication of JP2865749B2 publication Critical patent/JP2865749B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PURPOSE:To obtain a stainless steel welded joint having long service life by executing fusing treatment at one side face of thermally affected range in the welding joint of austenitic stainless steel while cooling from the other side face and changing the structure of the range into crystal structure containing delta ferrite. CONSTITUTION:A stainless steel pipe 5a is penetrated through a carbon steel- made thick plate 5b and fixed with fillet weld 6. The steel pipe 5a is made of the austenitic stainless steel. In the thermally affected range 7 of the fillet welding 6 part in the welding joint, the fusing treatment is executed with non- filler TIG weld to one face side while cooling from the other face side. Then, the structure of the part is changed into the crystal structure containing the delta ferrite. By this method, the stainless steel welded joint having high reliability can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、オーステナイ)−系ステンレス鋼の溶接部改
質方法に係わり、特に固溶化熱処理(ステンレス鋼の溶
接部における応力腐食割れ(stresscorros
ion cracking)対策として通常行われる)
を施すことができず、かつ該固溶化熱処理に代わる溶融
処理を部材の片側からのみ行い得る装置構造体の既設溶
接継手部分の改質処理方法に関するものである。溶存酸
素を含有する高温高圧水で使用される機器部材、特にB
WRプラント用機器部材では、部材の信頼性確保および
長寿命化のために高い耐蝕性が要求される。本発明はこ
の問題に対処した技術分野に最も好適である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for modifying welds of austenite-based stainless steels, and particularly relates to solution heat treatment (stress corrosion cracking in welds of stainless steels).
ion cracking))
The present invention relates to a method for modifying an existing welded joint portion of an apparatus structure, in which melting treatment in place of solution heat treatment can be performed only from one side of the member. Equipment parts used in high-temperature, high-pressure water containing dissolved oxygen, especially B
Equipment components for WR plants are required to have high corrosion resistance in order to ensure reliability and extend the life of the components. The present invention is most suitable for technical fields that address this problem.

〔従来の技術〕[Conventional technology]

沸騰水型原子炉(boiling−water rea
ctor)(BWR)プラントにおける一次冷却水用配
管(J I 5SUS304材製)の溶接継手の溶接熱
影響部には、粒界型応力腐食割れ(以下、応力腐食割れ
をSCCと称する)が生じる係向がある。SCCは、第
3図に示されるように、0.2%耐力を超える高づつ張
り応力1.溶接熱影響により結晶粒界に沿って生じるク
ロム欠乏層2(鋭敏化領域)、および溶存酸素等の腐食
環境3か重なる部分4に発生する。
boiling-water reactor
intergranular stress corrosion cracking (hereinafter referred to as SCC) occurs in the weld heat-affected zone of the welded joint of the primary cooling water piping (made of JI 5SUS304 material) in the (BWR) plant. There is a direction. As shown in FIG. 3, SCC has a tensile stress of 1. It occurs in a region 4 where a chromium-deficient layer 2 (sensitized region) that occurs along grain boundaries due to the influence of welding heat and a corrosive environment 3 such as dissolved oxygen overlap.

従来より施工されている自然冷却によるJISSUS3
04製配管の溶接では、第2図に示さ才しろように溶接
(溶接部6参照)により管内外面に数10kg / n
un 2におよぶ高引っ張り残留LE、:力(第2図の
特性8参照)が生しる。第2図のTS側は引っ張り応力
領域であり、CS側は圧縮残留応力領域である。直線9
は、10 kg / +1wn 2 レヘルを示す。母
材5aの溶接部近傍の熱影響部7にクロ11欠乏層が生
じる。このように、高引っ張り残留応力とクロム欠乏層
の発生した母材の内外両面に腐食性流体が接触すると、
母材の熱影響部にSCCが発生する危険が大きくなる。
JISSUS3 with conventional natural cooling
When welding 04 pipes, as shown in Fig. 2, welding (see welding part 6) causes a loss of several tens of kg/n on the inner and outer surfaces of the pipe.
A high tensile residual LE, : force (see characteristic 8 in FIG. 2) of up to 2 is generated. The TS side in FIG. 2 is a tensile stress region, and the CS side is a compressive residual stress region. straight line 9
indicates 10 kg/+1wn 2 lehels. A chromium-11-deficient layer is formed in the heat-affected zone 7 near the welded portion of the base metal 5a. In this way, when a corrosive fluid comes into contact with both the inner and outer surfaces of the base material, where high tensile residual stress and chromium-deficient layers have occurred,
The risk of SCC occurring in the heat-affected zone of the base material increases.

公知のSCC対策の一つとして、特公昭59217]1
 号公報に記載された方θ、かある。該公報に記載され
た方法は、溶接接合される予定の複数のステンレス鋼製
部材の溶接継手部近傍の腐食性流体に接る面にデルタ 
(δ)フエライ1〜を含む耐食材料を肉盛し、次いで内
盛止端部における前記腐食性流体に接する面に入熱5 
K J / c1n以下に溶融処理を施し、その後、1
)fj記スステンレス鋼製部材溶接継手部を溶接する方
θ(である。この溶融処理の目的は、耐食材料の肉盛に
よって母+]の熱影響部に生成するクロム欠乏J?グを
消滅させるとともに、デルタ(δ)フエライh k含む
耐食性の優れた組織を生成させるとこにある。特開昭5
3−561.34号公報に記載された方法も、溶接に先
立ってステンレス鋼材の溶接接合部近傍に溶融処理を施
すという点て、特公昭59−21711 号公報に記載
された力a、と類似している。すなオ〕も、この力θ、
は、オーステナイト系ステンレス鋼製部材の溶接に先立
って、溶接による熱影響を受けるp定箇所の表面層に、
熱エネルギーを与える(アーク、プラズマ等による)こ
とによって溶融処理を施す方法である。
As one of the known SCC countermeasures, the Special Publication No. 59217]1
The direction θ described in the publication is correct. The method described in this publication involves applying a delta to the surface in contact with corrosive fluid near the weld joint of multiple stainless steel members to be welded together.
(δ) A corrosion-resistant material containing Ferray 1 to 1 is built up, and then heat is input 5 to the surface in contact with the corrosive fluid at the toe of the internal buildup.
Melting treatment is applied to K J / c1n or less, and then 1
) How to weld the welded joints of stainless steel members θ (The purpose of this melting treatment is to eliminate the chromium deficiency J? that forms in the heat-affected zone of the base by overlaying the corrosion-resistant material. At the same time, a structure with excellent corrosion resistance containing delta (δ) ferrite h k is generated.
The method described in Japanese Patent Publication No. 3-561.34 is similar to the force a described in Japanese Patent Publication No. 59-21711 in that the method described in Japanese Patent Publication No. 59-21711 is performed in that melting treatment is applied to the vicinity of the welded joint of stainless steel materials prior to welding. are doing. Sunao] also has this force θ,
Prior to welding of austenitic stainless steel members, the surface layer at certain points affected by the heat of welding is
This is a method of melting by applying thermal energy (by arc, plasma, etc.).

この方法では、溶融処理による溶融部が凝固する際にデ
ルタ (δ)フェライトが生しる。また、この方法によ
って得られる組織は、溶接時に熱影響を受けても、肉盛
を行った場合と同様に結晶粒界における炭化物の析出に
よる鋭敏化が生しない。
In this method, delta (δ) ferrite is produced when the molten part from the melting process solidifies. Furthermore, even if the structure obtained by this method is affected by heat during welding, it does not become sensitized due to carbide precipitation at grain boundaries, as in the case of overlaying.

SCC対策の他の一つは、特公昭60−453033号
公報(Japanese Patent lExamj
ncd Publ、1catjon)に記載された方法
である。該公報に記載された方法は、溶接に先立って、
溶接部材の腐食性流体に接触する面にデルタ (δ)フ
ェライトを含む耐食材料を肉盛し、その後、該肉盛側を
冷却しなから肉盛止端部の反対側の而に肉盛を施す方法
である。
Another measure against SCC is Japanese Patent Publication No. 60-453033.
This is the method described in ncd Publ, 1 catjon). The method described in the publication includes, prior to welding,
A corrosion-resistant material containing delta (δ) ferrite is deposited on the surface of the welding part that comes into contact with the corrosive fluid, and then, without cooling the deposited side, the deposit is deposited on the opposite side of the deposited toe. This is a method of applying

冷却しながら肉盛する目的は、最初の(または第一次の
)耐食材料の肉盛によって母材の熱影響部に生じるクロ
ム欠乏層領域の残留応力を改善することにある。
The purpose of overlaying while cooling is to improve the residual stress in the chromium-deficient layer region created in the heat-affected zone of the base metal by the initial (or primary) overlay of the corrosion-resistant material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

公知の手法は、S CC対策の施された面のみがSCC
に対して有効であり、そJしとは反対側の面については
配慮がなされていない。そのため、溶接継手の表裏両面
が腐食性流体に接触する場合には、継手の両面にSCC
対策を施さなければならない。このことは、溶接継手の
表裏両面が腐食性流体に接触する場合であって、既設溶
接継手の片側面のみにしか溶融処理を施し得ない場合に
、従来技術は有効に対処し得ないことを意味している。
In the known method, only the surface on which SCC countermeasures have been applied is subject to SCC.
It is effective against the other side, and no consideration is given to the opposite side. Therefore, when both the front and back sides of a welded joint come into contact with corrosive fluids, SCC is applied to both sides of the joint.
Measures must be taken. This indicates that the conventional technology cannot effectively deal with cases where both the front and back sides of a welded joint come into contact with corrosive fluids, and where melting treatment can only be applied to one side of an existing welded joint. It means.

他方、オーステティ1−系ステンレス鋼の溶接継手熱影
響部に生じるSCCを防ぐために、溶接に先立ち、母材
の熱影響予定箇所に熱エネルギーを与えて溶融しておく
方法が、特開昭53−56134 号公報(既述)およ
び特開昭63−177972号公報(後者は、冷間加工
材一般を対象とする方法として記述されている)に開示
されている。これらの方法は、既設の溶接継手を対象と
していない。
On the other hand, in order to prevent SCC occurring in the heat-affected zone of a welded joint of Austety 1-stainless steel, there is a method in which thermal energy is applied to the heat-affected areas of the base material to melt them prior to welding, as disclosed in Japanese Patent Application Laid-Open No. 53-1981. It is disclosed in Japanese Patent Application Laid-open No. 56134 (already mentioned) and Japanese Patent Application Laid-Open No. 177972/1983 (the latter is described as a method for cold-worked materials in general). These methods are not intended for existing welded joints.

本発明は、斯かる技術的背景の下で創案されたものであ
る。
The present invention was created against this technical background.

本発明の主目的は、オーステナイト系ステンレス鋼の溶
接熱影響部に生じるクロム欠乏層と高上つ張り残留応力
につき、溶接継手の一方の面におけるクロム欠乏層を消
滅させるとともに、デルタ(δ)フェライトを含む耐食
性に優れた組織に変え、かつ溶接継手の他方の面におけ
るクロム欠乏層領域の残留応力を低減化することにより
、耐蝕性の優れたオーステナイト系ステンレス鋼の溶接
継手を得ることである。また、この目的には、既設プラ
ン1−(装置)のオーステナイト系ステンレス鋼製配管
を保全または補修する際にSCCの発生を抑制できる手
d、を提供することが含まれる。
The main purpose of the present invention is to eliminate the chromium-depleted layer and high upper tensile residual stress that occur in the weld heat affected zone of austenitic stainless steel, and to eliminate the chromium-deficient layer on one side of the welded joint, as well as to eliminate the delta (δ) ferrite. The purpose of the present invention is to obtain a welded joint of austenitic stainless steel with excellent corrosion resistance by changing the structure to a structure containing excellent corrosion resistance and reducing the residual stress in the chromium-deficient layer region on the other side of the welded joint. This objective also includes providing a method d that can suppress the occurrence of SCC when maintaining or repairing the austenitic stainless steel piping of the existing plan 1-(equipment).

〔課題を解決するための手段〕[Means to solve the problem]

上記[I的を達成するための第1の手段は、オーステテ
ィ1〜系ステンレス鋼が溶接熱影響を受けた後、熱影響
部の表裏両面に腐食に1流体が接触する構造物しこおけ
る溶接部;手の熱影響領域を、継手の一方の面側から冷
却させつつ、他方の面に溶融処理を施し、溶融処理部分
をデルタ(δ)フェライトを含む耐食性に優れた紅1’
+、’+ )II職に変えることを特徴とするオーステ
ナイト系ステンレス鋼の溶接部改質方法であり、第2の
手段は、上記第1の−F段において、溶融処理を行うた
めの溶融熱か、高密度エネルギーの投入によって得るオ
ーステナイト系ステンレス鋼の溶接部改質方法である。
The first means to achieve the above goal is to weld a structure in which a fluid comes into contact with corrosion on both the front and back surfaces of the heat-affected zone after Austety 1~ series stainless steel is affected by welding heat. Part: The heat-affected area of the hand is cooled from one side of the joint, while the other side is melt-treated, and the melt-treated part is made of a highly corrosion-resistant material containing delta (δ) ferrite.
+, '+) This is a method for modifying a welded part of austenitic stainless steel characterized by changing the weld part to a second stage, and the second means is to modify the welded part of an austenitic stainless steel by changing it to Another method is to modify the welded part of austenitic stainless steel by applying high-density energy.

〔作用〕[Effect]

第1の手段によれば、オーステナイト系ステンレス鋼が
溶接熱影響を受けた後、熱影響部の表裏両面に腐食性流
体か接触する構造物につき、溶接継手の熱影響領域を継
手の一方の面側から冷却させつつ、他方の面に溶融処理
を施し、その溶融・凝固処理法により、溶接熱影響領域
に生していたクロム炭化物が、i’+if記他方の面側
の処理領域においてフェライトおよびオーステナイj・
に分カ′シた組織、すなわちデルタ (δ)フエライl
−か生しることによって耐蝕41の優れた組織になる。
According to the first method, after the austenitic stainless steel is affected by welding heat, the heat affected zone of the welded joint is changed to one side of the joint for a structure in which a corrosive fluid comes into contact with both the front and back surfaces of the heat affected zone. While cooling from the side, melting treatment is applied to the other side, and due to the melting and solidification treatment method, the chromium carbide that had formed in the welding heat affected zone becomes ferrite and Austenai J.
A structure divided into two parts, namely delta (δ)
- By aging, it becomes a structure with excellent corrosion resistance.

それに対して、前記一方の面側ては、クロム欠乏層領域
(クロム炭化物発生領域)残存する高引っ張り応力(7
8接による残留熱応力)が+10kg/瞥以下に改善さ
れ、結果とじてSCCの発生が防止される。残留熱応力
が改善される理由は、?8融・凝固処理を行う間の冷却
によって、水冷溶接の場合と同様に継手両面に大きな温
度差が生し、冷却側の残留熱応力が改善されるのである
On the other hand, on the one side, the high tensile stress (7
(residual thermal stress due to 8-junction) is improved to below +10 kg/view, and as a result, the occurrence of SCC is prevented. What is the reason for the improvement in residual thermal stress? 8. Cooling during the melting and solidification process creates a large temperature difference on both sides of the joint, similar to water-cooled welding, and improves residual thermal stress on the cooling side.

第2の手段によれば、第1の手段での前記溶融処理は、
処理領域に対するアーク放電(例、阿(jアーク)、ブ
ラスマ、レーザヒーZ% ’4の高密度エネルギーの投
入(または照!)j)によって々f118iに行われt
ijるから、その投入部位とそれに近い周辺との温度落
差を大きくすることができる。このようにしておくとそ
の投入後の冷却が周辺の低湿かんきようの影響で迅速に
成され、クロム炭化物が出にくい作用を得れる。
According to a second means, the melting treatment in the first means comprises:
It is carried out at every f118i by arc discharge (e.g., injection (or irradiation!) of high-density energy of Z% '4) to the treatment area
ij, it is possible to increase the temperature drop between the injection site and the surrounding area. By doing so, the cooling after the injection is done quickly due to the influence of the surrounding low-humidity canal, and the effect that chromium carbides are less likely to be generated can be obtained.

〔実施例〕〔Example〕

実施例では、オーステナイト系ステンレス鋼製部材を溶
接することにより生しるクロム欠乏層を、アーク、レー
ザビー11等の高密度エネルギーの投入(または照射)
によって溶融・凝固させ、もって溶接熱影響部のクロム
炭化物をフェライ1〜およびオーステナイトに分解固溶
せしめる処理法として特徴づけられる。この処理によっ
て処理側表面層にデルタ(δ)フェライトが生し、した
がって耐蝕性の優れた組織が得られる。溶融処理を行う
間、反対側の面を水等で強制冷却する場合には、溶融処
理に必要な入熱は1〜30KJ/cl11であり、また
反対側の面を強制冷却することなく自然冷却に頼る場合
には、溶融処理に必要な入熱は特公昭59−21711
号公報に記載されているとおり5 K J/cm以下で
ある。この範囲の入熱てあれば溶融処理の止端部に熱影
響によるクロム欠乏層の生成は抑制される。
In the example, a chromium-depleted layer produced by welding austenitic stainless steel members was irradiated (or irradiated) with high-density energy such as arc or laser beam 11.
It is characterized as a treatment method in which chromium carbide in the weld heat-affected zone is decomposed and dissolved into ferrite 1 and austenite by melting and solidifying it. This treatment produces delta (δ) ferrite in the treated surface layer, resulting in a structure with excellent corrosion resistance. If the opposite side is forcibly cooled with water or the like during the melting process, the heat input required for the melting process is 1 to 30 KJ/cl11, and the opposite side can be cooled naturally without being forcedly cooled. When relying on
As stated in the publication, it is 5 KJ/cm or less. If the heat input is within this range, the formation of a chromium-depleted layer at the toe of the melting process due to thermal effects will be suppressed.

別の観点て実施例は、オーステナイト系ステンレス鋼製
部材を溶接することにより生じるクロム欠乏層領域の高
引っ張り応力を、溶接継手の片側面を冷却しつつ反対側
に」−記入熱範囲で溶融処理を施すことによって冷却側
にて+10kg/c+&以下に改善する方法として特徴
づけられる。
From another point of view, the embodiment reduces the high tensile stress in the chromium-depleted zone region caused by welding austenitic stainless steel members by cooling one side of the weld joint and melting the other side in the heat input range. It is characterized as a method that improves the cooling side to +10 kg/c +& or less by applying this.

ところで、オーステナイト系ステンレス鋼が、18Cr
−8Ni系鋼で代表されることは周知である。オーステ
ナイ1へ系ステンレス鋼は、一般にCr系ステンレス鋼
よりも耐食性がよく、また高温強さや、低温靭性が良く
、さらに溶接性が優れているので、用途が極めて広い。
By the way, austenitic stainless steel is 18Cr
It is well known that -8Ni steel is a typical example. Austenite 1 stainless steel generally has better corrosion resistance than Cr stainless steel, and also has good high temperature strength and low temperature toughness, as well as excellent weldability, so it has an extremely wide range of uses.

以下、本発明の実施例をより具体的に説明する。Examples of the present invention will be described in more detail below.

第2図に本実施例の試験体の概略を示す。厚さ100 
no炭素鋼製厚板5bに、外径50n+n+、内径38
mnのステンレス鋼管5aを貫通させ、すみ肉溶接6に
より固定した構造が示されている。
FIG. 2 shows an outline of the test specimen of this example. Thickness 100
No carbon steel thick plate 5b, outer diameter 50n+n+, inner diameter 38
A structure is shown in which a stainless steel tube 5a of mn is penetrated and fixed by fillet welding 6.

本実施例に使用したステンレス鋼管の化学成分を第1表
に示す。
Table 1 shows the chemical composition of the stainless steel pipe used in this example.

第  1  表 すみ肉溶接条件は第2表に示す。Table 1 Fillet welding conditions are shown in Table 2.

第  2  表 欠乏層領域7をノンフィラTIG溶接により溶接処理を
施す。
The depleted layer region 7 of the second table is welded by non-filler TIG welding.

溶融処理を行ったノンフィラTIG溶接は、管外面の水
冷効果のある領域11は1〜30KJ/国、自然冷却に
頼る領域12は1〜5 K J /an以下の条件で行
った。施工条件の一例を第3表に示す。
The non-filler TIG welding performed by melting treatment was carried out under conditions of 1 to 30 KJ/an in the water-cooled region 11 on the outer surface of the tube, and 1 to 5 KJ/an in the region 12 relying on natural cooling. An example of construction conditions is shown in Table 3.

第  3  表 この溶接により溶接近傍内外面はクロム欠乏層7と高引
張残留応力が発生する。管外面の残留応力の一例を第2
図に示す。このようにクロム欠乏層領域に高引張応力が
発生しており、腐食性流体がこの領域に接すればSCC
発生の可能性がある。
Table 3 This welding produces a chromium-deficient layer 7 and high tensile residual stress on the inner and outer surfaces near the weld. An example of residual stress on the outer surface of the tube is shown in the second example.
As shown in the figure. In this way, high tensile stress occurs in the chromium-depleted layer region, and if a corrosive fluid comes into contact with this region, SCC
There is a possibility of occurrence.

すみ肉溶接後、第1図に示すように管外面を水冷しなが
ら(水冷域10参照)、管内面のクロムノンフィラTI
G溶接により溶接処理を施した、止端部をも含めた領域
は、クロム欠乏層が消滅しδフエライ1へが生成した耐
食性に優れた組織になっており、優れた耐食性を示す。
After fillet welding, as shown in Fig. 1, while cooling the outer surface of the tube with water (see water cooling area 10), weld the inner surface of the tube with chromium non-filler TI.
The region including the toe that has been welded by G welding has a structure with excellent corrosion resistance in which the chromium-depleted layer has disappeared and δ ferrite 1 has been formed, and exhibits excellent corrosion resistance.

第1図に管外面の残留応力状態を示す。この図に示すよ
うに腐食性流体に接する管外面13の残留塔力は圧縮応
力側に改善され、SCCが発生しない応力10 kg/
 nII+2以下になる。
Figure 1 shows the state of residual stress on the outer surface of the tube. As shown in this figure, the residual tower force on the outer surface 13 of the tube in contact with the corrosive fluid has been improved to the compressive stress side, and the stress is 10 kg/1, which does not cause SCC.
It becomes less than nII+2.

以上をまとめると第4表の如くになる。The above can be summarized as shown in Table 4.

この実施例で5bをBWR型原子炉の原子炉圧力容器下
鏡板に、5aをBWR型原子炉のインコアモニター(通
常ICM)ハウジング部と考えれば、本発明によりすみ
肉溶接の熱影響により劣化したステンレス鋼製ICMハ
ウジングを取替えることなく耐食性良好なICMハウジ
ンクに修復することができる。
In this example, if we consider 5b to be the lower head plate of the reactor pressure vessel of a BWR type nuclear reactor and 5a to be the in-core monitor (usually ICM) housing part of the BWR type nuclear reactor, the present invention will prevent deterioration due to the heat effect of fillet welding. It is possible to repair the ICM housing with good corrosion resistance without replacing the stainless steel ICM housing.

また、炉水を原子炉圧力容器より抜くことなく作業でき
るため、炉水を抜く手間が省けかっ炉水による放射線の
遮蔽効果により作業員の被爆放射線量を抑えることがで
きるので被爆低減と長時間作業が可能と成る。
In addition, the work can be done without draining the reactor water from the reactor pressure vessel, which saves the trouble of draining the reactor water.The radiation shielding effect of the reactor water reduces the amount of radiation that workers are exposed to, reducing exposure and increasing the Work becomes possible.

第  4  表 本実施例によれば、溶存酸素を含有する高温高圧水中に
おけるステンレス鋼溶接継手表裏両面の耐食性向上が図
れ、ステンレス鋼溶接継手表裏両面に溶存酸素を含有す
る高温高圧水が接するような場合で、かつ溶融処理が継
手のある一方からのみしか出来ない場合でも、信頼性が
高くかつ使用寿命の長いステンレス鋼溶接継手が得られ
る。
Table 4 According to this example, it is possible to improve the corrosion resistance of both the front and back surfaces of a stainless steel welded joint in high-temperature, high-pressure water containing dissolved oxygen. Even in cases where melt processing can only be performed from one side of the joint, a highly reliable and long-lasting stainless steel welded joint is obtained.

特に、本発明は既設プラントのステンレス鋼配管(溶接
継手表裏両面に溶存酸素を含有する高温高圧水が接する
ような場合)を保全、補修する場合にも効果を発揮し、
SCC発生環境下で使用する原子カプラント機器および
その構成部材に使用可能である。
In particular, the present invention is effective in maintaining and repairing stainless steel piping in existing plants (in cases where high temperature, high pressure water containing dissolved oxygen comes into contact with both the front and back of welded joints).
It can be used for atomic couplant equipment and its component parts used in SCC generating environments.

以上の説明から明らかのように、ステンレス鋼溶接継手
表裏両面の耐食性向」二が図れ、ステンレス鋼溶接継手
表裏両面に溶存酸素を含有する高温高圧水が接するよう
な場合で、かつ溶融処理が継手のある一方からのみしか
出来ない場合作業条件下でも、信頼性が高くかつ使用寿
命の長いステンレス鋼溶接継手が得られる。
As is clear from the above explanation, in cases where the corrosion resistance of both the front and back surfaces of a stainless steel welded joint is achieved, both the front and back surfaces of the stainless steel welded joint are in contact with high temperature, high pressure water containing dissolved oxygen, and the melting treatment is applied to the joint. Even under working conditions, stainless steel welded joints are obtained that are highly reliable and have a long service life.

〔発明の効果〕〔Effect of the invention〕

請求項1の発明によれば、ステンレス鋼溶接継手表裏両
面の耐食性向上が図れ、ステンレス鋼溶接継手表裏両面
に溶存酸素を含有する高温高圧水が接するような場合で
、かつ溶融処理が継手のある一方からのみしか出来ない
場合作業条件下でも、信頼性が高くかつ使用寿命の長い
ステンレス鋼溶接継手が得られるという効果がある。
According to the invention of claim 1, the corrosion resistance of both the front and back surfaces of a stainless steel welded joint can be improved, and when both the front and back surfaces of the stainless steel welded joint are in contact with high temperature, high pressure water containing dissolved oxygen, and the melting treatment is performed on the joint. If it can only be done from one side, the effect is that a stainless steel welded joint can be obtained that is highly reliable and has a long service life even under working conditions.

請求項2の発明によれば、請求項1の発明による効果に
加えて、改善部への入熱が周辺部に分散することが少な
くて、部分的な昇温作業が効率的に行われ、その後の冷
却過程も周辺部が昇温しでいるものに比へて効率良く行
われ、効率良く使用寿命の長いステンレス鋼溶接継手が
得られるという効果が得られる。
According to the invention of claim 2, in addition to the effect of the invention of claim 1, the heat input to the improvement section is less likely to be dispersed to the surrounding area, so that partial temperature raising work can be performed efficiently. The subsequent cooling process is also carried out more efficiently than when the temperature of the surrounding area is still rising, and the effect is that a stainless steel welded joint with a long service life can be obtained efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による溶接部改質処理が施された管溶
接継手部の断面構造を示すとともに、該溶接継手に対応
して示された管外面の改善された残留応力特性曲線のグ
ラフを関連させて示した図、第2図は、溶接後、本発明
による溶接部改質処理が施されていない管溶接継手部の
断面構造を示すとともに、該溶接継手部に対応して示さ
れた管外面の残留応力特性曲線のグラフを関連させて示
した図、第3図は、SCCの発生原因の概念的表示図、
第4図は、通常の自然冷却溶接による溶接継手部の断面
構造と、該溶接継手部に対応して示された管外面の残留
応力特性曲線のグラフを関連させて示した図である。 1・・高引張応力、2・・クロム欠乏層、3 腐食環境
、4− S CC発生領域、5a ステンレス鋼管、5
B ・炭素鋼、6 溶接、7 熱影響部、8 ・残留応
力、9−+ 10 kg/ Inm2.10 ・水冷域
、11・・水冷子溶融処理による残留応力改善域、12
 ・溶融処理による組織改善域、13・水冷子八 第2図 第 図 第 図
FIG. 1 shows a cross-sectional structure of a welded pipe joint that has been subjected to the welded joint modification treatment according to the present invention, and a graph of an improved residual stress characteristic curve of the outer surface of the pipe shown corresponding to the welded joint. FIG. 2 shows a cross-sectional structure of a pipe welded joint that has not been subjected to the welded joint modification treatment according to the present invention after welding, and also shows a diagram corresponding to the welded joint. Figure 3 is a conceptual representation of the cause of SCC occurrence;
FIG. 4 is a diagram showing the cross-sectional structure of a welded joint by ordinary natural cooling welding in relation to a graph of a residual stress characteristic curve on the outer surface of the pipe shown corresponding to the welded joint. 1... High tensile stress, 2... Chromium-deficient layer, 3 Corrosive environment, 4-S CC occurrence area, 5a Stainless steel pipe, 5
B ・Carbon steel, 6 Welding, 7 Heat affected zone, 8 ・Residual stress, 9-+ 10 kg/Inm2.10 ・Water cooling area, 11...Residual stress improvement area by water cooler melting treatment, 12
・Structural improvement area by melting treatment, 13・Water cooler 8 Figure 2 Figure Figure

Claims (1)

【特許請求の範囲】 1、オーステナイト系ステンレス鋼が溶接熱影響を受け
た後、熱影響部の表裏両面に腐食性流体が接触する構造
物における溶接継手の熱影響領域を、継手の一方の面側
から冷却させつつ、他方の面に溶融処理を施し、溶融処
理部分をデルタ(δ)フェライトを含む耐食性に優れた
結晶組織に変えることを特徴とするオーステナイト系ス
テンレス鋼の溶接部改質方法。 2、前記溶融処理を行うための溶融熱が、高密度エネル
ギーの投入によつて得られることを特徴とする請求項1
に記載のオーステナイト系ステンレス鋼の溶接部改質方
法。
[Claims] 1. After austenitic stainless steel is affected by welding heat, the heat affected area of a welded joint in a structure where corrosive fluid comes into contact with both the front and back sides of the heat affected zone is defined as one side of the joint. A method for modifying a welded part of austenitic stainless steel, which is characterized by performing melting treatment on the other side while cooling from one side, and changing the melted part to a crystal structure with excellent corrosion resistance that includes delta (δ) ferrite. 2. Claim 1, wherein the heat of fusion for performing the melting process is obtained by inputting high-density energy.
A method for modifying a welded part of austenitic stainless steel described in .
JP1315291A 1988-12-07 1989-12-06 Piping reforming method Expired - Lifetime JP2865749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1315291A JP2865749B2 (en) 1988-12-07 1989-12-06 Piping reforming method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-307853 1988-12-07
JP30785388 1988-12-07
JP1315291A JP2865749B2 (en) 1988-12-07 1989-12-06 Piping reforming method

Publications (2)

Publication Number Publication Date
JPH02258190A true JPH02258190A (en) 1990-10-18
JP2865749B2 JP2865749B2 (en) 1999-03-08

Family

ID=26565302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1315291A Expired - Lifetime JP2865749B2 (en) 1988-12-07 1989-12-06 Piping reforming method

Country Status (1)

Country Link
JP (1) JP2865749B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494539A (en) * 1993-08-30 1996-02-27 Hitachi, Ltd. Metal member quality improving method by spot welding
JP2008229692A (en) * 2007-03-22 2008-10-02 Nippon Steel Corp Multi-layer butt weld joint excellent in brittle fracture propagation resistance property, and welded structure
US8322592B2 (en) 2008-12-18 2012-12-04 Japan Atomic Energy Agency Austenitic welding material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for intergranular corrosion, using same
KR20180086747A (en) * 2017-01-23 2018-08-01 엘지전자 주식회사 Air conditioner system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4391992B2 (en) * 2003-08-28 2009-12-24 株式会社日立製作所 Reactor structure and manufacturing method and repair method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494539A (en) * 1993-08-30 1996-02-27 Hitachi, Ltd. Metal member quality improving method by spot welding
JP2008229692A (en) * 2007-03-22 2008-10-02 Nippon Steel Corp Multi-layer butt weld joint excellent in brittle fracture propagation resistance property, and welded structure
US8322592B2 (en) 2008-12-18 2012-12-04 Japan Atomic Energy Agency Austenitic welding material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for intergranular corrosion, using same
KR20180086747A (en) * 2017-01-23 2018-08-01 엘지전자 주식회사 Air conditioner system

Also Published As

Publication number Publication date
JP2865749B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
US8322592B2 (en) Austenitic welding material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for intergranular corrosion, using same
Slobodyan Resistance, electron-and laser-beam welding of zirconium alloys for nuclear applications: a review
US5022936A (en) Method for improving property of weld of austenitic stainless steel
Saffari et al. Effects of ERNiCr-3 butter layer on the microstructure and mechanical properties of API 5L X65/AISI304 dissimilar joint
Yurioka et al. Recent developments in repair welding technologies in Japan
US5494539A (en) Metal member quality improving method by spot welding
JPH02258190A (en) Method for reforming welded part of austenitic stainless steel
KR20060051542A (en) Welding of vessel internals with noble metal technology
JP3199960B2 (en) Quality improvement method of metal parts by spot welding
Yoo Recent study of materials and welding methods for nuclear power plant
JP2000254776A (en) Stress corrosion crack prevention method for atomic reactor-inside piping welded part
JP4929096B2 (en) Overlay welding method for piping
Iamboliev et al. Laser beam welding of high-nitrogen-containing austenitic stainless steel
JPH0929429A (en) Welding procedure
Rogerson Defects in welds: Their prevention and their significance
JP4412533B2 (en) Method for improving and repairing stress corrosion cracking of high nickel alloy
JPH03150319A (en) Surface reforming method for weld zone of stainless steel
Aljohani et al. Corrosion of weldments
JP2001124888A (en) Maintenance method for preventing stress corrosion cracking
JPH0577082A (en) Method for reforming welded part in austenitic stainless steel
JPS58154487A (en) Method for welding tubular member
Bozeman The Processing and Microstructures of 309L Stainless Steel Clad onto Carbon Steel with Wire-fed Directed Energy Deposition
Radhakrishnan et al. Analysis of boiler tubes using gas tungsten arc welding in Grade 91 alloy steel
Messer et al. Selection of dissimilar metal welds in severe environments for today's petrochemical plants
Grotke Survey of welding processes for field fabrication of 2 1/4 Cr-1 Mo steel pressure vessels.[128 references]