JPS61177325A - Improvement of corrosion resistance or stainles steel weld zone - Google Patents

Improvement of corrosion resistance or stainles steel weld zone

Info

Publication number
JPS61177325A
JPS61177325A JP1818785A JP1818785A JPS61177325A JP S61177325 A JPS61177325 A JP S61177325A JP 1818785 A JP1818785 A JP 1818785A JP 1818785 A JP1818785 A JP 1818785A JP S61177325 A JPS61177325 A JP S61177325A
Authority
JP
Japan
Prior art keywords
corrosion resistance
weld
stainless steel
irradiated
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1818785A
Other languages
Japanese (ja)
Inventor
Masashi Takaso
正志 高祖
Nobuyuki Yamauchi
山内 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1818785A priority Critical patent/JPS61177325A/en
Publication of JPS61177325A publication Critical patent/JPS61177325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of a weld zone at a low cost by irradiating laser light on a weld metal and weld heat affected zone as well as the part near the same thereby remelting said part. CONSTITUTION:The weld metal 2 of steel plates 1, 1' and the weld heat affected zones 3, 3' are sensitized and a part 4 where the corrosion resistance is deteriorated is formed in butt welding of stainless steel flat plates, etc. The laser light 5 is irradiated on the surface of said part 4 and near the same to remelt the only the extreme surface part. The laser light 5 is slightly overlapped and moved in the horizontal direction while said light is irradiated in the vertical direction along the welding direction until the entire required surface is irradiated. The molten surface part is quickly cooled to have the fine solidified structure, by which the precipitation of the chromium carbide at the grain boundary is obviated and the sensitization is annihilated. The corrosion resistance of the stainless steel weld zone is improved with the simple operation by the above- mentioned method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ステンレス鋼から成る物体の溶接部の耐食性
の改善方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for improving the corrosion resistance of welds of objects made of stainless steel.

〔従来技術〕[Prior art]

一般にステンレス鋼は耐食性を主目的とする鋼材である
にも拘らず、ステンレス鋼から成る材料を溶接する場合
に、 A、溶接によって加熱(たとえば500℃ないし900
℃)された領域に、炭素がクロム炭化物としてその結晶
粒界に析出するため、粒界周辺のクロム量が減少して耐
食性が劣化し、粒界腐食がおこるいわゆる鋭敏化現象を
発生する。
In general, stainless steel is a steel material whose main purpose is corrosion resistance, but when welding materials made of stainless steel, A.
℃), carbon precipitates as chromium carbide at the grain boundaries, so the amount of chromium around the grain boundaries decreases, corrosion resistance deteriorates, and intergranular corrosion occurs, a so-called sensitization phenomenon.

B、加熱領域が上記の温度範囲以上になる場合、たとえ
ば溶接金属、溶融線直近の溶接熱影響部等のように、最
高加熱温度においてはむしろ溶体化して鋭敏化しないが
、その後の冷却過程において鋭敏化現象が発生する。
B. If the heated area exceeds the above temperature range, such as the weld metal or the weld heat-affected zone in the vicinity of the fusion line, it will rather become a solution and not become sensitized at the maximum heating temperature, but in the subsequent cooling process. A sensitization phenomenon occurs.

第1図はステンレス鋼溶接部の断面図を表わす。FIG. 1 represents a cross-sectional view of a stainless steel weld.

図においてf1+、(1’) はステンレス鋼板、(2
)は溶接金属、(3)、(3′)は溶接熱影響部であっ
て、該溶接金属(2)ならびに溶接熱影響部(3)、(
3′)が鋭敏化部弁となる。ここで上記(3)および(
B)の現象を、具体的に材質を例示して取りまとめると
第1表の如くになる。
In the figure, f1+, (1') is a stainless steel plate, (2
) is the weld metal, (3) and (3') are the weld heat affected zone, and the weld metal (2) and the weld heat affected zone (3), (
3') becomes the sensitization valve. Here, above (3) and (
Table 1 summarizes the phenomenon of B) by specifically illustrating materials.

上記鋭敏化現象の対策として、従来次に列記するような
方法が採られてきた。
As a countermeasure for the above-mentioned sensitization phenomenon, the following methods have been conventionally adopted.

a、材質: 1、含有炭素量を低減して、結晶粒界にクロム炭化物と
して析出することを阻止する。
a. Material: 1. Reduce the amount of carbon contained to prevent precipitation as chromium carbide at grain boundaries.

2、モリブデンを添加して、耐孔食性を向上。2. Adding molybdenum to improve pitting corrosion resistance.

させるとともに、クロムを移動し難くする。It also makes it difficult for chrome to move.

3、ニオブ等の安定化元素を添加し、炭素を安定化する
ことによって、クロム炭化物の析出を阻止する。
3. By adding stabilizing elements such as niobium to stabilize carbon, precipitation of chromium carbide is prevented.

b、溶接施工法: 1、溶接入熱量を低減して、冷却速度を迅速にすること
により、クロム炭化物の析出を阻止する。
b. Welding construction method: 1. Precipitation of chromium carbide is prevented by reducing the welding heat input and increasing the cooling rate.

2、鋼管の一場合には、管内面水冷溶接のように溶接部
を裏面から水冷して、冷却速度を迅速にすることにより
、クロム炭化物の析出を阻止する。
2. In the case of steel pipes, the welded part is water-cooled from the back side, as in pipe inner water-cooled welding, to speed up the cooling rate and prevent the precipitation of chromium carbides.

3、また同上の場合に、管内面肉盛溶接によってあらか
じめ耐食性のある材料を肉盛してから、開先加工をした
後に、突合せ溶接を実施する。
3. In the same case as above, a corrosion-resistant material is applied in advance by overlay welding on the inner surface of the tube, and after the groove is processed, butt welding is performed.

C0熱処理: 溶接後に熱処理を実施して、鋭敏化現象を防止する。C0 heat treatment: Heat treatment is performed after welding to prevent sensitization phenomenon.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然し以上の各対策ともに一長一短があり、特に各対策と
も材質を高級化せねばならず、かつ施工も複雑化してコ
ストアップとなる欠点を有している。
However, each of the above-mentioned measures has advantages and disadvantages, and in particular, each measure requires the use of high-quality materials, and also has the disadvantage of complicating construction and increasing costs.

本発明は、ステンレス鋼の溶接部の鋭敏化現象を排除す
るに際して、上記欠点を排除し、(1)ステンレス鋼の
材質を高級化することなく、従来の材質をそのまま使用
出来る。
The present invention eliminates the above-mentioned drawbacks when eliminating the sensitization phenomenon of welded parts of stainless steel, and (1) allows the conventional material to be used as is without upgrading the material of stainless steel.

(2)溶接施工法も特殊な方法を採用する必要がない。(2) There is no need to adopt a special welding method.

(3)  溶接後の熱処理を必要としない。(3) No heat treatment required after welding.

従ってコスト低減を計れることを目的とするステンレス
鋼溶接部の耐食性改善方法を提供しようとするものであ
る。
Therefore, it is an object of the present invention to provide a method for improving the corrosion resistance of stainless steel welds with the aim of reducing costs.

〔問題点を解決するための手段ならびに作用J上記の問
題点を解決するための本発明ステンレス鋼溶接部の耐食
性改善方法を、以下に掲げる図面により詳細に説明する
。第2図はステンレス鋼の平板を突合せ溶接する場合の
1例を示す。(1)、(15はステンレス鋼の平板で、
この両鋼板を突合せ溶接施工し、その溶接部の溶接金属
が(2)である。
[Means and Effects for Solving the Problems J The method for improving the corrosion resistance of stainless steel welds according to the present invention to solve the above problems will be explained in detail with reference to the drawings listed below. FIG. 2 shows an example of butt welding stainless steel flat plates. (1), (15 are stainless steel flat plates,
These two steel plates were butt welded, and the weld metal at the welded portion was (2).

また該溶接金属(2)の両側のステンレス鋼板+11 
、(1’)の溶接熱影響部が(3)、(3′)である。
Also, the stainless steel plate +11 on both sides of the weld metal (2)
, (1') are weld heat affected zones (3) and (3').

溶接金属(2)と溶接熱影響部T31、(:3’)とが
、溶接のために鋭敏化して耐食性が劣化した部分(4)
となる。よって該部分(4)ならびにその近傍部の表面
にレーザ光(5)を照射し、ごく表面のみを再溶融させ
る。なおレーザ光(5)は図示の矢印で示すように溶接
方向に添って縦方向に照射しながら、すこしく重ねて横
方向に移動して必要表面を全部照射して行く。レーザは
高エネルギ密度の熱源であって、照射条件を適宜調整す
ることにより低入熱で表面のみを溶融することが可能で
あり、その拡大した断面状態を第3図に示す。この表面
溶融部は急冷されるために微細な凝同組織となって、結
晶粒界におけるクロム炭化物の析出現象が発生せず、鋭
敏化現象が消失する。
Part (4) where weld metal (2) and weld heat affected zone T31, (:3') have become sensitized due to welding and have deteriorated corrosion resistance
becomes. Therefore, the surface of the portion (4) and its vicinity is irradiated with laser light (5) to re-melt only the very surface. The laser beam (5) is irradiated vertically along the welding direction as shown by the arrow in the figure, and is slightly overlapped and moved horizontally to irradiate all the necessary surfaces. A laser is a heat source with high energy density, and by appropriately adjusting the irradiation conditions, it is possible to melt only the surface with low heat input. An enlarged cross-sectional view of the laser is shown in FIG. Since this surface fusion zone is rapidly cooled, it becomes a fine condensed structure, and the precipitation phenomenon of chromium carbide at grain boundaries does not occur, and the sensitization phenomenon disappears.

なおレーザは伝送することが容易であるので、各種の形
式の溶接継手にこれを適用することが可能である。たと
えば鋼管内面にレーザを照射する場合を第4図に示す。
Note that since lasers are easy to transmit, they can be applied to various types of welded joints. For example, FIG. 4 shows a case where the inner surface of a steel pipe is irradiated with a laser.

すなわちレーザ光(5)を凸レンズ(6)によって集光
し、図示のようにステンレス鋼管001内に配置した平
面ミラ(7)によってレーザ光線を反射させ、鋼管(I
Gの内面を照射する。この場合該鋼管(101を回転し
ながら徐々に前進もしくは後進させて、必要な部分内面
を再溶融させる。なお1パスのレーザ照射では形成され
る溶融部が狭いので、表面を余すところなく均一に溶融
するには、第3図に示すように表面溶融部(9)が相互
にわずか重なり合うようにして、照射位置を徐々に移動
させる。
That is, the laser beam (5) is focused by a convex lens (6), and is reflected by a flat mirror (7) placed inside the stainless steel pipe 001 as shown in the figure.
Irradiate the inner surface of G. In this case, the steel pipe (101) is rotated and moved gradually forward or backward to re-melt the necessary inner surface of the part.In addition, since the melted area formed in one pass of laser irradiation is narrow, the surface should be thoroughly and uniformly melted. To melt, the irradiation position is gradually moved so that the surface melting parts (9) slightly overlap each other as shown in FIG.

良好な結果を得るためのレーザ照射条件を列記すると、 (1)レーザ光の入熱量は、表面溶融したビードによっ
て溶接金属もしくは溶接熱影響部が鋭敏化しない範囲内
に抑える。
The laser irradiation conditions for obtaining good results are listed below: (1) The amount of heat input by the laser beam is kept within a range that does not sensitize the weld metal or the weld heat-affected zone due to the surface-melted bead.

(2)1パスのビード巾は、その溶液中が極端に狭いと
、必要な全表面を溶融するのに時間がかかり過ぎ、作業
能率が低下するので、1−以上が望ましい。
(2) The bead width for one pass is desirably 1 or more, since if the solution is extremely narrow, it will take too much time to melt the entire required surface, reducing work efficiency.

(3)ビードの形状は、レーザの照射エネルギによって
左右され、かつ該エネルギは次の関係式で表現される。
(3) The shape of the bead depends on the laser irradiation energy, and the energy is expressed by the following relational expression.

レーザ照射エネルギ: E (KJ/mm3)レーザ出
カニ P (KW) レーザ照射速度:v(w/5ee) 集光レンズの焦点距離:f(am) 集光レンズへの入射レーザ径:D(mm)レーザ照射位
置:h(ms)(焦点の位置を0としてし/ズ方向へ測
定した距離。) なお第5図はレーザ照射位置関係を示すもので、レーザ
光(5)を凸レンズ(6)で集光し、その焦点が(2)
となり、試料(111を該焦点α2から距離(hlの位
置に配置して、該試料(111の表面にレーザ光を照射
する。
Laser irradiation energy: E (KJ/mm3) Laser output P (KW) Laser irradiation speed: v (w/5ee) Focal length of condensing lens: f (am) Diameter of laser incident on condensing lens: D (mm ) Laser irradiation position: h (ms) (Distance measured in the /z direction with the focal point position as 0.) Figure 5 shows the relationship between the laser irradiation positions, and the laser beam (5) is connected to the convex lens (6). The light is focused at (2)
The sample (111) is placed at a distance (hl) from the focal point α2, and the surface of the sample (111) is irradiated with laser light.

〔実施例ならびに効果〕[Examples and effects]

本発明の方法にもとづけば、従来の方法に比較してステ
ンレス鋼溶接部の耐食性改善に著しい効果を発揮するこ
とを明確にするために、本発明者が実施した各種の実験
結果を次に詳述する。
In order to clarify that the method of the present invention is significantly effective in improving the corrosion resistance of stainless steel welds compared to conventional methods, the following are the results of various experiments conducted by the present inventor. Details are given below.

(1)先づ良好な耐食性を得るための前記のレーザ照射
エネルギの適正条件を実験結果から求めた。
(1) First, the appropriate conditions for the laser irradiation energy to obtain good corrosion resistance were determined from experimental results.

すなわち厚さ5IIIIIlの5US430のステンレ
ス鋼板(1)から第6図に示す形状の試料αDを採取し
、その表面中央部に図示のようにレーザビード(8)を
形成した上で、JISG0575 rステンレス鋼の硫
酸・硫酸銅腐食試験方法」にもとづく試験を実施した。
That is, a sample αD having the shape shown in Fig. 6 is taken from a 5US430 stainless steel plate (1) with a thickness of 5IIIl, a laser bead (8) is formed in the center of the surface as shown in the figure, and then a JIS G0575 r stainless steel plate is prepared. A test was conducted based on the ``Sulfuric Acid/Copper Sulfate Corrosion Test Method''.

その結果を表示すると、次の第2表のようになる。The results are shown in Table 2 below.

Eが増大すると、当然投与される入熱量も増大し、逆に
レーザビードの溶接金属ならびに溶接熱影響部の冷却速
度が低下するために鋭敏化現象が発生するようになる。
As E increases, the amount of heat input naturally increases, and conversely, the cooling rate of the weld metal of the laser bead and the weld heat affected zone decreases, resulting in a sensitization phenomenon.

従って本試験結果からレーザ照射エネルギの適正な上限
値としては、 が好ましい。
Therefore, from the results of this test, the following is preferable as an appropriate upper limit value of laser irradiation energy.

一方し−ザ照射エネルギEとビード巾との相対関係を調
査し、その結果を取りまとめると第7図に示すようにな
る。この場合に既に記述した通りビード巾がlaaより
狭くなると、表面溶融作業に時間がかかつて却って能率
が低下する。従って本グラフからレーザ照射エネルギの
適正な下限値としては、 が好ましい。
On the other hand, the relative relationship between the irradiation energy E and the bead width was investigated, and the results are summarized as shown in FIG. In this case, as already described, if the bead width is narrower than laa, the surface melting operation will take more time and the efficiency will decrease. Therefore, from this graph, the following is preferable as an appropriate lower limit value of laser irradiation energy.

以上両試験結果からレーザ照射エネルギEの適正条件を
、関係式によって表現すると、のようになり、この範囲
内で本発明を適用することが望ましい。
Based on the above test results, the appropriate conditions for the laser irradiation energy E can be expressed by the following relational expression, and it is desirable to apply the present invention within this range.

(2)次に前記レーザ照射エネルギEを構成している各
種条件を種々変更の上、その効果を調査した。
(2) Next, various conditions constituting the laser irradiation energy E were changed and their effects were investigated.

すなわち第8図に示すように厚さ5I1mの5US30
4ならびに5US430のステンレス鋼板(1)を、V
形開先の溶接金属(2)による突合せ溶接継手として試
料ODを製作した上で、5US304については溶接後
、熱処理(650’Q 30Hr、空冷)を施した。
That is, as shown in Fig. 8, 5US30 with a thickness of 5I1m
4 and 5 US430 stainless steel plate (1), V
Sample OD was manufactured as a butt welded joint using weld metal (2) with a shaped groove, and 5US304 was subjected to heat treatment (650'Q 30Hr, air cooling) after welding.

これら試料αDをすべて第9図に示すように、その全表
面を種々条件の異なるレーザ光で照射して表面溶融部(
9)を形成してから、前項記載と同様の硫酸・硫酸銅腐
食試験を実施した結果を、次の第3表に取りまとめた。
As shown in Fig. 9, the entire surface of these samples αD was irradiated with laser light under various conditions, and the surface melted area (
After forming 9), the same sulfuric acid/copper sulfate corrosion test as described in the previous section was conducted, and the results are summarized in Table 3 below.

なおレーザ光としてはCO2レーザを使用し、D=50
mm f=190.5m であって、その腐食結果を次の記号で示す。
Note that a CO2 laser is used as the laser beam, and D=50
mm f = 190.5 m, and the corrosion results are shown by the following symbols.

○:良好な場合、×:粒界腐食発生の場合これらを要約
すると、JK2.3.4.6.9.12は5US304
ならびに5US430ともに良好な結果を得たが、ム5
.7.8.10.11は鋭敏化現象が発生してしまった
。また比較例x1は耐食性は良好であるが、ビード巾が
1mm以下と小さいため実用に供するには適当でない。
○: Good case, ×: Intergranular corrosion occurred To summarize these, JK2.3.4.6.9.12 is 5US304
Good results were obtained with both M5US430 and M5US430.
.. On July 8, 10, and 11, a sensitization phenomenon occurred. Although Comparative Example x1 has good corrosion resistance, it is not suitable for practical use because the bead width is as small as 1 mm or less.

以上多数の試験結果を総合判断ずれば、本発明にもとづ
くレーザ光の表面照射による鋭敏化防止方法は、明らか
に従来の何れの方法よりも耐食性の向上が顕著で、しか
も操作が簡単、コスト低下に寄与するところが極めて大
きい。
Judging from the above numerous test results, it is clear that the method of preventing sensitization by surface irradiation with laser light based on the present invention has a more significant improvement in corrosion resistance than any of the conventional methods, and is also easy to operate and cost-effective. The contribution made to this is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はステンレス鋼溶接部の鋭敏化を示す模式図、第
2図は鋼板溶接部表面のレーザ照射を示す斜視図、第3
図は同上表面溶融部の拡大断面図、第4図は鋼管溶接部
の内面をレーザ照射する場合の断面模式図、第5図はレ
ーザ照射位置関係を示す説明図、第6図はレーザビード
を付けた腐食試験用試料の斜視図、第7図は同上試料に
おけるレーザ照射エネルギとビード巾との相対関係図、
第8図は突合せ溶接を行った腐食試験用試料の斜視図、
第9図は同上試料の表面にレーザ照射を施した状態を示
す斜視図である。 1.1′ニステンレス鋼板、2:溶接金属、3.3′:
溶接熱影響部、4:鋭敏化部分、5:レーザ光、6:集
光凸レンズ、7:平面ミラ、8:レーザビード、9:表
面溶融部、10:鋼管、11:試料、12:焦点 第1E 第2図 第3wA 籐7図 レーザ照射エネルギ E (KJ層) 第4図
Figure 1 is a schematic diagram showing the sensitization of a stainless steel weld, Figure 2 is a perspective view showing laser irradiation on the surface of a steel plate weld, and Figure 3 is a schematic diagram showing the sensitization of a stainless steel weld.
The figure is an enlarged cross-sectional view of the same surface fusion zone, Figure 4 is a cross-sectional schematic diagram when the inner surface of a steel pipe weld is irradiated with a laser, Figure 5 is an explanatory diagram showing the positional relationship of laser irradiation, and Figure 6 is a laser bead attached. Figure 7 is a diagram showing the relative relationship between laser irradiation energy and bead width for the same sample.
Figure 8 is a perspective view of a corrosion test sample that was butt welded;
FIG. 9 is a perspective view showing a state in which the surface of the above sample is irradiated with a laser. 1.1' stainless steel plate, 2: welded metal, 3.3':
Weld heat affected zone, 4: Sensitized area, 5: Laser beam, 6: Condensing convex lens, 7: Plane mirror, 8: Laser bead, 9: Surface fusion zone, 10: Steel pipe, 11: Sample, 12: Focus 1E Figure 2 Figure 3 wA Rattan Figure 7 Laser irradiation energy E (KJ layer) Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)溶接入熱によつて鋭敏化した溶接金属ならびに溶
接熱影響部とその付近の表面をレーザ光で再溶融するこ
とを特徴とするステンレス鋼溶接物の耐食性改善方法。
(1) A method for improving the corrosion resistance of a stainless steel weldment, which comprises remelting the weld metal, the weld heat-affected zone, and its surrounding surfaces, which have become sensitized by welding heat input, with a laser beam.
JP1818785A 1985-01-31 1985-01-31 Improvement of corrosion resistance or stainles steel weld zone Pending JPS61177325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1818785A JPS61177325A (en) 1985-01-31 1985-01-31 Improvement of corrosion resistance or stainles steel weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1818785A JPS61177325A (en) 1985-01-31 1985-01-31 Improvement of corrosion resistance or stainles steel weld zone

Publications (1)

Publication Number Publication Date
JPS61177325A true JPS61177325A (en) 1986-08-09

Family

ID=11964609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1818785A Pending JPS61177325A (en) 1985-01-31 1985-01-31 Improvement of corrosion resistance or stainles steel weld zone

Country Status (1)

Country Link
JP (1) JPS61177325A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412114A (en) * 1987-06-30 1989-01-17 Daichiku Co Ltd Manufacture of nail for concealed nail
JPH0317234A (en) * 1989-06-15 1991-01-25 Toshiba Corp Method for preventing integranular corrosion of stainless steel
JPH05125432A (en) * 1991-11-02 1993-05-21 Power Reactor & Nuclear Fuel Dev Corp Method for improving corrosion resistance at weld zone of stainless steel
JP2009012071A (en) * 2007-06-07 2009-01-22 Jfe Steel Kk Weld metal of stainless steel weld joint, and its forming method
JP2009012070A (en) * 2007-06-07 2009-01-22 Jfe Steel Kk Weld metal of stainless steel weld joint, and its forming method
US8322592B2 (en) 2008-12-18 2012-12-04 Japan Atomic Energy Agency Austenitic welding material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for intergranular corrosion, using same
CN108296638A (en) * 2018-01-26 2018-07-20 河钢股份有限公司承德分公司 A method of improving continuous zinc coating producing line strip welding quality

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412114A (en) * 1987-06-30 1989-01-17 Daichiku Co Ltd Manufacture of nail for concealed nail
JPH0317234A (en) * 1989-06-15 1991-01-25 Toshiba Corp Method for preventing integranular corrosion of stainless steel
JPH05125432A (en) * 1991-11-02 1993-05-21 Power Reactor & Nuclear Fuel Dev Corp Method for improving corrosion resistance at weld zone of stainless steel
JP2009012071A (en) * 2007-06-07 2009-01-22 Jfe Steel Kk Weld metal of stainless steel weld joint, and its forming method
JP2009012070A (en) * 2007-06-07 2009-01-22 Jfe Steel Kk Weld metal of stainless steel weld joint, and its forming method
US8322592B2 (en) 2008-12-18 2012-12-04 Japan Atomic Energy Agency Austenitic welding material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for intergranular corrosion, using same
CN108296638A (en) * 2018-01-26 2018-07-20 河钢股份有限公司承德分公司 A method of improving continuous zinc coating producing line strip welding quality

Similar Documents

Publication Publication Date Title
WO2011111634A1 (en) Laser/arc hybrid welding method and method of producing welded member using same
KR101554800B1 (en) Method of manufacturing laser welded steel pipe
KR100489692B1 (en) Continuous butt welding method using plasma and laser, and fabricating method for metal tube using the same
Salminen et al. The characteristics of high power fibre laser welding
CN107921584A (en) Method for laser welding
CN101564799A (en) Compound welding method by using semiconductor laser and CO2 laser
RU2660791C1 (en) LASER-ARC WELDING METHOD OF THE WORKPIECES BUTT JOINT OF CARBON STEEL WITH THE WALLS THICKNESS OF 10-45 mm
JPS61177325A (en) Improvement of corrosion resistance or stainles steel weld zone
KR20160013260A (en) Method for manufacturing laser welded steel pipe
CN107900518B (en) A kind of high-rate laser silk filling penetration fustion welding method of high strength dual phase steel thick plate
JP5600838B2 (en) Laser welding method
RU2718393C2 (en) Method of connection of tubes of shell-and-tube heat exchanger with tube array of shell-and-tube heat exchanger
JP6213332B2 (en) Hot wire laser combined welding method for thick steel plate
US5343015A (en) Laser assisted high frequency welding
JP7386118B2 (en) Welding method and welding equipment
Kumar Investigation on transient thermal responses on 316L austenitic stainless steel and low carbon ferritic steel welding using pulsed Nd: YAG laser
JP2012187590A (en) Method for producing laser-welded steel pipe
JP2861836B2 (en) Laser welding method for ferritic stainless steel
JPH0852512A (en) Manufacture of welded tube
Kuzmikova et al. Investigation into feasibility of hybrid laser-GMAW process for welding high strength quenched and tempered steel
JP2002256335A (en) Method and device for micro-crystallizing metal structure by laser beam irradiation
US11707802B2 (en) Method of forming a single, angled and hourglass shaped weld
JPS6120688A (en) Welding method of copper or copper alloy
RU2678110C1 (en) Method of hybrid laser-arc welding of thick-walled pipes of large diameter from high-strength steel grades
RU2732303C1 (en) Method of welding and soldering of dissimilar metal alloys with a laser beam