JPS60165323A - Prevention of weld decay in stainless steel welded part - Google Patents

Prevention of weld decay in stainless steel welded part

Info

Publication number
JPS60165323A
JPS60165323A JP59020709A JP2070984A JPS60165323A JP S60165323 A JPS60165323 A JP S60165323A JP 59020709 A JP59020709 A JP 59020709A JP 2070984 A JP2070984 A JP 2070984A JP S60165323 A JPS60165323 A JP S60165323A
Authority
JP
Japan
Prior art keywords
stainless steel
weld
corrosion resistance
laser beam
weld decay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59020709A
Other languages
Japanese (ja)
Inventor
Isao Masumoto
益本 功
Takeshi Shinoda
剛 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP59020709A priority Critical patent/JPS60165323A/en
Publication of JPS60165323A publication Critical patent/JPS60165323A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Abstract

PURPOSE:To prevent the deterioration in corrosion resistance by inhibiting the formation of weld decay, by rapidly heating the surface of the weld decay formed region in the periphery of the welded part of stainless steel by the irradiation of laser beam to form the solid solution of contained Cr-carbide in the matrix. CONSTITUTION:When stainless steel pipe materials are welded so as to form a welded part 2, the peripheral part 3 of the welded part 2 is heated to 500- 850 deg.C and Cr23C6 is precipitated in a grain boundary surface to generate a Cr defect layer and weld decay deteriorated in corrosion resistance is generated to said part. In this case, the weld decay part 3 is irradiated with laser beam 4 by a rotary reflective mirror 5 and rapidly heated to form the solid solution of Cr23C6 in the stainless steel matrix. The heated part 3 is cooled itself by heat transfer to both sides shown by arrows D or cooled at an accelerated speed by water cooling or forcible air cooling to eliminate the weld decay and the deterioration in the corrosion resistance in the vicinity of the welded part is prevented.

Description

【発明の詳細な説明】 本発明はステンレス鋼溶接部のウェルドディケイ防止方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing weld decay in stainless steel welds.

従来、ステンレス鋼の溶接金属に隣接した部分に、溶接
熱サイクルにより結晶粒界にクロム炭化物(Or s 
s Oe )を析出し、クロム欠乏層を生ずるため、耐
食性が劣化する個所がある。この現象は、オーステナイ
トステンレス鋼でウェルドディケイとしてよく知られて
いる。
Conventionally, chromium carbide (or s
s Oe ) is precipitated and a chromium-deficient layer is formed, resulting in deterioration of corrosion resistance in some places. This phenomenon is well known as weld decay in austenitic stainless steels.

このウェルドディケイの防止には0r1806の析出を
抑制するか、1000°C以上の再加熱急冷により0r
lI806をマトリックスに再固溶し、均一なりロム濃
度にしなければならない。このためには従来 l)炭素濃度を0.08%以下に特に低くした鋼材(極
低炭素ステンレス鋼)の使用、 2)Ti、Nbなどの炭化物安定化元素を添加しクロム
炭化物の析出を防止した鋼の使用、又は 8)溶接後の溶体化処理が必要である。
To prevent this weld decay, either suppress the precipitation of 0r1806 or reheat and rapidly cool the 0r1806 at 1000°C or higher.
The lI806 must be redissolved in the matrix to achieve a uniform ROM concentration. To this end, conventional techniques include l) using steel materials with a particularly low carbon concentration of 0.08% or less (ultra-low carbon stainless steel), and (2) adding carbide stabilizing elements such as Ti and Nb to prevent the precipitation of chromium carbides. or 8) solution treatment after welding is required.

然し、極低炭素ステンレス鋼は耐力の低下により、使用
鋼材の厚さを増大させ、また製造コストも高い。
However, ultra-low carbon stainless steel has a lower yield strength, increases the thickness of the steel material used, and is also expensive to manufacture.

安定化ステンレス鋼は溶接ボンド部にナイフラインアタ
ックといわれる腐食と溶接部の熱間割れを生じ易い。
Stabilized stainless steel is susceptible to corrosion called knife-line attack and hot cracking at welded joints.

溶接後の溶体化処理は、溶接構造物全体を均一に100
0℃以上に加熱し、急冷しなければ効果なく、このこと
は小さな部材では可能であるが、大部材では一般には困
難であり、また変形を生じ易い。
The solution treatment after welding uniformly coats the entire welded structure to 100%
It is not effective unless it is heated to 0° C. or higher and then rapidly cooled. Although this is possible for small parts, it is generally difficult for large parts and is likely to cause deformation.

本発明はこれ等の従来方法の欠点を解消することを目的
とする。
The present invention aims to overcome the drawbacks of these conventional methods.

本発明はステンレス鋼溶接部のウェルドディケイ生成域
表面にレーザービームを照射して表面のみを急速に加熱
し、表面層のクロム炭化物をマド、リツクスに固溶させ
、ステンレス鋼を熱伝導により自己冷却又は加速冷却す
ることを特徴とする。
The present invention irradiates the surface of the weld decay generation area of a stainless steel welded part with a laser beam to rapidly heat only the surface, solidify the chromium carbide in the surface layer in the mud and lithics, and self-cool the stainless steel by heat conduction. Alternatively, it is characterized by accelerated cooling.

ステンレス鋼は普通のステンレス鋼、例えば5US80
4のオーステナイトステンレス鋼であり、溶接部のウェ
ルドディケイ生成域は、例えば溶接巾約500〜850
℃に加熱された領域である。
Stainless steel is ordinary stainless steel, such as 5US80.
4 austenitic stainless steel, and the weld decay generation area of the weld is, for example, a weld width of about 500 to 850.
The area is heated to ℃.

加速冷却は水冷又は強制空冷である。急速加熱急冷によ
り、溶接部の耐食性を回復する。
Accelerated cooling is water cooling or forced air cooling. Rapid heating and cooling restores the corrosion resistance of the weld.

本発明により得られる利点は、O,OS%C程度の普通
のステンレス鋼溶接部の局所的迅速処理で耐食性を回復
し保持することができる点にあり、これによって上述の
特別な極低炭素ステンレス鋼又は安定化ステンレス鋼を
使用する必要を解消することができ、且つ大部材のステ
ンレス鋼にも適用することができ、技術的、経済的効果
は極めて大きい。
The advantage obtained by the present invention is that corrosion resistance can be restored and maintained by localized rapid treatment of ordinary stainless steel welds with O,OS%C. It is possible to eliminate the need to use steel or stabilized stainless steel, and it can also be applied to large parts of stainless steel, resulting in extremely large technical and economical effects.

また、溶体化熱処理のような全体加熱急冷に比べ、レー
ザービーム処理後の変形は遥かに少ない。
Also, compared to heating and quenching the entire body such as solution heat treatment, the deformation after laser beam treatment is far less.

本発明は耐食性を問題とするステンレスi溶接製品一般
に使用できる。
The present invention can be used in general stainless steel i-welded products where corrosion resistance is a problem.

・ 特ニ、レーザーは光エネルギーであるから、光学系
の工夫により、管内面又は複雑な構造物の狭隘な場所の
レーザービーム熱処理も可能である。
・Specifically, since the laser uses optical energy, by devising an optical system, it is possible to perform laser beam heat treatment on the inner surface of a tube or in a narrow space of a complex structure.

本発明方法を次に図面につきさらに訃細に説明する。The method according to the invention will now be explained in more detail with reference to the drawings.

ウェルドディケイは、第1図A又はBに示すステンレス
鋼1,1の突合せ又はすみ肉溶接継手の溶接金属2から
離れた部分で溶接熱サイクルにより約500〜850℃
に加熱された領域8に生ずる。この領域8をレーザービ
ームで加熱すれば、レーザーは高エネルギー密度の光で
あるから反射を伴ない、領v28の表面のみが急速冷却
される。この冷却は0.08%0の180r −8Ni
ステンレス鋼の場合、第2図に実線で示す曲線の外側の
範囲で、例えばFl線ABで示す如く十分速くなければ
ならない。さも1・ないと、固溶したクロム炭化物が再
び析出するからである。金属表面をこのように急速加熱
し、金属自身の熱伝導により急速冷却できるのはレーザ
ーのみの特徴である。第2図中、e印はクロム炭化物析
出点、○印はり四ム炭化物を析出しない点である。・・
・レーザービームは光の一種であるので、狭隘部)・パ
イプ内面へも光学系により伝送することができる。特に
、パイプ内面は化学工業等で腐食性の物質を輸送する場
合に、その耐食性が問題となる。
Weld decay is approximately 500 to 850°C due to the welding heat cycle at the part of the butt or fillet welded joint of stainless steel 1 and 1 shown in FIG. 1A or B that is away from the weld metal 2.
occurs in region 8 which is heated to When this region 8 is heated with a laser beam, only the surface of the region V28 is rapidly cooled because the laser is a light with high energy density and is accompanied by reflection. This cooling is 0.08%0 180r-8Ni
In the case of stainless steel, it must be sufficiently fast in the range outside the curve shown by the solid line in FIG. 2, for example as shown by the Fl line AB. Otherwise, the dissolved chromium carbide will precipitate again. Only lasers are capable of rapidly heating the metal surface and rapidly cooling it through heat conduction through the metal itself. In FIG. 2, marks e indicate points at which chromium carbide is precipitated, and marks marked ○ indicate points at which no chromium carbide is precipitated.・・・
・Since a laser beam is a type of light, it can be transmitted to narrow areas) ・Inner surfaces of pipes using an optical system. In particular, the corrosion resistance of the inner surface of the pipe becomes a problem when corrosive substances are transported in the chemical industry or the like.

この場合、本発明方法により第8図に示すごとく。In this case, the method of the present invention is used as shown in FIG.

パイプ内面のレーザービーム処理が可能となる。Laser beam treatment of the inner surface of the pipe becomes possible.

即ち、バイブロの内面へ反射鏡5等で伝送されてきたレ
ーザービーム4は、溶接金属2の両側のウェルドディケ
イ生成域8へ照射される。反射鏡5は回転及び左右動が
可能な構造にしである為、ウェルドディケイ生成域8へ
の連続的なレーザー照射処理が可能となる。レーデ−ビ
ームにより急速に加熱されたウェルドディケイ生成域8
は、矢印り、Dで示す両側方向への熱伝導による自己冷
却により急速に冷却され、これによりウェルドディケイ
を防止する。
That is, the laser beam 4 transmitted to the inner surface of the vibro by the reflecting mirror 5 or the like is irradiated onto the weld decay generation regions 8 on both sides of the weld metal 2. Since the reflecting mirror 5 has a structure that allows rotation and horizontal movement, continuous laser irradiation treatment to the weld decay generation region 8 is possible. Weld decay generation area 8 rapidly heated by radar beam
is rapidly cooled by self-cooling due to heat conduction in both directions indicated by arrow D, thereby preventing weld decay.

実施例1 板厚14uの5US804オーステナイト系ステンレス
鋼を用いた。この化学成分を次の第1表に示す。
Example 1 5US804 austenitic stainless steel with a plate thickness of 14u was used. The chemical components are shown in Table 1 below.

第1表 ステンレス鋼の化学組成 この試験材に650°C2時間の鋭敏化熱処理を施し、
鋭敏化の状態とした。板表面に種々条件を変えてレーザ
ービームを照射し・粒界に析出した炭化物がマ)IJソ
ックス固溶した状態になる条件をめた。試験材表面は+
120工メリー紙で研摩したものと、表面にグラファイ
トコーティング(商品名AerO500)を塗布したも
のを用いた。
Table 1 Chemical composition of stainless steel This test material was subjected to sensitization heat treatment at 650°C for 2 hours.
It was in a state of sensitization. The plate surface was irradiated with a laser beam under various conditions, and the conditions were determined so that the carbides precipitated at the grain boundaries were dissolved in the IJ sock. The surface of the test material is +
One was polished with 120-grid merry paper, and the other was coated with graphite coating (trade name: AerO500) on the surface.

そして、レーザービーム照射材の腐食試験を、JISG
O571による10%蓚酸エッチ試験により実施した。
Then, the corrosion test of the laser beam irradiated material was carried out by JISG
A 10% oxalic acid etch test using O571 was performed.

ビーム出力は2.OKW %ビーム径は6.0間であっ
た。結果を第4図に示す。同図中、O印は÷120エメ
リー紙で研摩したもの(12゜グリッド)、・印はグラ
ファイトコーティングを施したものを示す。蓚酸エッチ
試験によりエッチ・されない部分の幅を、JISGO5
71では段状1組織と定義しているので、第4図の縦軸
にはレーザービーム照射により段状組織が得られ、耐食
性が改善された領域を耐食性改善幅として示した。
Beam output is 2. OKW% beam diameter was between 6.0. The results are shown in Figure 4. In the same figure, the O mark indicates the one polished with ÷120 emery paper (12° grid), and the * mark indicates the one coated with graphite. The width of the part that is not etched by the oxalic acid etch test is determined by JISGO5
71 defines a step-like structure, the vertical axis in FIG. 4 shows a step-like structure obtained by laser beam irradiation, and the region where the corrosion resistance is improved is shown as the corrosion resistance improvement width.

同図によると、照射速度(照射移動速度)の増加と共に
耐食性改善幅は減小する。表面状態としては、グラファ
イトコーティングの方がエメリー研摩のものより、同じ
耐食性改善幅でも照射速度の大きいことが判る。
According to the figure, the corrosion resistance improvement width decreases as the irradiation speed (irradiation movement speed) increases. Regarding the surface condition, it can be seen that the irradiation rate is higher with graphite coating than with emery polishing even for the same corrosion resistance improvement range.

また、エメリー研摩では約2.5m/分以上、グラ]□
・ファイトコーティングでは約Q m7分以上の照射速
度では、レーザービーム照射の効果はなく、耐食性は非
照射のウェルドディケイ生成部と同じとなる0 実施例2 次に、レーザービームの中心間隔を変化させることによ
り、耐食性改善幅を広げることを試みた。
In addition, in emery polishing, approximately 2.5 m/min or more, gra]□
・For phytocoating, at an irradiation rate of approximately Q m7 minutes or more, the laser beam irradiation has no effect, and the corrosion resistance is the same as that of the non-irradiated weld decay generation part0.Example 2 Next, the center spacing of the laser beam is changed. By doing so, we attempted to widen the scope of improvement in corrosion resistance.

結果を第5図に示す。同図によると、ナ120エメリー
研摩のもの(○印)もグラファイトコーティングのもの
(◇印)もビーム中心間隔が2間以°□・下であれば照
射区域が実質的に連続しくビームが部分的にはほつなが
り)、耐食性改善幅を拡げられることを示している。そ
れ以上のビーム中心間隔では、互のビームが分離し、照
射にバラツキが生じ、十分な耐食性の改善が望めない。
The results are shown in Figure 5. According to the same figure, for both the Na120 emery polished one (○ mark) and the graphite coated one (◇ mark), if the beam center spacing is 2 degrees or less, the irradiation area is substantially continuous and the beam is partial. This shows that the range of improvement in corrosion resistance can be expanded. If the distance between the beam centers is larger than that, the beams will separate from each other, causing variations in irradiation, and sufficient improvement in corrosion resistance cannot be expected.

図中で・印と◆印は、照射区域が連続していない場合の
÷120エメリー研摩のものとグラファイトコーティン
グのものとを夫々示し、耐食性改善幅は大きいが、照射
にバラツキが生じ、充分な照射効果を達成し難い。
In the figure, marks ◆ and ◆ indicate ÷120 emery polishing and graphite coating, respectively, when the irradiation area is not continuous. Although the improvement in corrosion resistance is large, there is variation in irradiation, and the Difficult to achieve irradiation effect.

これを、実際のステンレス鋼のM I G溶接継手にレ
ーザービーム処理した例を第2表と第6図に示す。次の
第2表はレーザービーム処理条件を示すO 、第6図は第2表に示した浴接のままのもの(C)1と
す120エメリー研摩したものにレーザービーム処理し
たもの(A)と、グラファイトコーティングしたものに
レーザービーム処理したもの(B)との8体に、8%ぶ
つ化水素酸+lO%硝酸による゛。
Table 2 and FIG. 6 show examples of laser beam treatment of actual stainless steel M I G welded joints. The following Table 2 shows the laser beam processing conditions, and Figure 6 shows the products as shown in Table 2 (C) and 120 emery polished products treated with the laser beam (A). 8% hydrofluoric acid + 1O% nitric acid was applied to 8 bodies, including the graphite-coated one and the laser beam treated one (B).

70°Cで4時間の腐食試験(JISGO574)を実
施し、その腐食減量を示したものである。
A corrosion test (JISGO574) was carried out at 70°C for 4 hours, and the corrosion weight loss was shown.

溶接のままのもの(0)に比べ、レーザービーム処理し
たもの(A、B)はいずれも腐食減量が小さく、耐食性
の改善が認められる。腐食試験後の1・・外観は、第7
〜9図に示すように溶接のままのもの(0)では表面の
ウェルドディケイ生成域8の腐食帯が著しい。然し、レ
ーザービーム処理した試験片(A I B )は表面に
は全く腐食は認められない。但し、レーザービームの照
射されていない板I−厚方向には腐食は認められている
。なお、第7〜9図中の番号は、第1図と同じようにし
て参照番号を付しである。
Compared to the as-welded specimen (0), the laser beam-treated specimens (A, B) both showed smaller corrosion loss and improved corrosion resistance. 1. After the corrosion test, the appearance is the 7th one.
As shown in Figures 9 to 9, in the as-welded specimen (0), there is a significant corrosion zone in the weld decay generation region 8 on the surface. However, no corrosion was observed on the surface of the laser beam treated test piece (A I B ). However, corrosion was observed in the thickness direction of the plate I, which was not irradiated with the laser beam. Note that the numbers in FIGS. 7 to 9 are assigned reference numbers in the same manner as in FIG. 1.

従って、第61¥′Iに示した腐食減量の値は板厚方向
の腐食減量分も測定された値であるので、板表・・・る
。本発明により次の優れた効果を生ずる。
Therefore, the value of corrosion loss shown in No. 61\'I is a value in which the corrosion loss in the thickness direction of the plate is also measured, so it is the value of the plate surface. The present invention produces the following excellent effects.

1)溶接部のウェルドディケイ生成域の粒界炭化物をマ
トリックスに均一に固溶化し、マトリックス中のクロム
濃度を均一にし、耐食性−7を回復する。
1) Grain boundary carbides in the weld decay generation region of the weld are uniformly dissolved in the matrix to make the chromium concentration in the matrix uniform and restore corrosion resistance to -7.

+1) 局部的急速加熱冷却を行うので、全体加熱の溶
体化処理法に比べ変形、残留応力の生成を低くすること
ができる。
+1) Since localized rapid heating and cooling is performed, deformation and residual stress generation can be lowered compared to the solution treatment method that heats the entire area.

l11)耐食溶接構造物に極低炭ステンレス鋼又は1.
1安定化ステンレス鋼を使用する必要がなく、溶接施工
上の制約も少なくすることができる。
l11) Ultra-low carbon stainless steel or 1. for corrosion-resistant welded structures.
There is no need to use 1-stabilized stainless steel, and restrictions on welding work can be reduced.

lv) 被処理材表面でのレーザービームの吸収を助け
る目的で、リン酸被膜処理、化成処理、グラファイトコ
ーティング、ペイント塗布な1どを行なうことにより、
この処理の高速化を果すことができる。
lv) For the purpose of helping the absorption of the laser beam on the surface of the treated material, by performing phosphoric acid coating treatment, chemical conversion treatment, graphite coating, paint application, etc.
This processing can be speeded up.

以上本発明を特定の例及び数値につき説明したが、本発
明がこれのみに限定されるものでなく、本発明の広汎な
精神と視野を逸脱することなく槻・種の変更と修正が可
能なこと勿論である。
Although the present invention has been described above with reference to specific examples and numerical values, the present invention is not limited thereto, and changes and modifications can be made without departing from the broad spirit and scope of the present invention. Of course.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A及びBは突合せ溶接継手部およびすみ自溶接部
を夫々示す線図的側面図、 第2図はステンレス鋼のクロム炭化物析出状態・の−例
を冷却温度と冷却時間との関係で示す特性線図、 第8図はステンレス鋼パイプ内面のレーザービーム処理
の原理を説明する線図的縦断面図、第4図は耐食性改善
幅に及ぼす照射速度の影響を例示する特性線図、 第5図は耐食性改善幅に及ばずレーザービーム中心間隔
の影響を例示する特性線図、 第6図は溶接部の腐食時間と腐食減itとの関係を例示
する特性線図、 第7〜9図はウェルドディケイ生成域の腐食状況を示す
線図的斜視図である。 1・・・ステンレス鋼 2・・・溶接部8・・・ウェル
ドディケイ生成域 4・・・レーザービーム ・5・・・反射鏡 6・・・ステンレスパイプ 特許出願人 名古屋大学長 代理人弁理士 杉 村 暁 力 量 弁理士 杉 村 興 作 第1図A 遥 第1図B 第2図 II今h’I (4≦トン 第3図 第5図 レーザ゛−ビーA中’CI’ /e’l r系(闘)第
6図 腐食時間(8ft藺2
Figures 1A and B are diagrammatic side views showing a butt weld joint and a corner weld, respectively. Figure 2 shows an example of the state of chromium carbide precipitation in stainless steel in relation to cooling temperature and cooling time. Figure 8 is a diagrammatic longitudinal cross-sectional view explaining the principle of laser beam treatment of the inner surface of stainless steel pipes; Figure 4 is a characteristic diagram illustrating the influence of irradiation speed on the corrosion resistance improvement width; Figure 5 is a characteristic diagram illustrating the influence of the laser beam center spacing that does not reach the extent of improvement in corrosion resistance. Figure 6 is a characteristic diagram illustrating the relationship between corrosion time and corrosion reduction it of a welded part. Figures 7 to 9 FIG. 2 is a diagrammatic perspective view showing the corrosion state of a weld decay generation area. 1... Stainless steel 2... Welded part 8... Weld decay generation area 4... Laser beam 5... Reflector 6... Stainless pipe patent applicant Nagoya University President's representative patent attorney Sugi Akira Mura Competence Patent Attorney Oki Sugimura Figure 1 A Haruka Figure 1 B Figure 2 II Nowh'I (4≦T Figure 3 Figure 5 Laser Bee A Middle 'CI' / e'l r System (fight) Figure 6 Corrosion time (8ft 2

Claims (1)

【特許請求の範囲】 L ステンレスmi接部のウェルドディケイ化・。 成域表面にレーザービームを照射して表面のみを急速に
加熱し、表面層のりロム炭化物をマトリックスに固溶さ
せ、ステンレス鋼を熱伝導により自己冷却又は加速冷却
することを特徴とするステンレス鋼溶接部のウェルドブ
1屹1イケイ防止方法。 λ 特許請求の範囲l記載の方法において、加速冷却が
水冷又は強制空冷である方法。 & 特許請求の範囲1記載の方法において、ウェルドデ
ィケイ生成域が溶接巾約500〜850℃に加熱された
領域である方法。 表 特許請求の範囲1記載の方法において、冷却により
溶接部の耐食性を回復する方法。 翫 特許請求の範囲4記載の方法において、耐食性を回
復するのに充分に遅い処理速度でステンレス鋼溶接部を
照射する方法。 a 特許請求の範囲1記載の方法において、照射区域が
実質的に連続するように照射する方法。
[Claims] L Weld decay of stainless steel mi contact parts. Stainless steel welding that is characterized by irradiating a laser beam onto the surface of the target region to rapidly heat only the surface, causing the surface layer ROM carbide to form a solid solution in the matrix, and self-cooling or accelerated cooling of the stainless steel by heat conduction. How to prevent welding from occurring. λ The method according to claim 1, wherein the accelerated cooling is water cooling or forced air cooling. & The method according to claim 1, wherein the weld decay generation region is a region heated to a weld width of about 500 to 850°C. Table: A method according to claim 1, in which the corrosion resistance of the welded part is restored by cooling.翫 The method of claim 4 in which the stainless steel weld is irradiated at a processing rate slow enough to restore corrosion resistance. a. The method according to claim 1, in which the irradiation area is substantially continuous.
JP59020709A 1984-02-09 1984-02-09 Prevention of weld decay in stainless steel welded part Pending JPS60165323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59020709A JPS60165323A (en) 1984-02-09 1984-02-09 Prevention of weld decay in stainless steel welded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59020709A JPS60165323A (en) 1984-02-09 1984-02-09 Prevention of weld decay in stainless steel welded part

Publications (1)

Publication Number Publication Date
JPS60165323A true JPS60165323A (en) 1985-08-28

Family

ID=12034668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59020709A Pending JPS60165323A (en) 1984-02-09 1984-02-09 Prevention of weld decay in stainless steel welded part

Country Status (1)

Country Link
JP (1) JPS60165323A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152315A (en) * 1984-08-17 1986-03-15 Mitsubishi Electric Corp Method for desensitizing austenitic stainless steel
JPH0317234A (en) * 1989-06-15 1991-01-25 Toshiba Corp Method for preventing integranular corrosion of stainless steel
EP2492042A1 (en) * 2009-12-04 2012-08-29 Nippon Steel Corporation Butt- welded joint of welded structure, and method for manufacturing the same
EP3409410A4 (en) * 2016-01-28 2019-10-02 Nippon Steel Corporation Method for improving fatigue strength of lap-welded joint, lap-welded joint manufacturing method, and lap-welded joint

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554524A (en) * 1978-10-16 1980-04-21 Hitachi Ltd Solution heat treating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554524A (en) * 1978-10-16 1980-04-21 Hitachi Ltd Solution heat treating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152315A (en) * 1984-08-17 1986-03-15 Mitsubishi Electric Corp Method for desensitizing austenitic stainless steel
JPH0317234A (en) * 1989-06-15 1991-01-25 Toshiba Corp Method for preventing integranular corrosion of stainless steel
EP2492042A1 (en) * 2009-12-04 2012-08-29 Nippon Steel Corporation Butt- welded joint of welded structure, and method for manufacturing the same
EP2492042A4 (en) * 2009-12-04 2013-07-17 Nippon Steel & Sumitomo Metal Corp Butt- welded joint of welded structure, and method for manufacturing the same
US8992109B2 (en) 2009-12-04 2015-03-31 Nippon Steel & Sumitomo Metal Corporation Butt-welded joint of welded structure, and method for manufacturing the same
EP3409410A4 (en) * 2016-01-28 2019-10-02 Nippon Steel Corporation Method for improving fatigue strength of lap-welded joint, lap-welded joint manufacturing method, and lap-welded joint

Similar Documents

Publication Publication Date Title
US4234119A (en) Method of making a structure immune against stress corrosion cracking
RU2196671C2 (en) Method for repairing articles of alloyed steel by welding
Xie et al. Microstructrual evolution and mechanical properties of the stir zone during friction stir processing a lean duplex stainless steel
JPH03134124A (en) Titanium alloy excellent in erosion resistance and production thereof
JP2006122969A (en) Welded joint of metallic material and metallic clad material, and laser peening of casting material
Vilchez et al. The effect of laser surface melting of stainless steel grade AISI 316L welded joint on its corrosion performance in molten Solar Salt
JPS60165323A (en) Prevention of weld decay in stainless steel welded part
Knysh et al. Influence of high-frequency peening on the corrosion fatigue of welded joints
Ion et al. Laser surface modification of a 13.5% Cr, 0.6% C steel
JP7244704B1 (en) Method for improving corrosion resistance of stainless steel
US4239556A (en) Sensitized stainless steel having integral normalized surface region
Fidan et al. Laser parameter optimization for surface texturing of inconel 625
JP2865749B2 (en) Piping reforming method
JPS5554524A (en) Solution heat treating method
KR101422776B1 (en) The prevention method of corrosion of austenitic stainless steel welds
US5575867A (en) Method of preventing local corrosion at weld joints
JPS6055227B2 (en) How to weld stainless steel
JPS59107068A (en) Treatment in weld zone of nickel alloy
JP3501922B2 (en) Prevention of peeling crack of pressure vessel
JPS6018292A (en) Treatment of residual stress of welded joint part
JPS63177972A (en) Method for welding cold working material
JPS6132376B2 (en)
JPS6256208B2 (en)
JPS6254582A (en) Welding method for austenitic stainless steel
JPS6213524A (en) Production of welded ferritic stainless steel pipe