JPH03134124A - Titanium alloy excellent in erosion resistance and production thereof - Google Patents

Titanium alloy excellent in erosion resistance and production thereof

Info

Publication number
JPH03134124A
JPH03134124A JP27023189A JP27023189A JPH03134124A JP H03134124 A JPH03134124 A JP H03134124A JP 27023189 A JP27023189 A JP 27023189A JP 27023189 A JP27023189 A JP 27023189A JP H03134124 A JPH03134124 A JP H03134124A
Authority
JP
Japan
Prior art keywords
alloy
weight
erosion resistance
erosion
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27023189A
Other languages
Japanese (ja)
Inventor
Kazuhiro Koyoku
和博 小浴
Hideo Sakuyama
秀夫 作山
Tsugio Ogura
小倉 次夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP27023189A priority Critical patent/JPH03134124A/en
Publication of JPH03134124A publication Critical patent/JPH03134124A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve erosion resistance by subjecting a weld zone prepared by performing cladding by welding by the use of a Ti alloy in which respective contents of V, Fe, Al, and O are specified and a metal plate prepared by hot- working the above Ti alloy to aging treatment at a temp. in a specific region. CONSTITUTION:A Ti alloy has a composition consisting of, by weight, 2.0-8.0% V, 0.5-5.0% Fe, 2.0-7.0% Al, 0.1-0.3% O, and the balance Ti with inevitable impurities. Cladding by welding is performed by using the above Ti alloy, or the above Ti alloy is hot-worked. The resulting weld zone or metal plate is subjected to aging treatment at 350-500 deg.C independently of the presence/absence of solution treatment. By this method, the Ti alloy applicable for a part liable to erode, such as steam turbine blade, pump, impeller, aircraft, pneumatic trans port tube for particulate matter, and chemical industry and coal conversion process, and excellent in erosion resistance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スチームタービンブレード、ポンプ、インペ
ラー、航空機、粉粒体の空気輸送配管、化学工業および
石炭転換プロセス等エロージヨンが工業上の問題として
注目される部位に適用される耐エロージヨン性に優れた
合金に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to steam turbine blades, pumps, impellers, aircraft, pneumatic transportation piping for powder and granular materials, chemical industry, coal conversion process, etc. where erosion is an industrial problem. This invention relates to an alloy with excellent erosion resistance that can be applied to areas of interest.

〔従来の技術〕[Conventional technology]

一般に液滴、雨滴、蒸気を含む気体または気泡を含む液
体等の流体及び固体粒子を含む液体等の作用により材料
が侵食される部位に用いられる材料には、第一に耐エロ
ージヨン性が優れていることが要求される。そこで、従
来のこの種の材料としては各種特殊鋼やステライト等の
高力合金が用いられているが、高速回転部材では耐エロ
ージヨン性と共に比強度の高い材料が、また腐食環境に
おいては耐エロージヨン性と共にm食性の高い材料が要
求されるため今までのところ広範囲の使用条件にわたっ
て良好な附エロージヨン性を示す金属材料は知られてい
ない。
In general, materials used in areas where the material is eroded by the action of droplets, raindrops, fluids such as gases containing vapor or liquids containing bubbles, and liquids containing solid particles must first have excellent erosion resistance. required to be present. Therefore, various special steels and high-strength alloys such as stellite are used as conventional materials of this type, but materials with high erosion resistance and specific strength are used for high-speed rotating parts, and materials with high specific strength and erosion resistance are used in corrosive environments. At the same time, a material with high corrosion resistance is required, and so far no metal material has been known that exhibits good erosion resistance over a wide range of usage conditions.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

機械的、化学的な作用により材料が損耗していく現象で
あるエロージヨンは、スチームタービンブレード、ポン
プ、インペラー、航空機、粉粒体の空気輸送配管、化学
工業および石炭転換プロセス等で問題となっており、そ
れらの技術の成否を握る材料問題としてクローズアップ
されてきている。
Erosion, a phenomenon in which materials are worn away due to mechanical and chemical effects, is a problem in steam turbine blades, pumps, impellers, aircraft, pneumatic transportation piping for powder and granules, the chemical industry, and coal conversion processes. Therefore, materials issues that determine the success or failure of these technologies are attracting attention.

一例として、火力発電及び原子力発電等の低圧タービン
ブレードの例で説明すると、現在ブレードには12%C
r鋼や17−4PH11が使用され、10〜15%程度
の水滴が含まれる湿り蒸気中で高速回転するためその最
終段ブレードは激しくエロージヨンを受ける。
As an example, let us take the example of low-pressure turbine blades used in thermal power generation and nuclear power generation.Currently, blades contain 12%C.
R steel and 17-4PH11 are used, and the final stage blades undergo severe erosion because they rotate at high speed in wet steam containing about 10 to 15% water droplets.

そこで、ブレード先端にはエロージヨン防止を目的とし
て、附エロージヨン性に優れたコバルト基合金のステラ
イトがエロージヨンシールド材としてろう付け、または
溶接によって取り付けられている。
Therefore, for the purpose of preventing erosion, stellite, which is a cobalt-based alloy with excellent erosion properties, is attached to the tip of the blade as an erosion shield material by brazing or welding.

しかし、近年発電の効率化を目的として、低圧タービン
最終段ブレードの長尺化が検討され、高比強度のチタン
合金がブレード材として検討され始めている。この場合
ステライトはコバルト基合金であるためチタン合金製ブ
レードとの間に信頼性の高い溶接接合部を得ることが困
難である。
However, in recent years, efforts have been made to lengthen the final stage blades of low-pressure turbines in order to improve the efficiency of power generation, and titanium alloys with high specific strength have begun to be considered as blade materials. In this case, since Stellite is a cobalt-based alloy, it is difficult to obtain a highly reliable welded joint between it and the titanium alloy blade.

また、原子力発電においては、被曝量低減の意味からも
ステライトに代るコバルトを含まないエロージヨンシー
ルド材が望まれている。
Furthermore, in nuclear power generation, an erosion shielding material that does not contain cobalt and replaces stellite is desired from the perspective of reducing radiation exposure.

従って、タービンの最終段ブレードにチタン合金が使用
される場合、ブレードと同じチタン系で高比強度があり
、かつコバルトを含まないチタン合金は蒸気タービンブ
レードのエロージヨンシールド材として有効と考えられ
、Ti−15Mo−5Zr合金等がシールド材として試
用されているが附エロージヨン性の面で未だ不十分であ
り。
Therefore, when a titanium alloy is used for the final stage blade of a turbine, a titanium alloy that is based on the same titanium as the blade, has high specific strength, and does not contain cobalt is considered to be effective as an erosion shield material for the steam turbine blade. Although Ti-15Mo-5Zr alloys have been used as shielding materials, they are still insufficient in terms of erosion resistance.

より附エロージヨン性の高いチタン合金が求められてい
る。
A titanium alloy with higher erosion resistance is required.

以上、低圧タービンブレードの例を示したが、他のエロ
ージヨンを受ける部位に用いられる材料においても、そ
の耐エロージョン性の向上は必要不可欠なものとなって
いる。
Although the example of a low-pressure turbine blade has been shown above, it is essential to improve the erosion resistance of materials used in other parts subject to erosion as well.

本発明は、上述の問題点に鑑みて附エロージヨン性の高
いチタン合金をスチームタービンブレード、ポンプ、イ
ンペラー、航空機、粉粒体の空気輸送配管、化学工業お
よび石炭転換プロセス等エロージヨンが工業上の問題と
して注目される部位に利用できるm:ローション材とし
て提供することを目的とする。
In view of the above-mentioned problems, the present invention has been developed to apply titanium alloys with high erosion resistance to steam turbine blades, pumps, impellers, aircraft, pneumatic transportation piping for powder and granules, chemical industries, coal conversion processes, etc. where erosion is an industrial problem. The purpose is to provide m: as a lotion material that can be used in areas that are attracting attention.

〔課題を解決するための手段〕[Means to solve the problem]

エロージヨン現象は、流速のある液体、気体又は固体粒
子によって固体材料が侵食を受ける現象である。そして
、一般に金属材料においてm:ローション性は硬さと関
係があり、同−合金系では硬さが高いほど附エロージヨ
ン性は便れでいることが報告されている。
Erosion is a phenomenon in which a solid material is eroded by a flowing liquid, gas, or solid particles. In general, the lotion properties of metal materials are related to hardness, and it has been reported that the higher the hardness of the same alloy, the better the erosion properties.

本発明者等は、チタン合金においてこの傾向があてはま
るかどうかを調査するため然拠理によって高い硬さの得
られる既存のβ型チタン合金を中心として硬さとエロー
ジヨン減量の関係を磁歪振動型エロージヨン試験機を用
いて調査した。
In order to investigate whether this tendency applies to titanium alloys, the present inventors conducted a magnetostrictive vibration erosion test to examine the relationship between hardness and erosion loss, focusing on existing β-type titanium alloys that have a high degree of hardness. The investigation was conducted using a machine.

その結果、第1図に示すようにチタン合金においても供
試材のビッカース硬さとエロージョン減量の間によい相
関が見られた。
As a result, as shown in FIG. 1, a good correlation was found between the Vickers hardness and erosion loss of the test material also in titanium alloys.

そこで、本発明者等は従来のチタン合金材に比べ附エロ
ージヨン性の優れたチタン合金を開発することを目的と
して、熱処理によって高い硬さの得られるチタン合金に
ついて研究を行った。
Therefore, the present inventors conducted research on titanium alloys that can obtain high hardness through heat treatment, with the aim of developing a titanium alloy that has better erosion resistance than conventional titanium alloy materials.

その結果、β型チタン合金のβ安定化元南を減量したN
ear−β型チタン合金、特にバナジウムを主添加元素
とするβ型チタン合金中のバナジウムを減量したNea
r−β型チタン合金は、時効処理を行なう熱処理によっ
て高い硬さが得られ、従来のチタン合金に比べ優れた耐
エロージョン性を示すことを見い出した。
As a result, N
ear-β type titanium alloy, especially Nea with reduced vanadium in β-type titanium alloy with vanadium as the main additive element
It has been found that the r-β type titanium alloy can obtain high hardness through heat treatment, and exhibits superior erosion resistance compared to conventional titanium alloys.

本発明は上記の知見に基づいて、バナジウム2.0重量
%以上8.0重景%以下、鉄0.5重量%以上5.0重
量%以下、アルミニウム2.0重量%以上7.0重量%
以下、酸素0.1重量%以上0.3重量%以下を含み残
部チタン及び不可避的な不純物よりなることを特徴とす
る耐エロージヨン性に優れたチタン合金と、この合金を
用いて肉盛溶接を行った溶接部及び熱間加工して得た板
材を溶体化処理の有無にかかわらず、350℃以上50
0℃以下の温度領域で時効処理することを特徴とする耐
エロージヨン性に優れたチタン合金の熱処理方法及び製
造方法に係るものである。
Based on the above findings, the present invention has been developed based on the following findings: vanadium from 2.0% by weight to 8.0% by weight, iron from 0.5% by weight to 5.0% by weight, aluminum from 2.0% by weight to 7.0% by weight. %
The following describes a titanium alloy with excellent erosion resistance characterized by containing 0.1% to 0.3% by weight of oxygen and the remainder being titanium and unavoidable impurities, and overlay welding using this alloy. Regardless of whether or not the welded parts and hot-worked plate materials are subjected to solution treatment, the welded parts and hot-worked plates must be heated at temperatures above 350°C and 50°C.
The present invention relates to a heat treatment method and a manufacturing method for a titanium alloy having excellent erosion resistance, which is characterized by aging treatment in a temperature range of 0° C. or lower.

本発明において組成比の限定理由は以下のとおりである
The reasons for limiting the composition ratio in the present invention are as follows.

まず、バナジウムは第2図に示すように、その含有量5
.0重量%で耐エロージヨン性はピークを示し、2.0
重量%未満及び8.0重量%以上ではエロージヨン減量
が大きくなり優れた耐エロージヨン性を示さない。
First, as shown in Figure 2, vanadium has a content of 5
.. Erosion resistance shows a peak at 0% by weight, and is 2.0% by weight.
If it is less than 8.0% by weight or more than 8.0% by weight, the erosion loss will be large and excellent erosion resistance will not be exhibited.

鉄は、その含有量が0.5重量%未満では熱処理によっ
ても十分な硬さが得られず優れた耐エロージヨン性を示
さない。またその含有量が5.0重量%を越えると硬さ
上昇とともに脆化が進み、加工性が悪くなる。
If the iron content is less than 0.5% by weight, sufficient hardness cannot be obtained even by heat treatment, and excellent erosion resistance is not exhibited. If the content exceeds 5.0% by weight, hardness increases and embrittlement progresses, resulting in poor workability.

アルミニウムは、その含有量が2.0重量%未満では時
効処理によるα相の析出が不足し、十分な硬さが得られ
ないため、優れた耐エロージヨン性を示さない。また、
その含有量が7.0重量%を越えると硬さ上昇とともに
Ti、A!l の析出による脆化が進み加工が困難とな
る。
When the content of aluminum is less than 2.0% by weight, precipitation of α phase due to aging treatment is insufficient, and sufficient hardness cannot be obtained, so that the aluminum does not exhibit excellent erosion resistance. Also,
When the content exceeds 7.0% by weight, the hardness increases and Ti, A! Embrittlement progresses due to the precipitation of l, making processing difficult.

酸素はその含有量が0.1重量%未満では十分な硬さが
得られず偏れた甜エロージョン性を示さない。一方、酸
素量が0.3重量%を越えると加工性が低下し、板材の
製造や肉盛溶接用の溶接棒の製造が困難となる。
When the oxygen content is less than 0.1% by weight, sufficient hardness cannot be obtained and uneven erosion properties are not exhibited. On the other hand, if the oxygen content exceeds 0.3% by weight, workability decreases, making it difficult to manufacture plate materials and welding rods for overlay welding.

また、上記組成において、溶体化処理の有無にかかわら
ず350℃以上500℃以下の温度領域で時効すること
により析出硬化が生じ、はじめて優れた耐エロージヨン
性が得られる。
Moreover, in the above composition, precipitation hardening occurs by aging in a temperature range of 350° C. to 500° C., regardless of whether or not solution treatment is performed, and excellent erosion resistance can be obtained for the first time.

このような理由により本発明においては、坩エロージヨ
ン性の優れたチタン合金を得るために上記の範囲にその
組成及び時効処理条件を限定した。
For these reasons, in the present invention, the composition and aging treatment conditions are limited to the above ranges in order to obtain a titanium alloy with excellent crucible erosion properties.

〔実施例〕〔Example〕

次に、本発明を実施例により詳細に説明する。 Next, the present invention will be explained in detail using examples.

第1表に本発明に係る実施例及び比較例のエロージヨン
試験の結果を示す。エロージヨン試験は。
Table 1 shows the results of the erosion test for Examples and Comparative Examples according to the present invention. Erosion test.

磁歪振動型キャビテーションエロージョン試験機を用い
て行ない、財エロージョン性を評価した。
A magnetostrictive vibration type cavitation erosion tester was used to evaluate the material erosion properties.

試験条件は振動周波数20 KHz 、振動振幅35μ
m、試験液水道水、液温20℃1試験時間2時間とし、
評価は試験後の重量減の大小で行なった。
Test conditions are vibration frequency 20 KHz, vibration amplitude 35μ
m, test solution: tap water, liquid temperature: 20°C, 1 test time: 2 hours,
Evaluation was made based on the amount of weight loss after the test.

第1表に示す組成の各供試材(市販合金を除く)のチタ
ン合金は高純度アルゴン雰囲気中でアーク溶mした後、
Nα1〜8,13〜16,21〜29゜33.35〜5
1.62〜66.72〜81については1040℃で、
また、Nα9〜12.17〜20.30〜32,34.
52〜61.67〜71については990℃で熱間圧延
加工を行ない板材を製造した。また、この板材をシャー
で切断し31訓口程度の角材を製造し、これを溶接棒と
してTIG溶接による肉盛溶接を行った。溶接時には、
溶接ビードの表面酸化を防ぐ為、トーチ部にアルゴンガ
スを流し、アフターシールドを施して溶接を行った。
The titanium alloys of each test material (excluding commercially available alloys) having the composition shown in Table 1 were arc melted in a high purity argon atmosphere, and then
Nα1~8, 13~16, 21~29°33.35~5
1.62-66.72-81 at 1040℃,
Also, Nα9~12.17~20.30~32,34.
No. 52-61 and No. 67-71 were hot-rolled at 990°C to produce plates. Further, this plate material was cut with a shear to produce a square material of about 31 holes, and overlay welding was performed using TIG welding using this as a welding rod. When welding,
To prevent surface oxidation of the weld bead, welding was performed with argon gas flowing through the torch and an aftershield applied.

その結果、板材と肉盛材で酸素含有量の違いはほとんど
認められなかった。
As a result, there was almost no difference in oxygen content between the plate material and the overlay material.

上記のようにして製造した供試材には各々第1表に示す
熱処理を施し、前述したエロージヨン試験に供した。
The test materials produced as described above were each subjected to the heat treatments shown in Table 1 and subjected to the erosion test described above.

第1表から明らかなように1本発明に係る実施例Nα1
〜28の耐エロージヨン性はTi−6AQ−4V合金と
Ti−15M6 5Zr合金よりも優れている。
As is clear from Table 1, Example Nα1 according to the present invention
The erosion resistance of ~28 is better than Ti-6AQ-4V alloy and Ti-15M6 5Zr alloy.

一方、比較例AにおいてNα29はバナジウム含有量が
2.0重量%未満、Nα30はバナジウム含有量が8.
0重量%を越え、Nα31は鉄含有量が0.5重量%未
満、Nα33はアルミニウム含有量が2.0重量%未満
、Nα35は酸素含有量が0.1重量%未満の場合であ
るが、いずれもm:ローション性は不十分である。また
、&32は鉄含有量が5.0重量%を越え、Nα34は
アルミニウム含有量が7.0重量%を越え、Nα36は
酸素含有量が0.3重量%を越えた場合で、いずれも加
工性が悪いことがわかった。
On the other hand, in Comparative Example A, Nα29 has a vanadium content of less than 2.0% by weight, and Nα30 has a vanadium content of 8.0% by weight.
0% by weight, Nα31 has an iron content of less than 0.5% by weight, Nα33 has an aluminum content of less than 2.0% by weight, and Nα35 has an oxygen content of less than 0.1% by weight. All m: Lotion properties are insufficient. In addition, &32 has an iron content of over 5.0% by weight, Nα34 has an aluminum content of over 7.0% by weight, and Nα36 has an oxygen content of over 0.3% by weight, all of which are processed. I found out that it was bad.

また、比較例Bにおいて、N(137,42,47゜5
2.57,62,67.72.77は溶体化処理のみを
行った場合、Nα38,43,48,53゜58.63
,68,73,78は溶体化処理後350℃未満の温度
で時効処理した場合、ン;α40゜45.50,55,
60,65,70,75゜80は350℃未満の温度で
直接時効処理した場合で、いずれも析出硬化が不十分で
討エロージョン性は劣っている。さらにNα39’、4
4,49゜54.59,64,69,74.79は溶体
化処理後500℃を越える温度で時効処理をした場合。
In addition, in Comparative Example B, N(137, 42, 47°5
2.57, 62, 67.72.77 is Nα38,43,48,53°58.63 when only solution treatment is performed
, 68, 73, 78, when aged at a temperature of less than 350°C after solution treatment, α40°45.50,55,
60, 65, 70, 75°80 are cases where direct aging treatment was performed at a temperature below 350°C, and all of them showed insufficient precipitation hardening and poor erosion resistance. Furthermore, Nα39', 4
4,49゜54.59,64,69,74.79 is the case where aging treatment is performed at a temperature exceeding 500℃ after solution treatment.

Nα41,46,51,56,61,66.71゜76
.81は500℃を越える温度で直接時効処理した場合
であるが、いずれも過時効で軟化しており、rPiエロ
ージョン性は劣っている。
Nα41,46,51,56,61,66.71°76
.. No. 81 is a case of direct aging treatment at a temperature exceeding 500°C, but all of them have softened due to over-aging, and the rPi erosion properties are poor.

前述したように、一般に金属材料において盾エロージヨ
ン性は硬さと関係があり、同−合金系では硬さが高い程
甜エロージョン性は優れている。
As mentioned above, the shield erosion property of metal materials is generally related to the hardness, and in the same alloy system, the higher the hardness, the better the shield erosion property.

第1表においても本発明に係る合金の硬さはいずれも4
50(Hv)を越えており、高い硬さを有していること
は明らかである。
In Table 1, the hardness of the alloys according to the present invention is 4.
It is clear that the hardness exceeds 50 (Hv) and has high hardness.

なお、本実施例は熱間圧延材について述べたが圧延に限
らず他の方法による熱間加工材についても同様である。
Although the present embodiment has been described with respect to hot-rolled materials, the same applies to hot-processed materials not only by rolling but also by other methods.

また、熱間加工に限らず冷間加工を行った場合にも同様
の効果を奏することは言うまでもない。
Moreover, it goes without saying that the same effect can be obtained not only when hot working is performed but also when cold working is performed.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明によればスチームタービ
ンブレード、ポンプ、インペラー、航空機、粉粒体の空
気輸送配管、化学工業及び石炭転換プロセス等のエロー
ジヨンが発生し易い部位に利用できる耐エロージヨン性
に優れたチタン合金を得ることができる。
As explained above, the present invention provides erosion resistance that can be used in areas where erosion is likely to occur, such as steam turbine blades, pumps, impellers, aircraft, air transportation piping for powder and granular materials, chemical industries, and coal conversion processes. A titanium alloy with excellent properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はチタン合金のビッカース硬さとエロージョン減
量との関係を示すグラフ、第2図はバナジウム含有量と
エロージヨン減量との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between Vickers hardness and erosion loss of titanium alloys, and FIG. 2 is a graph showing the relationship between vanadium content and erosion loss.

Claims (3)

【特許請求の範囲】[Claims] (1)バナジウム2.0重量%以上8.0重量%以下、
鉄0.5重量%以上5.0重量%以下、アルミニウム2
.0重量%以上7.0重量%以下及び酸素0.1重量%
以上0.3重量%以下を含み残部チタン及び不可避的な
不純物よりなる耐エロージョン性に優れたチタン合金。
(1) Vanadium 2.0% by weight or more and 8.0% by weight or less,
Iron 0.5% by weight or more and 5.0% by weight or less, aluminum 2
.. 0% to 7.0% by weight and 0.1% by weight of oxygen
A titanium alloy having excellent erosion resistance, comprising 0.3% by weight or less, the remainder being titanium, and unavoidable impurities.
(2)請求項(1)記載のチタン合金を用いて肉盛溶接
を行った溶接部を溶体化処理の有無にかかわらず、35
0℃以上500℃以下の温度領域で時効処理することに
より優れた耐エロージヨン性を得ることを特徴とするチ
タン合金の熱処理方法。
(2) A welded part where overlay welding is performed using the titanium alloy according to claim (1), regardless of whether or not it is subjected to solution treatment.
A method for heat treating a titanium alloy, characterized in that excellent erosion resistance is obtained by aging treatment in a temperature range of 0°C or higher and 500°C or lower.
(3)請求項(1)記載のチタン合金を熱間加工後溶体
化処理の有無にかかわらず350℃以上500℃以下の
温度領域で時効処理することを特徴とする耐エロージョ
ン性に優れたチタン合金の製造方法。
(3) A titanium alloy with excellent erosion resistance characterized in that the titanium alloy according to claim (1) is aged in a temperature range of 350°C or more and 500°C or less with or without solution treatment after hot working. Alloy manufacturing method.
JP27023189A 1989-10-19 1989-10-19 Titanium alloy excellent in erosion resistance and production thereof Pending JPH03134124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27023189A JPH03134124A (en) 1989-10-19 1989-10-19 Titanium alloy excellent in erosion resistance and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27023189A JPH03134124A (en) 1989-10-19 1989-10-19 Titanium alloy excellent in erosion resistance and production thereof

Publications (1)

Publication Number Publication Date
JPH03134124A true JPH03134124A (en) 1991-06-07

Family

ID=17483380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27023189A Pending JPH03134124A (en) 1989-10-19 1989-10-19 Titanium alloy excellent in erosion resistance and production thereof

Country Status (1)

Country Link
JP (1) JPH03134124A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559510A (en) * 1991-09-02 1993-03-09 Nkk Corp Manufacture of high strength and high toughness (alpha+beta) type titanium alloy
EP0870845A1 (en) * 1997-04-10 1998-10-14 Oregon Metallurgical Corporation Titanium-aluminium-vanadium alloys and products made therefrom
AU751281B2 (en) * 1998-04-16 2002-08-08 Oregon Metallurgical Corporation Titanium-aluminum-vanadium alloys and products made therefrom
EP1643011A1 (en) * 2004-09-30 2006-04-05 General Electric Company Erosion and wear resistant protective structures for turbine components
JP2007501903A (en) * 2003-05-09 2007-02-01 エイティーアイ・プロパティーズ・インコーポレーテッド Titanium-aluminum-vanadium alloy processing and products produced thereby
US20120202085A1 (en) * 2010-08-05 2012-08-09 Titanium Metals Corporation Low-cost alpha-beta titanium alloy with good ballistic and mechanical properties
JP2013533386A (en) * 2010-07-19 2013-08-22 エイティーアイ・プロパティーズ・インコーポレーテッド Alpha / beta titanium alloy processing
US8834653B2 (en) 2010-07-28 2014-09-16 Ati Properties, Inc. Hot stretch straightening of high strength age hardened metallic form and straightened age hardened metallic form
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
JP2015148016A (en) * 2015-03-11 2015-08-20 テイタニウム メタルス コーポレイシヨンTitanium Metals Corporation LOW COST α-β TITANIUM ALLOY HAVING GOOD PROJECTILE PATH AND MECHANICAL PROPERTIES
CN104923968A (en) * 2015-06-24 2015-09-23 宝鸡钛业股份有限公司 Special Ti-6Al-3V welding wire for Ti-6Al-4V ELI titanium alloy and machining process of special Ti-6Al-3V welding wire
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
CN107893174A (en) * 2016-07-26 2018-04-10 波音公司 Powdery titanium alloy composition and the article formed by it
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840165A (en) * 1971-09-22 1973-06-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840165A (en) * 1971-09-22 1973-06-13

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559510A (en) * 1991-09-02 1993-03-09 Nkk Corp Manufacture of high strength and high toughness (alpha+beta) type titanium alloy
EP0870845A1 (en) * 1997-04-10 1998-10-14 Oregon Metallurgical Corporation Titanium-aluminium-vanadium alloys and products made therefrom
AU751281B2 (en) * 1998-04-16 2002-08-08 Oregon Metallurgical Corporation Titanium-aluminum-vanadium alloys and products made therefrom
JP2007501903A (en) * 2003-05-09 2007-02-01 エイティーアイ・プロパティーズ・インコーポレーテッド Titanium-aluminum-vanadium alloy processing and products produced thereby
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
EP1643011A1 (en) * 2004-09-30 2006-04-05 General Electric Company Erosion and wear resistant protective structures for turbine components
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
JP2017128807A (en) * 2010-07-19 2017-07-27 エイティーアイ・プロパティーズ・エルエルシー Treatment of alpha/beta titanium alloy
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
JP2013533386A (en) * 2010-07-19 2013-08-22 エイティーアイ・プロパティーズ・インコーポレーテッド Alpha / beta titanium alloy processing
US8834653B2 (en) 2010-07-28 2014-09-16 Ati Properties, Inc. Hot stretch straightening of high strength age hardened metallic form and straightened age hardened metallic form
US20120202085A1 (en) * 2010-08-05 2012-08-09 Titanium Metals Corporation Low-cost alpha-beta titanium alloy with good ballistic and mechanical properties
US9631261B2 (en) * 2010-08-05 2017-04-25 Titanium Metals Corporation Low-cost alpha-beta titanium alloy with good ballistic and mechanical properties
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
JP2015148016A (en) * 2015-03-11 2015-08-20 テイタニウム メタルス コーポレイシヨンTitanium Metals Corporation LOW COST α-β TITANIUM ALLOY HAVING GOOD PROJECTILE PATH AND MECHANICAL PROPERTIES
CN104923968A (en) * 2015-06-24 2015-09-23 宝鸡钛业股份有限公司 Special Ti-6Al-3V welding wire for Ti-6Al-4V ELI titanium alloy and machining process of special Ti-6Al-3V welding wire
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
CN107893174A (en) * 2016-07-26 2018-04-10 波音公司 Powdery titanium alloy composition and the article formed by it
US11136650B2 (en) 2016-07-26 2021-10-05 The Boeing Company Powdered titanium alloy composition and article formed therefrom
US20220112578A1 (en) * 2016-07-26 2022-04-14 The Boeing Company Powdered titanium alloy composition and article formed therefrom

Similar Documents

Publication Publication Date Title
JPH03134124A (en) Titanium alloy excellent in erosion resistance and production thereof
EP0418606B1 (en) Diffusion bonding method for corrosion-resistant materials
CN102021559B (en) Cobalt-based alloy powder for laser cladding of steam turbine last-stage blade
JPH02156034A (en) Alloy based on anticorrosive nickel
JPS5941505B2 (en) Ferrite corrosion resistant chromium ↓ - molybdenum ↓ - nickel steel
JPH0244896B2 (en)
WO1997039153A1 (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
Yelamasetti et al. Comparison of metallurgical and mechanical properties of dissimilar joint of AISI 316 and Monel 400 developed by pulsed and constant current gas tungsten arc welding processes
Vahrusheva et al. Increasing the corrosion resistance of heat-resistant alloys for parts of power equipment
Ramkumar et al. Effect of grain boundary precipitation on the mechanical integrity of EBW joints of Inconel 625
Ding et al. Failure Transition Mechanism of Stress Rupture Performance of the Inconel 625/9áPct Cr Steel Dissimilar Welded Joint
JP6506389B2 (en) Malleable boron supported nickel-based welding material
CN113941798A (en) Nickel-based alloy brazing material for high-temperature structural material and application thereof
US4678523A (en) Corrosion- and wear-resistant duplex steel
JPH03134126A (en) Titanium alloy excellent in erosion resistance and production thereof
JP2020508872A (en) Use of nickel-chromium-molybdenum alloy
Sridhar et al. A duplex stainless steel for chloride environments
RU2716723C2 (en) Method of bonding fecral alloy with fenicr alloy using filler metal by welding
JPH03134125A (en) Titanium alloy excellent in erosion resistance and production thereof
CN110919235B (en) Welding wire for stainless steel welding
JPH03134145A (en) Titanium alloy having excellent erosion resistance and its manufacture
JPH02182377A (en) Method for gas shield arc welding high-strength cr-mo steel
Yelamasetti et al. Effect of filler wires on mechanical properties of super-duplex stainless steel UNS S32750 and austenitic stainless steel 304 dissimilar joints welded with PCGTAW technique.
Işcan et al. Investigation of the mechanical properties of AISI 304 austenitic stainless steel joints produced by TIG and MIG welding methods using 308L filler wire
JPS5943993B2 (en) Manufacturing method of stainless steel materials for combustion appliances