JPH0317231B2 - - Google Patents

Info

Publication number
JPH0317231B2
JPH0317231B2 JP60018508A JP1850885A JPH0317231B2 JP H0317231 B2 JPH0317231 B2 JP H0317231B2 JP 60018508 A JP60018508 A JP 60018508A JP 1850885 A JP1850885 A JP 1850885A JP H0317231 B2 JPH0317231 B2 JP H0317231B2
Authority
JP
Japan
Prior art keywords
plate
electrostrictive
bimorph element
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60018508A
Other languages
Japanese (ja)
Other versions
JPS61177785A (en
Inventor
Akira Tomono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60018508A priority Critical patent/JPS61177785A/en
Publication of JPS61177785A publication Critical patent/JPS61177785A/en
Publication of JPH0317231B2 publication Critical patent/JPH0317231B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、少なくとも一対のセラミツク電歪板
を、中央電子を兼ねるシム板を介して接着してな
るバイモルフ素子に関するものであり、特に、大
振幅動作の圧電アクチユエータに適するバイモル
フ素子に関するものである。 〔従来の技術〕 バイモルフ素子は、電圧の印加によつて高速で
動作し、その消費電力も小さい。このため、駆動
部にバイモルフ素子を用いたアクチユエータは、
電磁石に代わるアクチユエータとして、小型、低
電力化が望まれる通信端末機器を中心に注目され
ている。 しかし、従来のこの種の圧電アクチユエータ
は、変異量および発生力が小さいためその適用分
野は限られていた。バイモルフ素子を大きく且つ
強い力で動作させるためには、分極の劣化を防止
しつつ高電圧を印加できる駆動回路と、大振幅動
作に適した素子構造が必要である。 前者については、本願発明者の発明に係る特願
昭59−43881「電歪振動装置」に記載された不平衡
電圧印加極性切替回路等があり、それ以前の2〜
3倍の変異量および発生力を得ることができるよ
うになつた。 〔発明が解決しようとする問題点〕 しかし、高温下においてこのような大振幅動作
を行なわせると、従来のバイモルフ素子では電歪
板が破断するという問題が新たに発生するという
ことが明らかになつた。 〔問題点を解決するための手段〕 本発明のバイモルフ素子は、上記問題点に鑑み
てなされたものであり、シム板をNi含有量30〜
55重量%のNi−Fe係合金でありかつ熱膨張係数
が10-7〜10-5/℃の金属とし、シム板と電歪板と
が106〜1013Ω・cmの体積固有抵抗を持ち、かつカ
ーボン粒子の混入した樹脂からなる接着剤で接着
したものである。 〔作用〕 シム板の熱膨張係数が電歪板の熱膨張係数に近
似するので、高温下においても熱膨張による内部
応力が殆ど発生せず、そのために、大きく変異さ
せても電歪板が破断しにくくなる。また、接着剤
が適度な接着性能を保ちながら、必要な導電性も
確保される。 〔実施例〕 以下、実施例と共に本発明を詳細に説明する。 第1表は、各種材質の線膨張係数および磁性に
関する特性を示した表である。
[Industrial Application Field] The present invention relates to a bimorph device formed by bonding at least a pair of ceramic electrostrictive plates through a shim plate that also serves as a central electron, and is particularly suitable for piezoelectric actuators with large amplitude operation. This relates to bimorph devices. [Prior Art] A bimorph element operates at high speed by applying a voltage, and its power consumption is low. For this reason, actuators that use bimorph elements in their drive parts are
As an actuator that can replace electromagnets, it is attracting attention mainly for communication terminal equipment that is desired to be small and low-power. However, conventional piezoelectric actuators of this type have a small amount of variation and a small amount of generated force, so their field of application is limited. In order to operate a bimorph element with large force and force, a drive circuit that can apply a high voltage while preventing deterioration of polarization and an element structure suitable for large amplitude operation are required. Regarding the former, there is an unbalanced voltage application polarity switching circuit described in Japanese Patent Application No. 59-43881 "Electrostrictive Vibration Device" related to the invention of the present inventor, and the previous two to
It is now possible to obtain three times the amount of mutation and generation power. [Problem to be solved by the invention] However, it has become clear that when such a large amplitude operation is performed at high temperatures, a new problem occurs in the conventional bimorph element: the electrostrictive plate breaks. Ta. [Means for Solving the Problems] The bimorph element of the present invention has been made in view of the above problems, and has a shim plate with a Ni content of 30 to 30.
The metal is a 55% by weight Ni-Fe alloy with a thermal expansion coefficient of 10 -7 to 10 -5 /°C, and the shim plate and electrostrictive plate have a volume resistivity of 10 6 to 10 13 Ωcm. It is bonded with an adhesive made of resin mixed with carbon particles. [Function] Since the thermal expansion coefficient of the shim plate is close to that of the electrostrictive plate, almost no internal stress is generated due to thermal expansion even at high temperatures, and therefore the electrostrictive plate will not break even if it is greatly deformed. It becomes difficult to do. In addition, the adhesive maintains appropriate adhesive performance while also ensuring the necessary electrical conductivity. [Example] Hereinafter, the present invention will be described in detail with reference to Examples. Table 1 is a table showing the linear expansion coefficient and magnetic properties of various materials.

【表】 本願発明者は、バイモルフ素子を高温下におい
て大振幅動作させると電歪板が破断するという現
象の原因が、電歪板(PZT)とシム板の熱膨張
係数の差にあると推測した。 そこで、従来のバイモルフ素子のシム板には、
そのバネ性の良さから主として黄銅、洋白または
リン青銅等が用いられていることから、以下に示
す実現を行つた。 ジルコン散チタン酸鉛(PZT)から成る電歪
板201と黄銅板202とを100℃で硬化型接着
剤で接着した後、室温に戻して形状の変化を観測
した。なお、電歪板201および黄銅板202の
形状(長さ×幅×厚さ)はそれぞれ、45×12×
0.15mmおよび45×12×0.05mmである。 その結果2枚の板は、第2図の断面図に示すよ
うに、電歪板201側が内側になるように大きく
湾曲した。これを平板状に戻すためには、一端を
固定した状態で、先端にF=15g程度の力を加え
ることが必要であつた。2枚の板を室温で硬化さ
せ高温に放置した場合も同様の結果が得られた。
ただし、この場合は黄銅板側が内側になるように
湾曲する。 バイモルフ素子は、シム板を介して2枚の電歪
板がサンドイツチ状に接着されているため、室温
で接着して製造した後、高温に放置しても湾曲す
ることはないが、上記の実験結果からシム板と電
歪板との間には、先端荷重にして15g程度に相当
する内部応力が発生していることが判つた。この
ため、高温下での動作は、電圧の印加による歪の
他にシム板の熱膨張による歪が加わることが明ら
かとなつた。 PZTをはじめとしてチタン酸鉛、ニオブ酸鉛、
チタン酸バリウム、ソジウムプタジウムナイトベ
ート等、圧電セラミツクの熱膨張係数を測定する
と第1表に示すように、15〜50×10-7/℃程度で
ある、そこで本願発明者はシム板としてNi−Fe
系またはNi−Fe−Co系合金に着目した。 第3図は、Ni−Fe合金の組成と熱膨張係数α
との関係を示したものである。同図から明らかな
ように、Ni−Fe合金のNiの含有量が30〜55重量
%になるとαが100×10-7℃以下になり、電歪板
に近くなる。代表例として、αが電歪板と同等か
やや小さい36%Ni−Feおよびαが電歪板よりや
や大きい45%Ni−Feを用いて、前述と同様の実
験を行つた。 第4図は、36%Ni−Fe板401(45×12×
0.05mm)と前述の実験に用いたものと同じ電歪板
201とを100℃硬化型接着剤で接着して、室温
に戻した場合の断面図である。同図から判るよう
に、黄銅を用いた場合のような変形はない。ま
た、45%Ni−Feを用いた場合にはやや湾曲する
が、その程度は黄銅の場合に比して遥かに小さい
ことが判つた。 第1図は、大振幅動作をさせることができる駆
動回路に、本発明の一実施例に係るバイモルフ素
子を駆動子として用いた圧電アクチユエータを示
すブロツク図である。 バイモルフ素子1は、35%Ni−Feから成るシ
ム板11を、PZTから成る電歪板12,13で
挟んだものであり、分極方向は矢印A,Bで示す
ように同方向となつている。なお、シム板11は
中央電極も兼ねている。 第5図は、このバイモルフ素子1の構成を更に
詳しく示した斜視図である。電歪板12,13の
両面には、それぞれAu、Ag、Niなどからなる電
極501〜504が焼付により形成されている。
シム板11側の電極502および503は、固定
部505側の端部には施されていない。リード線
507〜509は、それぞれ固定部505側にお
いて電極501、シム板11、電極504に接続
されている。電歪板12,13は、分極した後、
シム板11に接着されている。 第1図において、駆動回路は、不平衡電圧印加
駆動入力回路2、極性切替3、定電流回路4、定
電圧回路5、極性切替用の制御回路6および論理
電圧電源7から構成されている。 駆動入力回路2は、ツエナーダイオード21,
22からなり、バイモルフ素子1の一方の電歪板
に分極方向と同方向の定電圧Vcを印加し、他方
の電歪板には、分極方向と逆方向の電圧であつて
定電圧Vcからツエナーダイオード21もしくは
22の動作電圧を減じた電圧を印加する。 極性切替回路3は、ダーリントン接続されたト
ランジスタ回路31〜34をブリツジ形に接続し
たものであり、制御回路6の出力信号に応じて、
出力電圧の極性切替を行なう。 定電流回路4は、CRD41から成つている。 定電圧回路5は、pnpトランジスタを用いた
RCC方式昇圧定電圧回路であり、その内部構成
は省略するが、論理電圧電源7の電源電圧Ec(5V
程度)を昇圧して、定電圧Vcを出力する。定電
圧Vcは、電源電圧Ecに、内部のツエナーダイオ
ードZDoの動作電圧VZDOを加算した値、すなわち
〔Ec+VZDO〕となる。 制御回路6は、スイツチ61の切替により、極
性切替回路3のダーリントントランジスタ回路3
1〜34のオン・オフ制御行なうものであり、ス
イツチ61が図の状態にある時はトランジスタ回
路31および32を遮断し、トランジスタ回路3
3および34を導通する。スイツチ61が反対に
倒されると、逆に、トランジスタ回路33および
34を遮断し、トランジスタ回路31および32
が導通する。 つぎに、このように構成された圧電アクチユエ
ータの動作を簡単に説明する。 いま、スイツチ61が図に示す状態にあると、
トランジスタ回路31および32が遮断され、ト
ランジスタ回路33および34が導通されるた
め、駆動入力回路2の端子Aは接地レベルに、端
子Bは電位Vcとなる。 したがつて、電歪板13には分極方向に定電圧
回路5の出力電圧Vcが印加され、電歪板12に
は逆分極方向にはVc−VZD1が印加され、バイモ
ルフ素子1の先端は下方に変位する。 スイツチ61を接地レベルにすると、トランジ
スタ回路33および34が遮断され、トランジス
タ回路31および32が導通されるため、駆動入
力回路2の端子Bが接地レベルに、端子Aが電位
Vcとなる。 したがつて、電歪板12には分極方向に定電圧
回路5の出力電圧Vcが印加され、電歪板13に
は逆分極方向にはVc−VZD2が印加され、バイモ
ルフ素子1の先端は上方に変位する。 電歪板は、逆分極方向に分極劣化電圧Vd以上
を印加すると減極するが、この駆動回路による
と、逆分極方向に分極劣化電圧Vd以上を印加す
ることなく、分極方向に分極劣化電圧Vd以上の
高い電圧(Vc)を印加することができるため、
スイツチ61を切り替えることにより、バイモル
フ素子1を劣化させることなく大きく振動させる
ことができる。また、この駆動回路によると、仮
に、逆分極方向の印加電圧が分極劣化電圧Vdよ
りも大きく、電歪板に減極を生じさせる場合で
も、分極破壊を生じさせない程度の電圧であれ
ば、分極方向に印加する高電圧Vcによつて減極
が回復し、一層大きく振動させることができる。 第6図は、第1図に示す駆動回路を用いて70℃
の温度下で2Hzの連続動作試験を行つた際のバイ
モルフ素子の変位量特性を示す図である。特性
A、Bは、本発明にかかるバイモルフ素子に関す
るものであり、特性Aはシム板に36%Ni−Feを
用いたもの、特性Bは45%Ni−Feを用いたもの
である。また、特性C、Dは、シム板に黄銅を用
いた従来のバイモルフ素子に関するものである。 また、第2表は、バイモルフ素子の破断特性を
示したものである。
[Table] The inventor of this application speculates that the cause of the phenomenon in which the electrostrictive plate breaks when a bimorph element is operated with large amplitude at high temperatures is the difference in thermal expansion coefficient between the electrostrictive plate (PZT) and the shim plate. did. Therefore, the shim plate of the conventional bimorph element has
Since brass, nickel silver, phosphor bronze, etc. are mainly used because of their good spring properties, the following implementation was carried out. After bonding an electrostrictive plate 201 made of zircon-dispersed lead titanate (PZT) and a brass plate 202 with a hardening adhesive at 100°C, the plate was returned to room temperature and changes in shape were observed. The shapes (length x width x thickness) of the electrostrictive plate 201 and the brass plate 202 are 45 x 12 x
0.15mm and 45×12×0.05mm. As a result, the two plates were largely curved so that the electrostrictive plate 201 side was inward, as shown in the cross-sectional view of FIG. In order to return this to a flat plate shape, it was necessary to apply a force of about F=15 g to the tip with one end fixed. Similar results were obtained when two plates were cured at room temperature and left at elevated temperatures.
However, in this case, it is curved so that the brass plate side is on the inside. Bimorph elements are made of two electrostrictive plates glued together in a sandwich shape through a shim plate, so they do not bend even if left at high temperatures after being glued together at room temperature. The results revealed that an internal stress equivalent to a tip load of approximately 15 g was generated between the shim plate and the electrostrictive plate. Therefore, it has become clear that when operating at high temperatures, in addition to the strain caused by the application of voltage, strain is caused by the thermal expansion of the shim plate. Including PZT, lead titanate, lead niobate,
When the thermal expansion coefficient of piezoelectric ceramics such as barium titanate and sodium ptadium nitrate is measured, as shown in Table 1, it is about 15 to 50 × 10 -7 /°C. Ni−Fe
We focused on Ni-Fe-Co alloys. Figure 3 shows the composition and thermal expansion coefficient α of Ni-Fe alloy.
This shows the relationship between As is clear from the figure, when the Ni content of the Ni-Fe alloy is 30 to 55% by weight, α becomes 100×10 −7 ° C. or less, and the alloy becomes close to an electrostrictive plate. As a representative example, an experiment similar to that described above was conducted using 36% Ni-Fe with α equal to or slightly smaller than that of the electrostrictive plate and 45% Ni-Fe with α slightly larger than that of the electrostrictive plate. Figure 4 shows 36% Ni-Fe plate 401 (45×12×
0.05 mm) and the same electrostrictive plate 201 used in the experiment described above are bonded together using a 100° C. curing adhesive and are returned to room temperature. As can be seen from the figure, there is no deformation like when brass is used. It was also found that when 45% Ni-Fe was used, there was some curvature, but the degree of curvature was much smaller than in the case of brass. FIG. 1 is a block diagram showing a piezoelectric actuator in which a bimorph element according to an embodiment of the present invention is used as a driver in a drive circuit capable of large amplitude operation. The bimorph element 1 has a shim plate 11 made of 35% Ni-Fe sandwiched between electrostrictive plates 12 and 13 made of PZT, and the polarization directions are in the same direction as shown by arrows A and B. . Note that the shim plate 11 also serves as a center electrode. FIG. 5 is a perspective view showing the structure of this bimorph element 1 in more detail. Electrodes 501 to 504 made of Au, Ag, Ni, etc. are formed on both surfaces of the electrostrictive plates 12 and 13 by baking, respectively.
Electrodes 502 and 503 on the shim plate 11 side are not provided at the end on the fixed part 505 side. The lead wires 507 to 509 are connected to the electrode 501, the shim plate 11, and the electrode 504 on the fixed part 505 side, respectively. After the electrostrictive plates 12 and 13 are polarized,
It is bonded to the shim plate 11. In FIG. 1, the drive circuit includes an unbalanced voltage application drive input circuit 2, a polarity switching 3, a constant current circuit 4, a constant voltage circuit 5, a control circuit 6 for polarity switching, and a logic voltage power supply 7. The drive input circuit 2 includes a Zener diode 21,
22, a constant voltage Vc in the same direction as the polarization direction is applied to one electrostrictive plate of the bimorph element 1, and a constant voltage Vc in the opposite direction to the polarization direction is applied to the other electrostrictive plate. A voltage lower than the operating voltage of the diode 21 or 22 is applied. The polarity switching circuit 3 is constructed by connecting Darlington-connected transistor circuits 31 to 34 in a bridge configuration, and depending on the output signal of the control circuit 6,
Switches the polarity of the output voltage. The constant current circuit 4 is made up of a CRD 41. The constant voltage circuit 5 uses a pnp transistor.
It is an RCC type step-up constant voltage circuit, and its internal configuration is omitted, but the power supply voltage Ec (5V
level) and outputs a constant voltage Vc. The constant voltage Vc is a value obtained by adding the operating voltage V ZDO of the internal Zener diode ZDo to the power supply voltage Ec, that is, [Ec + V ZDO ]. The control circuit 6 switches the Darlington transistor circuit 3 of the polarity switching circuit 3 by switching the switch 61.
1 to 34, and when switch 61 is in the state shown in the figure, transistor circuits 31 and 32 are cut off, and transistor circuit 3
3 and 34 are electrically connected. When the switch 61 is reversed, the transistor circuits 33 and 34 are cut off, and the transistor circuits 31 and 32 are turned off.
conducts. Next, the operation of the piezoelectric actuator configured in this way will be briefly explained. Now, if the switch 61 is in the state shown in the figure,
Since the transistor circuits 31 and 32 are cut off and the transistor circuits 33 and 34 are made conductive, the terminal A of the drive input circuit 2 is at the ground level and the terminal B is at the potential Vc. Therefore, the output voltage Vc of the constant voltage circuit 5 is applied to the electrostrictive plate 13 in the polarization direction, Vc-V ZD1 is applied to the electrostrictive plate 12 in the reverse polarization direction, and the tip of the bimorph element 1 Displaced downward. When the switch 61 is set to the ground level, the transistor circuits 33 and 34 are cut off and the transistor circuits 31 and 32 are made conductive, so that the terminal B of the drive input circuit 2 is set to the ground level and the terminal A is set to the potential.
Becomes Vc. Therefore, the output voltage Vc of the constant voltage circuit 5 is applied to the electrostrictive plate 12 in the polarization direction, Vc-V ZD2 is applied to the electrostrictive plate 13 in the reverse polarization direction, and the tip of the bimorph element 1 Displace upward. An electrostrictive plate depolarizes when a polarization deterioration voltage Vd or more is applied in the reverse polarization direction, but according to this drive circuit, the polarization deterioration voltage Vd is reduced in the polarization direction without applying a polarization deterioration voltage Vd or more in the reverse polarization direction. Because it is possible to apply a higher voltage (Vc) than
By switching the switch 61, the bimorph element 1 can be caused to vibrate greatly without deteriorating. Furthermore, according to this drive circuit, even if the applied voltage in the reverse polarization direction is greater than the polarization deterioration voltage Vd and causes depolarization in the electrostrictive plate, as long as the voltage is at a level that does not cause polarization breakdown, the polarization The depolarization is restored by applying a high voltage Vc in the direction, making it possible to vibrate even more strongly. Figure 6 shows the temperature at 70°C using the drive circuit shown in Figure 1.
FIG. 3 is a diagram showing the displacement characteristics of a bimorph element when a continuous operation test at 2 Hz is performed at a temperature of . Characteristics A and B relate to the bimorph element according to the present invention; characteristic A uses 36% Ni-Fe for the shim plate, and characteristic B uses 45% Ni-Fe. Further, characteristics C and D relate to a conventional bimorph element using brass for the shim plate. Further, Table 2 shows the rupture characteristics of the bimorph element.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のバイモルフ素子
によれば、シム板をNi含有量30〜55重量%のNi
−Fe系合金でありかつ熱膨張係数が10-7〜10-5
℃の金属とし、シム板と電歪板とが106〜1013Ω・
cmの体積固有抵抗を持ちかつカーボン粒子の混入
した樹脂からなる接着剤で接着したので、高温下
においても熱膨張による内部応力が殆ど発生せ
ず、大振幅の動作をさせても電歪板が破断し難く
なる。また、接着性および導電性も所望の性能が
確保できるという効果を有する。 そのため、バイモルフ素子の信頼性を大幅に向
上させることができる。
As explained above, according to the bimorph element of the present invention, the shim plate is made of Ni containing 30 to 55% by weight of Ni.
−It is a Fe-based alloy and has a coefficient of thermal expansion of 10 -7 to 10 -5 /
℃ metal, and the shim plate and electrostrictive plate have a resistance of 10 6 to 10 13 Ω.
Since it is bonded with an adhesive made of resin that has a volume resistivity of cm and contains carbon particles, almost no internal stress is generated due to thermal expansion even at high temperatures, and the electrostrictive plate remains stable even when operated with a large amplitude. It becomes difficult to break. Further, it has the effect that desired performance can be ensured in terms of adhesiveness and conductivity. Therefore, the reliability of the bimorph element can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるバイモルフ素
子を用いた圧電アクチユエータのブロツク図、第
2図は環境温度に基づいて黄銅板と電歪板との接
着体に発生する応力を確認するための断面図、第
3図はNi−Fe系合金におけるNi含有量と熱膨張
係数との関係を示した特性図、第4図は環境温度
に基づいてNi−Fe板と電歪板との接着体に発生
する応力を確認するための断面図、第5図は第1
図のバイモルフ素子の構成を示した斜視図、第6
図は第1図に示す駆動回路を用いて70℃の温度下
で2Hzの連続動作試験を行つた際の各種バイモル
フ素子の変位量特性図、第7図はNi−Co−Fe系
合金の組成比と熱膨張係数αの関係を示した特性
図、第8図Aは同図Bに示すバイモルフ素子の変
位・発生力の関係を示す特性図、同図Bは先端部
に磁石を配置したバイモルフ素子を示す断面図、
第9図および第10図はいずれも第1図のバイモ
ルフ素子の部分拡大断面図である。 1……バイモルフ素子、11……シム板、1
2,13……電歪板、501〜504……電極。
Fig. 1 is a block diagram of a piezoelectric actuator using a bimorph element, which is an embodiment of the present invention, and Fig. 2 is a diagram for confirming the stress generated in the bonded body of the brass plate and the electrostrictive plate based on the environmental temperature. Figure 3 is a characteristic diagram showing the relationship between Ni content and thermal expansion coefficient in Ni-Fe alloys, Figure 4 shows the relationship between Ni-Fe plate and electrostrictive plate based on environmental temperature. A cross-sectional view to confirm the stress generated in the body, Figure 5 is the first
A perspective view showing the structure of the bimorph device shown in Fig. 6.
The figure shows the displacement characteristics of various bimorph elements when a 2Hz continuous operation test was performed at a temperature of 70°C using the drive circuit shown in Figure 1. Figure 7 shows the composition of the Ni-Co-Fe alloy. Figure 8A is a characteristic diagram showing the relationship between the ratio and thermal expansion coefficient α. Figure 8A is a characteristic diagram showing the relationship between displacement and generated force of the bimorph element shown in Figure B. Figure 8B is a characteristic diagram showing the relationship between the displacement and generated force of the bimorph element shown in Figure B. A cross-sectional view showing the element,
9 and 10 are both partially enlarged sectional views of the bimorph element shown in FIG. 1. 1...Bimorph element, 11...Shim plate, 1
2,13... Electrostrictive plate, 501-504... Electrode.

Claims (1)

【特許請求の範囲】 1 中央電極を兼ねるシム板の両面に電歪板を接
着し、電歪板の外側面に電極を施したバイモルフ
素子において、 前記シム板をNi含有量30〜55重量%のNi−Fe
系合金でありかつ熱膨張係数が10-7〜10-5/℃の
金属とし、シム板と電歪板とが106〜1013Ω・cmの
体積固有抵抗を持ちかつカーボン粒子の混入した
樹脂からなる接着剤で接着されていることを特徴
とするバイモルフ素子。
[Claims] 1. In a bimorph element in which electrostrictive plates are bonded to both sides of a shim plate that also serves as a central electrode, and electrodes are provided on the outer surface of the electrostrictive plate, the shim plate has a Ni content of 30 to 55% by weight. of Ni−Fe
The shim plate and the electrostrictive plate have a volume resistivity of 10 6 to 10 13 Ωcm and are mixed with carbon particles. A bimorph element characterized by being bonded with an adhesive made of resin.
JP60018508A 1985-02-04 1985-02-04 Bimorph element Granted JPS61177785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60018508A JPS61177785A (en) 1985-02-04 1985-02-04 Bimorph element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60018508A JPS61177785A (en) 1985-02-04 1985-02-04 Bimorph element

Publications (2)

Publication Number Publication Date
JPS61177785A JPS61177785A (en) 1986-08-09
JPH0317231B2 true JPH0317231B2 (en) 1991-03-07

Family

ID=11973564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60018508A Granted JPS61177785A (en) 1985-02-04 1985-02-04 Bimorph element

Country Status (1)

Country Link
JP (1) JPS61177785A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197386A (en) * 1987-02-12 1988-08-16 Murata Mfg Co Ltd Piezoelectric actuator
US20030178917A1 (en) * 2000-04-04 2003-09-25 Herbert Hofmann Piezoceramic bending converter
JP6720665B2 (en) * 2016-04-19 2020-07-08 株式会社リコー Ferroelectric element and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048259B2 (en) * 1977-11-18 1985-10-26 新東工業株式会社 mold making machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048259U (en) * 1983-09-10 1985-04-04 株式会社トーキン displacement element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048259B2 (en) * 1977-11-18 1985-10-26 新東工業株式会社 mold making machine

Also Published As

Publication number Publication date
JPS61177785A (en) 1986-08-09

Similar Documents

Publication Publication Date Title
JP4035156B2 (en) Ultrasonic actuator
US4697118A (en) Piezoelectric switch
EP1796256A1 (en) Piezoelectric device and piezoelectric switch employing same
US6756551B2 (en) Piezoelectrically actuated liquid metal switch
JPH0317231B2 (en)
CA1293758C (en) Piezoelectric relay
US11571712B2 (en) Vibration panel and electronic apparatus
US6927529B2 (en) Solid slug longitudinal piezoelectric latching relay
JPS5932182A (en) Bimorph piezoelectric element
JPH0737325Y2 (en) Piezoelectric actuator
JP2893739B2 (en) Electrostrictive effect element
JPH08251954A (en) Ultrasonic oscillator
JP3326735B2 (en) Piezo actuator
JP2002319717A (en) Piezoelectric actuator
JPH0314055Y2 (en)
JP2008515213A (en) Solid actuators, especially piezoelectric ceramic actuators
JP3189109B2 (en) Electrode connection structure of piezoelectric transformer
JPS6310603Y2 (en)
JPS6032A (en) Piezoelectric relay
JP3214260B2 (en) Resonant drive type piezoelectric actuator
JPH10242540A (en) Piezoelectric transformer
JPH0132755Y2 (en)
JP2001068750A (en) Laminated piezoelectric actuator
JPH07142781A (en) Piezoelectric bimorph device
JPS63218115A (en) Piezo-electric relay