JPH0132755Y2 - - Google Patents

Info

Publication number
JPH0132755Y2
JPH0132755Y2 JP3439983U JP3439983U JPH0132755Y2 JP H0132755 Y2 JPH0132755 Y2 JP H0132755Y2 JP 3439983 U JP3439983 U JP 3439983U JP 3439983 U JP3439983 U JP 3439983U JP H0132755 Y2 JPH0132755 Y2 JP H0132755Y2
Authority
JP
Japan
Prior art keywords
piezoelectric
displacement
bimorph element
electrode
bimorph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3439983U
Other languages
Japanese (ja)
Other versions
JPS59140456U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3439983U priority Critical patent/JPS59140456U/en
Publication of JPS59140456U publication Critical patent/JPS59140456U/en
Application granted granted Critical
Publication of JPH0132755Y2 publication Critical patent/JPH0132755Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Description

【考案の詳細な説明】 本考案は圧電バイモルフ素子の駆動時に経時的
な変形を防止するようにした圧電バイモルフ素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a piezoelectric bimorph element that prevents deformation over time when the piezoelectric bimorph element is driven.

一般に圧電型変位素子のうちのバイモルフ素子
は、横効果の変位を用いる素子であり2枚の素子
の伸びと縮みの変位を歪み変位として動作させる
ものである。そのたわみ量は印加電圧に比較して
大きくとれるため、種々の装置に応用されてい
る。
In general, a bimorph element among piezoelectric displacement elements is an element that uses transverse effect displacement, and operates by using the elongation and contraction displacements of two elements as strain displacements. Since the amount of deflection can be large compared to the applied voltage, it is applied to various devices.

従来、この種の圧電型変位素子の共通の欠点は
変位のヒステリ質が大きいこと及び変位量の経時
的不安定にある。すなわち巨大変位を得るために
材料に要求される特性値として圧電d定数の大き
い事が要求されるが、一般にジルコン・チタン酸
鉛系で圧電d定数の大きな圧電磁器は、キユリー
点が低く自発分極の不安定性が大きいためであ
る。また、一定条件の下で電圧を印加した状態を
保持する圧電型バイモルフはそのたわみ量が徐々
に増大していくことがある。更に温度変化による
圧電定数の変化及び電源電圧の経時的変動によつ
ても圧電型バイモルフ素子の変位が変化してしま
う原因となつている。従つて、長時間に亘り一定
の変位量を保つ必要のあるバイモルフ素子におい
ては変位量のずれを検知しこれをフイードバツク
して印加電圧を制御することにより変位量のずれ
を修正するなどの複雑な制御系が不可欠となつて
いる。
Conventionally, a common drawback of this type of piezoelectric displacement element is that the displacement is highly hysterical and the amount of displacement is unstable over time. In other words, in order to obtain huge displacement, a material must have a large piezoelectric d-constant as a characteristic value, but piezoelectric ceramics based on zircon/lead titanate with a large piezoelectric d-constant generally have a low Curie point and spontaneous polarization. This is because the instability of Furthermore, in a piezoelectric bimorph that maintains a voltage applied state under certain conditions, the amount of deflection may gradually increase. Furthermore, changes in the piezoelectric constant due to temperature changes and temporal fluctuations in the power supply voltage also cause changes in the displacement of the piezoelectric bimorph element. Therefore, in bimorph devices that need to maintain a constant amount of displacement over a long period of time, complicated methods such as detecting deviations in displacement, feeding back the detected deviations, and controlling applied voltage to correct deviations in displacement are required. Control systems have become essential.

本考案はかかる点に鑑み、圧電バイモルフ素子
の経時的変位量を常時修正するため、バイモルフ
駆動電極を分割すると共に夫々の電極から接点を
突設して設定値以上のたわみ量を生じた時刻接点
の離間によつてバイモルフの駆動を停止するよう
に構成することにより、特別な印加電圧制御又は
印加電圧の経時変位による制御を不要ならしめた
圧電型バイモルフ素子を提案することを主たる目
的とする。
In view of this, in order to constantly correct the amount of displacement over time of the piezoelectric bimorph element, the present invention divides the bimorph drive electrode and provides a contact point protruding from each electrode to create a time contact that causes a deflection amount exceeding a set value. The main purpose of this invention is to propose a piezoelectric bimorph element that eliminates the need for special applied voltage control or control based on the temporal displacement of applied voltage by configuring the drive of the bimorph to be stopped depending on the distance between .

以下本考案の一実施例について図面を参照しな
がら詳細に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本考案バイモルフ素子の一例を示す斜
視図である。1及び2は圧電バイモルフを示し、
これは中間に弾性金属板3を介在せしめたもので
ある。尚、バイモルフ素子1,2の分極方向は第
1図に示す如く、厚み方向に設定されている。そ
してバイモルフ素子1にはほぼ中間位置を分割す
る夫々第1及び第2の電極1a,1bが設けられ
ている。尚、バイモルフ素子2の電極は全面に設
けたものである。そしてバイモルフ素子1の電極
1a及びバイモルフ素子2の電極を共通接続する
と共に、弾性金属板3よりのリードとの間に電源
を印加するようにする。更に第1の電極1a及び
第2の電極1bには、一端を夫々電極1a,1b
に固定し遊端を相対向する導体に接触するように
形成した第1の導体4a及び第2の導体4bが設
けられている。第1及び第2の導体4a,4bは
燐青銅などの弾性導体を用いると好適である。こ
のように構成したバイモルフ素子は、第2図に示
す如く、圧電磁器板1側にマイナスの電圧を、弾
性金属板3側にプラスの電圧を夫々印加すること
により、圧電磁器板1には伸びの応力が発生する
と共に、圧電磁器板2には収縮の応力が発生し、
従つて中央に位置する弾性金属板3を中立線とす
るたわみ変形を生ずる。尚、その変形方向は矢印
Xに示す方向となる。この変位は印加電圧に比例
して増加減少する。この場合、印加電圧を増大せ
しめた場合バイモルフ素子の変位は徐々に増大す
るが、一定の変位に達したとき、第2図に示す如
く、第1及び第2の導体4a,4bの接触が絶た
れるため、第2の電極1bに位置する圧電磁器板
1の圧電変化はなくなるため電極1bにおける電
荷は自然放電を開始して電極1bと内部電極の間
の電圧が徐々に減少し、これまで発生していた伸
びの応力が緩和される。そのためバイモルフ素子
のたわみ量は徐々に復帰し再び第1及び第2の導
体4a,4bが接触する。このため再度電極1b
に電荷が蓄積されて圧電変位を生じ、よつて本案
バイモルフ素子は一定の変位値の範囲内でたわみ
量を限定することが可能となる。従つて、印加さ
れる電圧の変動を生じた場合であつても、その変
位量は常に一定に保持される。またバイモルフ素
子自体の経時的変位も第1及び第2の導体4a,
4bの接触離間によつて一定のたわみ量を保持す
ることが可能となる。
FIG. 1 is a perspective view showing an example of the bimorph device of the present invention. 1 and 2 indicate piezoelectric bimorphs,
This has an elastic metal plate 3 interposed in the middle. Incidentally, the polarization direction of the bimorph elements 1 and 2 is set in the thickness direction, as shown in FIG. The bimorph element 1 is provided with first and second electrodes 1a and 1b, respectively, which divide approximately the middle position. Note that the electrodes of the bimorph element 2 are provided over the entire surface. The electrodes 1a of the bimorph element 1 and the electrodes of the bimorph element 2 are connected in common, and power is applied between them and the leads from the elastic metal plate 3. Further, one end of the first electrode 1a and the second electrode 1b is connected to the electrode 1a, 1b, respectively.
A first conductor 4a and a second conductor 4b are provided, which are fixed to each other and whose free ends are in contact with opposing conductors. It is preferable to use elastic conductors such as phosphor bronze for the first and second conductors 4a and 4b. As shown in FIG. 2, the bimorph element configured in this way is made to elongate on the piezoelectric ceramic plate 1 by applying a negative voltage to the piezoelectric ceramic plate 1 side and a positive voltage to the elastic metal plate 3 side. At the same time, a shrinkage stress is generated in the piezoelectric ceramic plate 2,
Therefore, a bending deformation occurs with the elastic metal plate 3 located at the center serving as a neutral line. Note that the direction of the deformation is the direction shown by arrow X. This displacement increases or decreases in proportion to the applied voltage. In this case, when the applied voltage is increased, the displacement of the bimorph element gradually increases, but when a certain displacement is reached, the contact between the first and second conductors 4a and 4b is broken, as shown in FIG. As a result, the piezoelectric change in the piezoelectric ceramic plate 1 located at the second electrode 1b disappears, and the electric charge at the electrode 1b starts spontaneous discharge, and the voltage between the electrode 1b and the internal electrode gradually decreases, which The stress caused by elongation is alleviated. Therefore, the amount of deflection of the bimorph element gradually returns, and the first and second conductors 4a and 4b come into contact again. For this reason, electrode 1b is again
Electric charge is accumulated in the piezoelectric layer to generate piezoelectric displacement, and thus the bimorph element of the present invention can limit the amount of deflection within a certain displacement value range. Therefore, even if the applied voltage varies, the amount of displacement is always kept constant. Moreover, the displacement of the bimorph element itself over time is also controlled by the first and second conductors 4a,
It becomes possible to maintain a constant amount of deflection depending on the contact distance of 4b.

第3図は本考案の他の例を示す図である。本例
においては第1の圧電磁器板9の電極を多数に分
割すると共にそれぞれに接点9a,9b,9c,
9dを設けた構造としたものである。その他の構
造は第1図例とほぼ同様である。そのため所定の
電圧印加することにより一定の圧電変位を生じ、
よつて分接点9a,9b,9c,9dが離間して
一定の変位を保持することとなる。
FIG. 3 is a diagram showing another example of the present invention. In this example, the electrodes of the first piezoelectric ceramic plate 9 are divided into many parts, and each has contacts 9a, 9b, 9c,
9d is provided. The other structure is almost the same as the example shown in FIG. Therefore, by applying a predetermined voltage, a certain piezoelectric displacement is generated,
Therefore, the contact points 9a, 9b, 9c, and 9d are spaced apart and maintain a constant displacement.

以上述べた如く本考案によれば、厚み方向に分
極した第1及び第2の圧電磁器より成る圧電型バ
イモルフ素子において、上記第1の圧電磁器の電
極を複数に分割し、該複数の電極を夫々接点で電
気的に結合すると共に、上記第1の圧電磁器に長
さ方向に延び上記第2の圧電磁器に長さ方向に縮
みを夫々生ずる方向の電圧を印加してたわみ変形
を生ぜしめるようにしたので、圧電バイモルフ素
子の共通の欠点である経時的ヒステリシスの改善
が図られると共に、電源電圧の変動があつた場合
であつても本案バイモルフ素子の設定した変位量
を正確に保持することができる。従つて長時間に
亘つて一定の変位量を保つ必要のある装置に本考
案を適用した場合には極めて好適である。
As described above, according to the present invention, in a piezoelectric bimorph element consisting of first and second piezoelectric ceramics polarized in the thickness direction, the electrode of the first piezoelectric ceramic is divided into a plurality of parts, and the plurality of electrodes are divided into a plurality of parts. The piezoelectric ceramics are electrically connected to each other through contacts, and a voltage is applied in a direction that extends in the length direction to the first piezoelectric ceramic and causes the second piezoelectric ceramic to contract in the length direction, respectively, so as to cause flexural deformation. As a result, the temporal hysteresis, which is a common drawback of piezoelectric bimorph elements, can be improved, and the bimorph element of the present invention can accurately maintain the set displacement amount even when the power supply voltage fluctuates. can. Therefore, the present invention is extremely suitable when applied to a device that needs to maintain a constant amount of displacement over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一例を示す圧電バイモルフ素
子の斜視図である。第2図は本案バイモルフ素子
の動作説明に供する図、第3図は本考案の他の例
を示す図である。 1……第1の圧電磁器板、2……第2の圧電磁
器板、3……弾性金属板、4a,4b……電気接
点。
FIG. 1 is a perspective view of a piezoelectric bimorph element showing an example of the present invention. FIG. 2 is a diagram for explaining the operation of the bimorph device according to the present invention, and FIG. 3 is a diagram showing another example of the present invention. DESCRIPTION OF SYMBOLS 1... First piezoelectric ceramic plate, 2... Second piezoelectric ceramic plate, 3... Elastic metal plate, 4a, 4b... Electrical contacts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 厚み方向に分極した第1及び第2の圧電磁器よ
り成る圧電バイモルフ素子において、上記第1の
圧電磁器の電極を複数に分割し、該複数の電極を
夫々接点で電気的に結合すると共に、上記第1の
圧電磁器に長さ方向に縮みを夫々生ずる方向の電
圧を印加してたわみ変形を生ぜしめるようにした
ことを特徴とする圧電バイモルフ素子。
In a piezoelectric bimorph element made of first and second piezoelectric ceramics polarized in the thickness direction, the electrode of the first piezoelectric ceramic is divided into a plurality of parts, and the plurality of electrodes are electrically coupled through contacts, and the 1. A piezoelectric bimorph element, characterized in that a voltage is applied to a first piezoelectric ceramic in a direction that causes contraction in the length direction, thereby causing bending deformation.
JP3439983U 1983-03-10 1983-03-10 piezoelectric bimorph element Granted JPS59140456U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3439983U JPS59140456U (en) 1983-03-10 1983-03-10 piezoelectric bimorph element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3439983U JPS59140456U (en) 1983-03-10 1983-03-10 piezoelectric bimorph element

Publications (2)

Publication Number Publication Date
JPS59140456U JPS59140456U (en) 1984-09-19
JPH0132755Y2 true JPH0132755Y2 (en) 1989-10-05

Family

ID=30165165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3439983U Granted JPS59140456U (en) 1983-03-10 1983-03-10 piezoelectric bimorph element

Country Status (1)

Country Link
JP (1) JPS59140456U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6586686B2 (en) * 2014-07-30 2019-10-09 国立大学法人福井大学 Control method of polymer actuator, polymer actuator, and micro fluid delivery device using the polymer actuator

Also Published As

Publication number Publication date
JPS59140456U (en) 1984-09-19

Similar Documents

Publication Publication Date Title
US3585416A (en) Photopiezoelectric transducer
US4885498A (en) Stacked type piezoelectric actuator
US4752712A (en) Piezoelectric laminate stack
US8093784B2 (en) Piezoelectric power generating element, and method of generating electric power using the piezoelectric power generating element
US5266863A (en) Piezoelectric actuator
EP0067883A1 (en) Piezo-electric relay
US5036241A (en) Piezoelectric laminate and method of manufacture
US4916349A (en) Latching piezoelectric relay
EP0509488B1 (en) Method for protecting the piezoelectric element of a piezoelectric actuator against moisture
US4492892A (en) Piezoelectric resonator device supported by anisotropic rubber conductor
JPH0132755Y2 (en)
US2916578A (en) Electrostrictive capacitive relay having tension mounted actuator
CA1293758C (en) Piezoelectric relay
EP0650642A1 (en) Ceramic deflection device
US2867701A (en) Device for providing reproducible mechanical motions
JP2645832B2 (en) Vertical effect type monomorph element and driving method thereof
US3659127A (en) Piezoelectric ceramic transformer with specific width to length ratios
JPH0223035B2 (en)
JPS61150287A (en) Piezoelectric displacement device
JPH0320910B2 (en)
JP2001068751A (en) Piezoelectric actuator
US2851541A (en) Electromechanical transducer
JPH0244531Y2 (en)
JPH0132754Y2 (en)
JPH0739252Y2 (en) Piezoelectric actuator