JPS61177785A - Bimorph element - Google Patents

Bimorph element

Info

Publication number
JPS61177785A
JPS61177785A JP60018508A JP1850885A JPS61177785A JP S61177785 A JPS61177785 A JP S61177785A JP 60018508 A JP60018508 A JP 60018508A JP 1850885 A JP1850885 A JP 1850885A JP S61177785 A JPS61177785 A JP S61177785A
Authority
JP
Japan
Prior art keywords
plate
shim plate
electrostrictive
bimorph element
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60018508A
Other languages
Japanese (ja)
Other versions
JPH0317231B2 (en
Inventor
Akira Tomono
明 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60018508A priority Critical patent/JPS61177785A/en
Publication of JPS61177785A publication Critical patent/JPS61177785A/en
Publication of JPH0317231B2 publication Critical patent/JPH0317231B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end

Abstract

PURPOSE:To generate little internal stress by thermal expansion even under high temperatures, and to make an electrostriction plate difficult to break even under large displacements, by a method wherein the coefficient of thermal expansion of a shim plate is set at 10<-7>-10<-5>/ deg.C which is approximate to that of the electrostriction plate. CONSTITUTION:The shim plate is made of a metal whose coefficient of thermal expansion is 10<-7>-10<-5>/ deg.C. For example, the title element is produced by sandwiching a shim plate 11 made of 36% Ni-Fe with electrostriction plates 12, 13 made of PZT, and their directions are of the same as shown by arrows A, B. Besides, the shim plate 11 serves as the central electrode. Both surfaces of the electrostriction plates 12, 13 are provided with electrodes 501-504 made of Au, Ag, Ni, etc. by baking, respectively. The electrodes 502 and 503 on the shim plate 11 side are not applied to the end on the fixed part 505 side. leads 507-509 are connected to the electrode 501, shim plate 11, and electrode 504, respectively, on the fixed part 505 side. The plates 12, 13 are adhered to the plate 11 after polarization. Since the coefficient of thermal expansion of the shim plate is approximate to that of the electrostriction plate, the internal stress due to thermal expansion hardly generates even under high temperatures.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、少なくとも一対のセラミック電歪板を、中央
電極を兼ねるシム板を介して接着してなるバイモルフ素
子に関するものであり、特に、大振幅動作の圧電アクチ
ュエータに適するバイモルフ素子に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a bimorph element formed by bonding at least a pair of ceramic electrostrictive plates via a shim plate that also serves as a center electrode, and particularly relates to a bimorph element formed by bonding at least a pair of ceramic electrostrictive plates via a shim plate that also serves as a center electrode. The present invention relates to a bimorph element suitable for an amplitude-operated piezoelectric actuator.

〔従来の技術〕[Conventional technology]

バイモルフ素子は、電圧の印加によって高速で動作し、
その消費電力も小さい。このため、駆動部にバイモルフ
素子を用いたアクチュエータは、電磁石に代わるアクチ
ュエータとして、小型、低電力化が望まれる通信端末機
器を中心に注目されている。
Bimorph devices operate at high speed by applying voltage.
Its power consumption is also low. For this reason, actuators using bimorph elements in their driving parts are attracting attention as actuators that can replace electromagnets, especially in communication terminal equipment that is desired to be smaller and lower in power consumption.

しかし、従来のこの種の圧電アクチュエータは、変位量
および発生力が小さいため、その適用分野は限られてい
た。バイモルフ素子を大きく且つ強い力で動作させるた
めには、分極の劣化を防止しつつ高電圧を印加できる駆
動回路と、大振幅動作に適した素子構造が必要である。
However, this type of conventional piezoelectric actuator has a small amount of displacement and small generated force, so its field of application is limited. In order to operate a bimorph element with large force and force, a drive circuit that can apply a high voltage while preventing deterioration of polarization and an element structure suitable for large-amplitude operation are required.

前者については、本願発明者の発明に係る特願昭59−
43881 r電歪振動装置」に記載された不平衡電圧
印加極性切替回路等があり、それ以前の2〜3倍の変位
量および発生力を得ることができるようになった。
Regarding the former, the patent application filed in 1982- related to the invention of the present inventor
There is an unbalanced voltage application polarity switching circuit described in ``Electrostrictive Vibrator 43881 r Electrostrictive Vibrator'', and it has become possible to obtain two to three times the amount of displacement and generated force than before.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、高温下においてこのような大振幅動作を行なわ
せると、従来のバイモルフ素子では電歪板が破断すると
いう問題が新たに発生するということが明らかになった
However, it has become clear that when such a large-amplitude operation is performed at high temperatures, a new problem arises in the conventional bimorph element: the electrostrictive plate breaks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のバイモルフ素子は、上記問題点に鑑みてなされ
たものであり、シム板の熱膨張係数を101〜10−’
/ ’Cの金属としたものである。
The bimorph element of the present invention was made in view of the above problems, and the thermal expansion coefficient of the shim plate is 101 to 10-'.
/ 'C metal.

〔作用〕[Effect]

シム板の熱膨張係数が電歪板の熱膨張係数に近似するの
で、高温下においても熱膨張による内部応力が殆ど発生
せず、そのために、大きく変位させても電歪板が破断し
にくくなる。
Since the coefficient of thermal expansion of the shim plate is close to that of the electrostrictive plate, almost no internal stress is generated due to thermal expansion even at high temperatures, and therefore the electrostrictive plate is difficult to break even if it is subjected to large displacements. .

〔実施例〕〔Example〕

以下、実施例と共に本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail along with examples.

第1表は、各種材質の線膨張係数および磁性に関する特
性を示した表である。
Table 1 is a table showing the linear expansion coefficient and magnetic properties of various materials.

第1表 本願発明者は、バイモルフ素子を高温下において大振幅
動作をさせると電歪板が破断するという現象の原因が、
電歪板(PZT)とシム板の熱膨張係数の差にあると推
測した。
Table 1 The inventor of the present application has determined that the cause of the phenomenon in which the electrostrictive plate breaks when a bimorph element is operated with large amplitude at high temperatures is as follows.
It is assumed that this is due to the difference in thermal expansion coefficient between the electrostrictive plate (PZT) and the shim plate.

そこで、従来のバイモルフ素子のシム板には、そのバネ
性の良さから主として黄銅、洋白またはリン青銅等が用
いられていることから、以下に示す実験を行った。
Therefore, since brass, nickel silver, phosphor bronze, etc. are mainly used for the shim plates of conventional bimorph elements due to their good spring properties, the following experiment was conducted.

ジルコン酸チタン酸鉛(PZT)から成る電歪板201
と黄銅板202とを100℃硬化型接着剤で接着した後
、室温に戻し、て形状の変化を観測した。
Electrostrictive plate 201 made of lead zirconate titanate (PZT)
and brass plate 202 were bonded together using a 100° C. curing adhesive, the temperature was returned to room temperature, and changes in shape were observed.

なお、電歪板201および黄銅板202の形状(長さX
幅×厚さ)はそれぞれ、45X12X0.15mn+お
よび45 X 12 X O,05mmである。
Note that the shape of the electrostrictive plate 201 and the brass plate 202 (length
Width x Thickness) are 45X12X0.15mm+ and 45X12XO,05mm, respectively.

その結果2枚の板は、第2図の断面図に示すよ。The resulting two plates are shown in cross-section in FIG.

うに、電歪板201側が内側になるように大きく湾曲し
た。これを平板状に戻すためには、一端を固定した状態
で、先端にF=15g程度の力を加えることが必要であ
った。2枚の板を室温で硬化させ高温に放置した場合も
同様の結果が得られた。ただし、この場合は黄銅板側が
内側になるように湾曲する。
In other words, it was largely curved so that the electrostrictive plate 201 side was inward. In order to return this to a flat plate shape, it was necessary to apply a force of about F=15 g to the tip with one end fixed. Similar results were obtained when two plates were cured at room temperature and left at elevated temperatures. However, in this case, it is curved so that the brass plate side is on the inside.

バイモルフ素子は、シム板を介して2枚の電歪板がサン
ドインチ状に接着されているため、室温で接着して製造
した後、高温に放置しても湾曲することはないが、上記
の実験結果からシム板と電歪板との間には、先端荷重に
して15g程度に相当する内部応力が発生していること
が判った。このため、高温下での動作は、電圧の印加に
よる歪の他にシム板の熱膨張による歪が加わることが明
らかとなった。
Bimorph elements are made of two electrostrictive plates glued together in a sandwich shape via a shim plate, so they will not bend even if left at high temperatures after being glued together at room temperature. The experimental results revealed that an internal stress equivalent to a tip load of approximately 15 g was generated between the shim plate and the electrostrictive plate. Therefore, it has become clear that when operating at high temperatures, in addition to the strain caused by the application of voltage, strain is caused by the thermal expansion of the shim plate.

PZTをはじめとしてチタン酸鉛、ニオブ酸鉛、チタン
酸バリウム、ソジウムプタジウムナイトベート等、圧電
セラミックの熱膨張係数を測定すると第1表に示すよう
に、15〜50xlO−’/ ℃程度である。そこで、
本願発明者はシム板としてNi−Fe系またはNi−F
e−Co系合金に着目した。
When measuring the thermal expansion coefficient of piezoelectric ceramics such as PZT, lead titanate, lead niobate, barium titanate, and sodium ptadium nitebate, it is approximately 15 to 50xlO-'/°C, as shown in Table 1. be. Therefore,
The inventor of the present application has developed Ni-Fe system or Ni-F as a shim plate.
We focused on e-Co alloys.

第3図は、Ni−Fe合金の組成と熱膨張係数αとの関
係を示したものである。同図から明らかなように、Ni
−Fe合金のNiの含有量が30〜55重量%になると
αが100 Xl0−’/ ℃以下になり、電歪板に近
くなる。代表例として、aが電歪板と同等かやや小さい
36χNi−Feおよびαが電歪板よりやや大きい45
χNi−Feを用いて、前述と同様の実験を行った。
FIG. 3 shows the relationship between the composition of the Ni--Fe alloy and the coefficient of thermal expansion α. As is clear from the figure, Ni
When the Ni content of the -Fe alloy is 30 to 55% by weight, α becomes 100 Xl0-'/°C or less, making it close to an electrostrictive plate. Typical examples include 36χNi-Fe where a is the same as or slightly smaller than the electrostrictive plate, and 45 where α is slightly larger than the electrostrictive plate.
Experiments similar to those described above were conducted using χNi-Fe.

第4図は、36χNi−Fe板40H45X12X0.
05mm)と前述の実験に用いたものと同じ電歪板20
1とを100℃硬化型接着剤で接着して、室温に戻した
場合の断面図である。同図から判るように、黄銅を用い
た場合のような変形はない。また、45XNi−Feを
用いた場合にはやや湾曲するが、その程度は黄銅の場合
に比して峯かに小さいことが判った。
FIG. 4 shows a 36χNi-Fe plate 40H45X12X0.
05 mm) and the same electrostrictive plate 20 used in the above experiment.
1 and 2 are bonded together with a 100° C. curing adhesive and the temperature is returned to room temperature. As can be seen from the figure, there is no deformation like when brass is used. In addition, it was found that when 45XNi-Fe was used, there was some curvature, but the degree of curvature was significantly smaller than in the case of brass.

第1図は、大振幅゛動作をさせることができる駆動回路
に、本発明の一実施例に係るバイモルフ素子を駆動子と
して用いた圧電アクチュエータを示すブロック図である
FIG. 1 is a block diagram showing a piezoelectric actuator in which a bimorph element according to an embodiment of the present invention is used as a driver in a drive circuit capable of large-amplitude operation.

バイモルフ素子1は、36χNi−Reから成るシム板
11を、PZTから成る電歪板12.13で挟んだもの
であり、分極方向は矢印A、Bで示すように同方向とな
っている。なお、シム板11は中央電極も兼ねている。
The bimorph element 1 has a shim plate 11 made of 36xNi-Re sandwiched between electrostrictive plates 12 and 13 made of PZT, and the polarization directions are the same as shown by arrows A and B. Note that the shim plate 11 also serves as a center electrode.

第5図は、このバイモルフ素子1の構成を更に詳しく示
した斜視図である。電歪板12.13の両面には、それ
ぞれAu、Ag、Niなどからなる電極501〜504
が焼付により形成されている。シム板11例の電極50
2および503は、固定部505側の端部には施されて
いない。リード線507〜509は、それぞれ固定部5
05側において電極501.シム板11゜電極504に
接続されている。電歪板12.13は分極シタ後、シム
板11に接着されている。
FIG. 5 is a perspective view showing the structure of this bimorph element 1 in more detail. Electrodes 501 to 504 made of Au, Ag, Ni, etc. are provided on both sides of the electrostrictive plates 12 and 13, respectively.
is formed by baking. Electrode 50 of 11 shim plates
2 and 503 are not provided at the end on the fixed portion 505 side. The lead wires 507 to 509 are connected to the fixed part 5, respectively.
On the 05 side, the electrode 501. The shim plate 11° is connected to the electrode 504. The electrostrictive plates 12 and 13 are bonded to the shim plate 11 after polarization.

第1図において、駆動回路は、不平衡電圧印加駆動入力
回路2.極性切替回路3.定電流回路4.定電圧回路5
.極性切替用の制御回路6および論理電圧電源7から構
成されている。
In FIG. 1, the drive circuit includes an unbalanced voltage application drive input circuit 2. Polarity switching circuit 3. Constant current circuit 4. Constant voltage circuit 5
.. It is composed of a control circuit 6 for polarity switching and a logic voltage power supply 7.

駆動入力回路2は、ツェナーダイオード21.22から
なり、バイモルフ素子1の一方の電歪板に分極方向と同
方向の定電圧Vcを印加し、他方の電歪板には、分極方
向と逆方向の電圧であって定電圧Vcからツェナーダイ
オード21もしくは22の動作電圧を減じた電圧を印加
する。
The drive input circuit 2 consists of Zener diodes 21 and 22, and applies a constant voltage Vc in the same direction as the polarization direction to one electrostrictive plate of the bimorph element 1, and applies a constant voltage Vc in the same direction as the polarization direction to the other electrostrictive plate. A voltage obtained by subtracting the operating voltage of the Zener diode 21 or 22 from the constant voltage Vc is applied.

極性切替回路3は、ダーリントン接続されたトランジス
タ回路31〜34をブリッジ形に接続したものであり、
制御回路6の出力信号に応じて、出力電圧の極性切替を
行なう。
The polarity switching circuit 3 is constructed by connecting Darlington-connected transistor circuits 31 to 34 in a bridge configuration.
The polarity of the output voltage is switched according to the output signal of the control circuit 6.

定電流回路4は、CRD41から成っている。The constant current circuit 4 is made up of a CRD 41.

定電圧回路5は、pnp  )ランジスタを用いたRC
C方式昇圧定電圧回路であり、その内部構成は省略する
が、論理電圧電源7の電源電圧Ec (5V程度)を昇
圧して、定電圧Vcを出力する。定電圧Vcは、電源電
圧Ecに、内部のツェナーダイオードZD。
The constant voltage circuit 5 is an RC circuit using a pnp (pnp) transistor.
This is a C-type step-up constant voltage circuit, and although its internal configuration is omitted, it boosts the power supply voltage Ec (approximately 5 V) of the logic voltage power supply 7 and outputs a constant voltage Vc. The constant voltage Vc is the power supply voltage Ec and an internal Zener diode ZD.

の動作電圧V2..を加算した値、すなわち(Ec+V
zoo )となる。
Operating voltage V2. .. The value obtained by adding , that is, (Ec+V
zoo).

制御回路6は、スイッチ61の切替により、極性切替回
路3のダーリントントランジスタ回路31〜34のオン
・オフ制御行なうものであり、スイ、チロ1が図の状態
にある時はトランジスタ回路31および32を遮断し、
トランジスタ回路33および34を導通ずる。スイッチ
61が反対に倒されると、逆に、トランジスタ回路33
および34を遮断し、トランジスタ回路31および32
が導通する。
The control circuit 6 performs on/off control of the Darlington transistor circuits 31 to 34 of the polarity switching circuit 3 by switching the switch 61, and when the switch 1 is in the state shown in the figure, the transistor circuits 31 and 32 are turned on and off. cut off,
Transistor circuits 33 and 34 are rendered conductive. When the switch 61 is turned in the opposite direction, the transistor circuit 33
and 34, and transistor circuits 31 and 32 are cut off.
conducts.

つぎに、このように構成された圧電アクチュエータの動
作を簡単に説明する。
Next, the operation of the piezoelectric actuator configured as described above will be briefly explained.

いま、スイッチ61が図に示す状態にあると、トランジ
スタ回路31および32が遮断され、トランジスタ回路
33および34が導通されるため、駆動入力回路2の端
子Aは接地レベルに、端子Bは電位Vcとなる。
Now, when the switch 61 is in the state shown in the figure, the transistor circuits 31 and 32 are cut off and the transistor circuits 33 and 34 are made conductive, so that the terminal A of the drive input circuit 2 is at the ground level and the terminal B is at the potential Vc. becomes.

したがって、電歪板13には分極方向に定電圧回路5の
出力電圧Vcが印加され、電歪板12には逆分極方向に
はvCVZ!+1が印加され、バイモルフ素子1の先端
は下方に変位する。
Therefore, the output voltage Vc of the constant voltage circuit 5 is applied to the electrostrictive plate 13 in the polarization direction, and vCVZ! is applied to the electrostrictive plate 12 in the reverse polarization direction. +1 is applied, and the tip of the bimorph element 1 is displaced downward.

スイッチ61を接地レベルにすると、トランジスタ回路
33および34が遮断され、トランジスタ回路31およ
び32が導通されるため、駆動入力回路2の端子Bが接
地レベルに、端子Aが電位Vcとなる。
When the switch 61 is set to the ground level, the transistor circuits 33 and 34 are cut off and the transistor circuits 31 and 32 are made conductive, so that the terminal B of the drive input circuit 2 is set to the ground level and the terminal A is set to the potential Vc.

したがって、電歪板12には分極方向に定電圧回路5の
出力電圧Vcが印加され、電歪板13には逆分極方向に
はVc−V2゜が印加され、バイモルフ素子1の先端は
上方に変位する。
Therefore, the output voltage Vc of the constant voltage circuit 5 is applied to the electrostrictive plate 12 in the polarization direction, Vc-V2° is applied to the electrostrictive plate 13 in the reverse polarization direction, and the tip of the bimorph element 1 is directed upward. Displace.

電歪板は、逆分極方向に分極劣化電圧Vd以上を印加す
ると減極するが、この駆動回路によると、逆分極方向に
分極劣化電圧Vd以上を印加することなく、分極方向に
分極劣化電圧Vd以上の高い電圧(Vc)を印加するこ
とができるため、スイッチ61を切り替えることにより
、バイモルフ素子1を劣化させることなく大きく振動さ
せることができる。また、この駆動回路によると、仮に
、逆分極方向の印加電圧が分極劣化電圧Vdよりも大き
く、電歪板に減極を生じさせる場合でも、分極破壊を生
じさせない程度の電圧であれば、分極方向に印加する高
電圧Vcによって減極が回復し、一層大きく振動させる
ことができる。
An electrostrictive plate depolarizes when a polarization deterioration voltage Vd or more is applied in the reverse polarization direction, but according to this drive circuit, the polarization deterioration voltage Vd is reduced in the polarization direction without applying a polarization deterioration voltage Vd or more in the reverse polarization direction. Since the above high voltage (Vc) can be applied, by switching the switch 61, the bimorph element 1 can be caused to vibrate greatly without deteriorating. Furthermore, according to this drive circuit, even if the applied voltage in the reverse polarization direction is greater than the polarization deterioration voltage Vd and causes depolarization in the electrostrictive plate, as long as the voltage is at a level that does not cause polarization breakdown, the polarization The depolarization is restored by applying a high voltage Vc in the direction, and it is possible to vibrate even more greatly.

第6図は、第1図に示す駆動回路を用いて70℃の温度
下で2Hzの連続動作試験を行った際のバイモルフ素子
の変位量特性を示す図である。特性A。
FIG. 6 is a diagram showing the displacement characteristics of the bimorph element when a 2 Hz continuous operation test was conducted at a temperature of 70° C. using the drive circuit shown in FIG. 1. Characteristic A.

Bは、本発明にかかるバイモルフ素子に関するものであ
り、特性Aはシム板に36χNi−Feを用いたもの、
特性Bは45χNi−Peを用いたものである。また、
特性C,Dは、シム板に黄銅を用いた従来のバイモルフ
素子に関するものである。
B is related to the bimorph element according to the present invention, and characteristic A is the one using 36χNi-Fe for the shim plate,
Characteristic B uses 45χNi-Pe. Also,
Characteristics C and D relate to a conventional bimorph element using brass for the shim plate.

また、第2表は、バイモルフ素子の破断特性を示したも
のである。
Further, Table 2 shows the rupture characteristics of the bimorph element.

第2表 なお、この表における評価値は、分母を実験個数とし、
分子を破断個数としたものである。
Table 2: The evaluation values in this table use the number of experiments as the denominator.
The number of breaks is expressed as the number of molecules.

シム板に36χNi−Feを用いたバイモルフ素子は、
破断もなく、変位量も大きく優れていることが判る。ま
た、シム板に45χNi−Feを用いた場合は、高電圧
を印加すると一部に破断が観測されたが、シム板に黄銅
を用いた従来のバイモルフ素子よりも蟲かに優れている
ことが判る。
The bimorph element using 36χNi-Fe for the shim plate is
It can be seen that there is no breakage and the amount of displacement is greatly superior. In addition, when 45χNi-Fe was used for the shim plate, some breakage was observed when high voltage was applied, but it was clearly superior to the conventional bimorph element using brass for the shim plate. I understand.

その他の組成比のNi−Feについても実験した結果、
圧電セラミックの電歪板には熱膨張係数αが100 X
l0−’/ ’C以下のシム板が、従来の従来のシム板
に比べて耐破断特性も点で優れていることが明らかとな
った。
As a result of experiments on Ni-Fe with other composition ratios,
The piezoelectric ceramic electrostrictive plate has a thermal expansion coefficient α of 100
It has become clear that the shim plate with a temperature of 10-'/'C or less has better fracture resistance than the conventional shim plate.

このような特性はNi−Co−Fe系合金を用いても得
られる。第7図は、Ni−Co−Fe系合金の組成比と
熱膨張係数αの関係を示した特性図である。例えば、A
点は29χNi−17χCo−54χFeを示す。同図
において、傾線で囲った部分がα<100 xlo−’
/’c以下の領域であり、A点で示された合金はこの領
域に含まれている。傾線で囲った部分に含まれる合金を
シム板として用いたバイモルフ素子は、やはり、耐破断
特性の点で優れていることが判った。
Such characteristics can also be obtained using a Ni-Co-Fe alloy. FIG. 7 is a characteristic diagram showing the relationship between the composition ratio and thermal expansion coefficient α of the Ni-Co-Fe alloy. For example, A
The dots indicate 29χNi-17χCo-54χFe. In the same figure, the part surrounded by the slope line is α<100 xlo-'
/'c or less, and the alloy indicated by point A is included in this region. It was found that the bimorph element using the alloy contained in the area surrounded by the inclined line as a shim plate is also excellent in terms of breakage resistance.

なお、シム板の熱膨張係数が電歪板のそれよりも大きい
場合には、高温において電歪板に引張力が発生し、小さ
い場合には圧縮力が発生する。破断には主に引張力が影
響するため、シム板の熱膨張係数は電歪板の熱膨張係数
と同等かやや小さいほうが適していると言え、電歪板の
熱膨張係数より小さいI Xl0−’/ ”C程度でも
良好な耐破断特性を得ることができる。
Note that when the coefficient of thermal expansion of the shim plate is larger than that of the electrostrictive plate, a tensile force is generated in the electrostrictive plate at high temperature, and when it is smaller, a compressive force is generated. Since tensile force is the main influence on rupture, it is appropriate for the thermal expansion coefficient of the shim plate to be equal to or slightly smaller than that of the electrostrictive plate. Good rupture resistance can be obtained even at a temperature of '/'C.

本発明にかかるバイモルフ素子のシム板に用いているN
i−Fe合金やNi−Co−Fe合金は、バネ性が小さ
いため従来シム板としては考えられなかったが、上記実
験の結果、バネ性よりも熱膨張係数を小さくして耐破断
特性を向上させることがより重要なことが明らかになり
、また、0.1mmmm下であって、長さ10mm当た
り高々1mm程度しか変形させないバイモルフ素子には
、そのシム板に大きなバネ性は必要ないことが確認され
た。なお、必要とあらば、シム板に冷間加工を加えるこ
とによりバネ性の向上を図ることができる。
N used in the shim plate of the bimorph device according to the present invention
i-Fe alloys and Ni-Co-Fe alloys have not been considered for conventional shim plates due to their low springiness, but as a result of the above experiments, they have improved fracture resistance by lowering the coefficient of thermal expansion than their springiness. It has become clear that it is more important to deform the shim plate, and it has also been confirmed that bimorph elements that deform by less than 0.1mmmm, at most 1mm per 10mm of length, do not require large springiness in their shim plates. It was done. Note that, if necessary, the springiness can be improved by applying cold working to the shim plate.

また、Ni−FeおよびNi−Co−Feは第1表に示
すように磁性体であるため、変位到達点において強い作
用力を発生させるべく第8図(B)に示すように変位到
達点付近に磁石801.802を配置することが考えら
れる。
In addition, since Ni-Fe and Ni-Co-Fe are magnetic materials as shown in Table 1, in order to generate a strong acting force at the displacement reaching point, as shown in Figure 8 (B), near the displacement reaching point It is conceivable to arrange magnets 801 and 802 at

第8図(A)の実線は、同図(B)において■の状態に
あるバイモルフ素子1に反対極性の電圧を印加したとき
の変位・発生力特性であり、一点鎖線で示した磁石80
1.802の吸引力と破線で示したバイモルフ素子1の
みの発生力との和で表される。
The solid line in FIG. 8(A) shows the displacement/force generation characteristics when a voltage of opposite polarity is applied to the bimorph element 1 in the state shown in FIG. 8(B), and the magnet 80 shown by the dashed line
It is expressed as the sum of the attraction force of 1.802 and the force generated only by the bimorph element 1 shown by the broken line.

この特性図から到達点803で大きな作用力を得られる
ことが判る。
It can be seen from this characteristic diagram that a large acting force can be obtained at the reaching point 803.

第9図は、本実施例にかかるバイモルフ素子1の電歪板
12とシム板11との接着部を示す部分拡大断面図であ
る。電極502とシム板11との間には、接着剤903
が介在するが、接触部902において部分的に電極50
2とシム板11とが直接接していると共に、接着剤90
3にカーボンなどの導電性粉を混入して固存抵抗をIQ
IOΩ・国にしであるので、電極502とシム板11と
は実質的に短絡状態となっている。そのため、電極50
1とシム板11との間に加えられた電圧は全て電歪板1
2に加わるため、シム板11が中央電極として機能し得
るのである。
FIG. 9 is a partially enlarged sectional view showing the bonded portion between the electrostrictive plate 12 and the shim plate 11 of the bimorph element 1 according to this embodiment. An adhesive 903 is applied between the electrode 502 and the shim plate 11.
is interposed, but the electrode 50 is partially connected to the contact portion 902.
2 and the shim plate 11 are in direct contact with each other, and the adhesive 90
Add conductive powder such as carbon to 3 to increase the solid resistance.
Since the resistance is IOΩ, the electrode 502 and the shim plate 11 are substantially short-circuited. Therefore, the electrode 50
1 and the shim plate 11, all the voltage applied between the electrostrictive plate 1
2, the shim plate 11 can function as a central electrode.

また、高温下で大きく変位させた状態で保持しておくと
、第10図に示すように接着部が緩んで接触部902が
離れてしまうことがあるが、上述したように、接着剤9
03にカーボンなどの導電性粉を混入しであるので、か
かる場合でも電極501とシム板11との間に加えられ
た電圧は殆ど電歪板12に加わり、変位量が低下するこ
とはない。
Furthermore, if the adhesive is held in a large displacement state at high temperatures, the adhesive may loosen and the contact portion 902 may separate as shown in FIG.
Since conductive powder such as carbon is mixed in 03, even in such a case, most of the voltage applied between the electrode 501 and the shim plate 11 is applied to the electrostrictive plate 12, and the amount of displacement does not decrease.

ちなみに、従来のバイモルフ素子のシム板と電歪板との
接着にはエポキシ系接着剤が用いられていた。エポキシ
系接着剤の体積固有抵抗は1013〜101SΩ・備で
ある。接着層の厚さを1〜10μmとすると109Ω以
上の抵抗層となる。この値は電歪板の抵抗値と同程度か
それより高いため、印加電圧は主に接着層に加わる。そ
のため、電歪板に所定の電圧が印加されず変位量が低下
する現象がしばしば起きていたが、本実施例にかかるバ
イモルフ素子では、接着剤の固有抵抗を1010Ω・備
にしであるので、1〜10μm程度の層では107Ω以
下になり、印加電圧のほとんどが電歪板に加わる。
Incidentally, an epoxy adhesive was used to bond the shim plate and electrostrictive plate of a conventional bimorph element. The volume resistivity of the epoxy adhesive is 1013 to 101 SΩ. When the thickness of the adhesive layer is 1 to 10 μm, the resistance layer becomes 10 9 Ω or more. Since this value is comparable to or higher than the resistance value of the electrostrictive plate, the applied voltage is mainly applied to the adhesive layer. For this reason, a phenomenon often occurred in which a predetermined voltage was not applied to the electrostrictive plate and the amount of displacement decreased.However, in the bimorph element according to this embodiment, the specific resistance of the adhesive is set to 1010Ω. In a layer of ~10 μm, the resistance becomes 10 7 Ω or less, and most of the applied voltage is applied to the electrostrictive plate.

ただし、接着剤の固有抵抗が低すぎると、バイモルフ素
子1の端部に僅かに付着した接着剤901によってリー
クが起き、やはり電歪板に電圧が加わらない。したがっ
て、固有抵抗は10”Ω・口取上であることが望ましい
However, if the specific resistance of the adhesive is too low, leakage occurs due to the adhesive 901 slightly attached to the end of the bimorph element 1, and no voltage is applied to the electrostrictive plate. Therefore, it is desirable that the specific resistance is 10''Ω.

なお、一般に、接着剤にカーボンなどを混入すると接着
力が低下することが懸念されるが、本実施例の場合導電
性粉の含有量は極めて少量でよいため接着力には影響し
ない。
Generally, there is a concern that the adhesion force will be reduced if carbon or the like is mixed into the adhesive, but in this example, the content of the conductive powder is only a very small amount, so the adhesion force is not affected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のバイモルフ素子によれば
、シム板の熱膨張係数を10−7〜10−’/ ℃とし
て電歪板の熱膨張係数に近似させたので、高温下におい
ても熱膨張による内部応力が殆ど発生せず、大きく変位
させても電歪板が破断しにくくなる。
As explained above, according to the bimorph element of the present invention, the thermal expansion coefficient of the shim plate is set to 10-7 to 10-'/°C, which approximates the thermal expansion coefficient of the electrostrictive plate. Almost no internal stress is generated due to expansion, and the electrostrictive plate is less likely to break even if it is largely displaced.

そのため、バイモルフ素子の信顧性を大幅に向上させる
ことができる。
Therefore, the reliability of the bimorph element can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であるバイモルフ素子を用い
た圧電アクチュエータのブロック図、第2図は環境温度
に基づいて黄銅板と電歪板との接着体に発生する応力を
確認するための断面図、第3図はNi−Fe系合金にお
けるNi含有量と熱膨張係数との関係を示した特性図、
第4図は環境温度に基づいてNi−Fe板と電歪板との
接着体に発生する応力を確認するための断面図、第5図
は第1図のバイモルフ素子の構成を示した斜視図、第6
図は第1図に示す駆動回路を用いて70℃の温度下で2
Hzの連続動作試験を行った際の各種バイモルフ素子の
変位量特性図、第7図はNi−Co−Fe系合金の組成
比と熱膨張係数αの関係を示した特性図、第8図(A)
は同図(B)に示すバイモルフ素子の変位・発生力の関
係を示す特性図、同図(B)は先端部に磁石を配置した
バイモルフ素子を示す断面図、第9図および第1θ図は
いずれも第1図のバイモルフ素子の部分拡大断面図であ
る。 1・・・バイモルフ素子、11・・・シム板、12.1
3・・・電歪板、501〜504  ・・・電極。 第2図 第3図 N14Kl (ttJ、) 第4図 第6図 自作時開(H) 第7図 第8図 (A)        (B)
Figure 1 is a block diagram of a piezoelectric actuator using a bimorph element, which is an embodiment of the present invention, and Figure 2 is used to confirm the stress generated in the bonded body of the brass plate and electrostrictive plate based on the environmental temperature. Figure 3 is a characteristic diagram showing the relationship between Ni content and thermal expansion coefficient in Ni-Fe alloys.
Figure 4 is a cross-sectional view for confirming the stress generated in the bonded body of the Ni-Fe plate and electrostrictive plate based on the environmental temperature, and Figure 5 is a perspective view showing the configuration of the bimorph element in Figure 1. , 6th
The figure shows the drive circuit shown in Figure 1 being used to drive 2
Figure 7 is a displacement characteristic diagram of various bimorph elements during a continuous operation test at Hz. Figure 7 is a characteristic diagram showing the relationship between the composition ratio of Ni-Co-Fe alloy and the thermal expansion coefficient α. A)
is a characteristic diagram showing the relationship between displacement and generated force of the bimorph element shown in the same figure (B), the same figure (B) is a cross-sectional view showing the bimorph element with a magnet arranged at the tip, and Figures 9 and 1θ are Both are partially enlarged cross-sectional views of the bimorph device shown in FIG. 1. 1... Bimorph element, 11... Shim plate, 12.1
3... Electrostrictive plate, 501-504... Electrode. Fig. 2 Fig. 3 N14Kl (ttJ,) Fig. 4 Fig. 6 Self-made: open (H) Fig. 7 Fig. 8 (A) (B)

Claims (5)

【特許請求の範囲】[Claims] (1)中央電極を兼ねるシム板の両面に電歪板を接着し
、電歪板の外側面に電極を施したバイモルフ素子におい
て、前記シム板を熱膨張係数が10^−^7〜10^−
^5/℃の金属としたことを特徴とするバイモルフ素子
(1) In a bimorph device in which electrostrictive plates are bonded to both sides of a shim plate that also serves as a central electrode, and electrodes are provided on the outer surface of the electrostrictive plate, the shim plate has a thermal expansion coefficient of 10^-^7 to 10^. −
A bimorph element characterized by being made of metal with a temperature of ^5/℃.
(2)シム板がNi含有量30〜55重量%のNi−F
e系合金である特許請求の範囲第1項記載のバイモルフ
素子。
(2) The shim plate is Ni-F with a Ni content of 30 to 55% by weight
The bimorph element according to claim 1, which is an e-based alloy.
(3)シム板がNi−Co−Fe系合金である特許請求
の範囲第1項記載のバイモルフ素子。
(3) The bimorph element according to claim 1, wherein the shim plate is made of a Ni-Co-Fe alloy.
(4)シム板と電歪板とが、10^6〜10^1^3Ω
・cmの体積固有抵抗をもつ接着剤で接着されている特
許請求の範囲第1項記載のバイモルフ素子。
(4) The shim plate and electrostrictive plate have a resistance of 10^6 to 10^1^3Ω
The bimorph element according to claim 1, wherein the bimorph element is bonded with an adhesive having a volume resistivity of cm.
(5)接着剤がカーボン粒子の混入した樹脂である特許
請求の範囲第4項記載のバイモルフ素子。
(5) The bimorph element according to claim 4, wherein the adhesive is a resin mixed with carbon particles.
JP60018508A 1985-02-04 1985-02-04 Bimorph element Granted JPS61177785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60018508A JPS61177785A (en) 1985-02-04 1985-02-04 Bimorph element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60018508A JPS61177785A (en) 1985-02-04 1985-02-04 Bimorph element

Publications (2)

Publication Number Publication Date
JPS61177785A true JPS61177785A (en) 1986-08-09
JPH0317231B2 JPH0317231B2 (en) 1991-03-07

Family

ID=11973564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60018508A Granted JPS61177785A (en) 1985-02-04 1985-02-04 Bimorph element

Country Status (1)

Country Link
JP (1) JPS61177785A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197386A (en) * 1987-02-12 1988-08-16 Murata Mfg Co Ltd Piezoelectric actuator
WO2001075987A1 (en) * 2000-04-04 2001-10-11 Siemens Aktiengesellschaft Piezoceramic bending converter
JP2017195249A (en) * 2016-04-19 2017-10-26 株式会社リコー Ferroelectric element and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048259U (en) * 1983-09-10 1985-04-04 株式会社トーキン displacement element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048259B2 (en) * 1977-11-18 1985-10-26 新東工業株式会社 mold making machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048259U (en) * 1983-09-10 1985-04-04 株式会社トーキン displacement element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197386A (en) * 1987-02-12 1988-08-16 Murata Mfg Co Ltd Piezoelectric actuator
WO2001075987A1 (en) * 2000-04-04 2001-10-11 Siemens Aktiengesellschaft Piezoceramic bending converter
JP2017195249A (en) * 2016-04-19 2017-10-26 株式会社リコー Ferroelectric element and method for manufacturing the same
US10801113B2 (en) 2016-04-19 2020-10-13 Ricoh Company, Ltd. Ferroelectric element and method of manufacturing ferroelectric element

Also Published As

Publication number Publication date
JPH0317231B2 (en) 1991-03-07

Similar Documents

Publication Publication Date Title
US5276657A (en) Metal-electroactive ceramic composite actuators
US20080054761A1 (en) Piezoelectric/electrostrictive device
JPS6388727A (en) Piezo-electric switch
JPH08242025A (en) Piezoelectric actuator
US6566789B2 (en) Piezoelectric/electrostrictive device and method of manufacturing same
US6756551B2 (en) Piezoelectrically actuated liquid metal switch
US11571712B2 (en) Vibration panel and electronic apparatus
US6657364B1 (en) Piezoelectric/electrostrictive device
JPS61177785A (en) Bimorph element
US6525448B1 (en) Piezoelectric/electrostrictive device
US20050128558A1 (en) Transverse electrodisplacive actuator array
JPH07106653A (en) Multilayer piezoelectric element
US3123727A (en) Kritz
JPH10284763A (en) Piezoelectric actuator
JPH0223035B2 (en)
JP3506614B2 (en) Multilayer piezoelectric actuator
JP2893739B2 (en) Electrostrictive effect element
JP2002319717A (en) Piezoelectric actuator
JP3326735B2 (en) Piezo actuator
JP2008515213A (en) Solid actuators, especially piezoelectric ceramic actuators
JPH0232573A (en) Flex type piezoelectric displacement element
JP3214260B2 (en) Resonant drive type piezoelectric actuator
JPH02288379A (en) Piezoelectric ceramic actuator
JP2001068750A (en) Laminated piezoelectric actuator
JPS62242188A (en) Piezoelectric valve