JPH0317212A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH0317212A
JPH0317212A JP15107589A JP15107589A JPH0317212A JP H0317212 A JPH0317212 A JP H0317212A JP 15107589 A JP15107589 A JP 15107589A JP 15107589 A JP15107589 A JP 15107589A JP H0317212 A JPH0317212 A JP H0317212A
Authority
JP
Japan
Prior art keywords
furnace
ore
area
sintered ore
small grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15107589A
Other languages
Japanese (ja)
Inventor
Ryoichi Toshimitsu
利光 亮一
Ryuichi Nakajima
龍一 中島
Sumiyuki Kishimoto
岸本 純幸
Hirohisa Hotta
堀田 裕久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP15107589A priority Critical patent/JPH0317212A/en
Publication of JPH0317212A publication Critical patent/JPH0317212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To increase blending rate of small grain sintered ore without obstruction to gas flow in a furnace by operating a movable armor so that ratio of fluidized part area and inner volume of the furnace obtd. from stock line picture with a dark field camera comes to the specific value. CONSTITUTION:The TV camera in the furnace opening part is used and the small grain sintered ore is blended and charged to execute the blast furnace operation. Then, the stock line is photographed with the dark field camera arranged at the furnace opening part. The picture is processed with a computer to obtain the area of the fluidized part. The movable armor is operated so that the ratio of the fluidized part area and the inner volume of the furnace comes to 0.1-0.3X10<-3>/m. By this method, the obstruction of gas flow caused by charging of the small grain ore to the center of furnace or uneven distribution thereof to the circumference of the furnace wall is prevented and the blending rate of the small grain sintered ore can be increased.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は小粒焼結鉱を配合装入する高炉操業方法に関
する. [従来の技術コ 従来、5Ilffi以下の鉄鉱石や焼結鉱(小粒鉱石と
いう)は、高炉の通気性を阻害するとしてスクリーンで
篩分けられ、焼結原料として使用されていた.近年、原
料コストの低減を目的として2〜5mmの小粒鉱石を高
炉で使用する技術が開発され、実施されている.この技
術としては、次のようなものがある. fi+小粒鉱石を従来の鉱石に混合して装入する混合装
入. {■小粒鉱石と従来の鉱石を別のホッパーから同時に切
り出す分離装入。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method of operating a blast furnace in which small-grain sintered ore is mixed and charged. [Conventional technology] Conventionally, iron ore and sintered ore (referred to as small-grained ore) with a size of 5 Ilffi or less were sieved through a screen and used as raw materials for sintering, as they impeded the permeability of the blast furnace. In recent years, a technology for using small grain ores of 2 to 5 mm in blast furnaces has been developed and put into practice for the purpose of reducing raw material costs. This technology includes the following: Mixed charging in which fi + small grain ore is mixed and charged with conventional ore. {■Separate charging that cuts small ore and conventional ore from separate hoppers at the same time.

(3)従来の鉱石層に小粒鉱石を単昧で装入する粒度別
装入. [発明が解決しようとする課題] しかしながら、従来の装入方法は小粒鉱石が増加すると
、ガス流れに影響されて安息角が小さくなり、炉の中心
まで小粒鉱石が装入されて中心ガス流を阻害するという
問題点があり、また炉壁周辺に小粒鉱石が漏り、周辺ガ
ス流が抑制されて壁付きの原因となるという問題点があ
る.従って、小粒鉱石の主原料に対する配合割合が最大
10%までであった.この発明は、小粒鉱石を従来より
多く配合できる方法を提供することを目的とするもので
ある. [課題を解決するための手段] この発明は上記目的を達成しようとするもので、炉口テ
レビカメラを使用して行う高炉操業方法において、小粒
焼結鉱を配合装入するに際し、炉口部に設けた暗視カメ
ラによりストックラインを撮影し、その画像を処理して
流動化部の面積を求め,該流動部面積と炉内容積の比が
0.1〜0 . 3 X 1 0−’/mになるように
、ムーバブルアーマーを操作することを特徴とする高炉
操業方法である. [作用] 第2図に示すように、流動部面積と炉内容積の比が0 
.  I X 1 0−’/mより小さくなると中心流
が弱くなり、通気抵抗係数が操業限界値を上回るように
なる.また、流動部面積と炉内容積の比が0.3X10
−’/mを越えると、同様に通気抵抗係数が操業限界値
を上回るようになる.従って、炉口テレビカメラにより
得られた流動部面積と炉内容積の比を0.1〜0.3X
10−’/mになるように、ムーバブルアーマーを操作
することにより、小粒焼結鉱を従来より多く配合するこ
とが出来るようになる. [実施例コ 本発明の方法を以下に詳細に説明する。第1図は高炉炉
口部に設けたテレビカメラでストックライン撮像してい
る様子を示す図である.1は炉口部、2はストックライ
ンを撮影するために炉口部lに設けた暗視カメラ、3は
ストックライン、4は装入物がガス流により流動化して
いる領域である. 発明者等は小粒焼結鉱の配合増加試験を行い、小粒焼結
鉱の配合%と通気抵抗係数の関係を調査した.この結果
を示したのが第4図である。安定した高炉操業を行うた
めには、通気抵抗係数は3.5以下にしなければならな
いことが知られており、第4図から小粒焼結鉱の配合%
は20%以下に抑える必要があることが分かった.ここ
にいう通気抵抗係数は、 である. 次に、発明者等は炉口カメラのストックラインの映像を
演算機により画像分析(または、処理)し流動部の面積
を求め,この流動部面積(記号Aで表す)と炉内容積〈
記号Dで表す〉の比と通気抵抗係数の関係を調べた.こ
の結果をグラフに表したのが第2図である.A/Dが0
.1より小さいと中心流が弱く圧損が上昇し、通気抵抗
係数が操業限界値(3.5)を越え、また、A/Dが0
.3を越えると、中心流が強くなり過ぎ圧損が上昇し、
通気抵抗係数が操業限界値を越えることが分かった.こ
のグラフより、通気抵抗係数を3.5以下にするにはA
/Dを0.1〜0.3の範囲内にすればよいことがわか
る. 第3図は通気抵抗係数を操業限界値(3.5)以下で操
業した場合のA/Dと小粒焼結鉱配合%の関係をグラフ
に表したものである。このグラフから、A/Dを0.1
〜0.3の範囲内にすれば、小粒焼結鉱を最大30%ま
で配合することができることが分かる. 本発明は以上の知見に基づいて発明されたものである.
すなわち,炉口部1に設置した炉口暗視カメラ2で撮影
した画像信号を、演算機にインプットし画像分析処理し
てストックライン3の流動部の面積を求め、この流動部
面積Aと炉内容積Dの比をCRTデスプレーに表示させ
、A/Dが0.1〜0,3の範囲を外れたらムーバブル
アーマーを操作して、前記範囲内に入るように操業する
ものである. 上記実施例は小粒焼結鉱について述べたが、小粒鉱石の
場合も同様である. [発明の効果] 本発明は炉口暗視カメラにより流動部の面積を求め、こ
の流動部面積と炉内容積との比をCR’Tデスプレーに
より監視して、所定範囲に入るようにムーバブルアーマ
ーを操作するもので、従来方法より多くの小粒燗結鉱や
小粒鉱石を配合することが出来るという効果がある.
(3) Charging by particle size, in which small grain ore is charged singly into the conventional ore layer. [Problems to be Solved by the Invention] However, in the conventional charging method, as the amount of small ore increases, the angle of repose becomes smaller due to the influence of the gas flow, and the small ore is charged to the center of the furnace, causing the central gas flow to become smaller. There is also the problem that small ore particles leak around the furnace wall, suppressing the surrounding gas flow and causing wall formation. Therefore, the blending ratio of small ore to the main raw material was up to 10%. The purpose of this invention is to provide a method that allows a larger amount of small-grain ore to be mixed than before. [Means for Solving the Problems] The present invention aims to achieve the above object, and in a blast furnace operation method using a furnace mouth TV camera, when mixing and charging small grain sintered ore, the furnace mouth part The stock line was photographed with a night vision camera installed in the room, and the image was processed to determine the area of the fluidized part, and the ratio of the area of the fluidized part to the volume inside the furnace was 0.1 to 0. This is a blast furnace operating method characterized by operating a movable armor so that the ratio is 3 x 10-'/m. [Function] As shown in Figure 2, when the ratio of the area of the fluidized section to the volume inside the furnace is 0,
.. When it is smaller than I x 10-'/m, the central flow becomes weaker and the ventilation resistance coefficient exceeds the operational limit value. In addition, the ratio of the area of the fluidized part to the volume inside the furnace is 0.3X10
-'/m, the ventilation resistance coefficient similarly exceeds the operational limit value. Therefore, the ratio of the area of the flowing part and the volume inside the furnace obtained by the furnace mouth TV camera is 0.1 to 0.3X.
By operating the movable armor so that the ratio is 10-'/m, it becomes possible to mix more small-grained sintered ore than before. [Example] The method of the present invention will be explained in detail below. Figure 1 shows the stock line being imaged with a television camera installed at the mouth of the blast furnace. 1 is the furnace mouth, 2 is a night vision camera installed at the furnace mouth l to photograph the stock line, 3 is the stock line, and 4 is the area where the charge is fluidized by the gas flow. The inventors conducted a test to increase the proportion of small sintered ore and investigated the relationship between the proportion of small sintered ore and the ventilation resistance coefficient. FIG. 4 shows this result. It is known that in order to perform stable blast furnace operation, the ventilation resistance coefficient must be 3.5 or less, and from Figure 4, the proportion of small sintered ore should be
It was found that it is necessary to keep it below 20%. The ventilation resistance coefficient here is . Next, the inventors analyzed (or processed) the image of the stock line taken by the furnace mouth camera using a computer to determine the area of the flowing section, and calculated the area of the flowing section (represented by symbol A) and the internal volume of the furnace.
The relationship between the ratio of 〉 (denoted by the symbol D) and the ventilation resistance coefficient was investigated. Figure 2 shows this result graphically. A/D is 0
.. If it is less than 1, the central flow will be weak and the pressure drop will increase, the ventilation resistance coefficient will exceed the operating limit value (3.5), and the A/D will be 0.
.. If it exceeds 3, the center flow becomes too strong and the pressure drop increases.
It was found that the ventilation resistance coefficient exceeded the operational limit value. From this graph, in order to make the ventilation resistance coefficient 3.5 or less,
It can be seen that /D should be within the range of 0.1 to 0.3. FIG. 3 is a graph showing the relationship between A/D and small sintered ore blending percentage when the operation is performed with the ventilation resistance coefficient below the operating limit value (3.5). From this graph, A/D is 0.1
It can be seen that if the value is within the range of ~0.3, up to 30% of small grain sintered ore can be blended. The present invention was invented based on the above findings.
That is, the image signal taken by the furnace night vision camera 2 installed at the furnace mouth part 1 is input into a computer, the image is analyzed, and the area of the flowing part of the stock line 3 is determined, and this flowing part area A and the furnace The ratio of internal volume D is displayed on the CRT display, and if A/D falls outside the range of 0.1 to 0.3, the movable armor is operated to bring it within the range. Although the above embodiments have been described with respect to small-grained sintered ore, the same applies to the case of small-grained ore. [Effects of the Invention] The present invention determines the area of the flowing part using a night vision camera at the furnace entrance, monitors the ratio of this flowing part area to the internal volume of the furnace using a CR'T display, and adjusts the movable armor so that it falls within a predetermined range. This method has the effect of being able to mix more small-grained ore and small-grained ore than with conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 炉口テレビカメラを使用して行う高炉操業方法において
、小粒焼結鉱を配合装入するに際し、炉口部に設けた暗
視カメラによりストックラインを撮影し、その画像を処
理して流動部の面積を求め、該流動部面積と炉内容積の
比が0.1〜0.3×10^−^3/mになるように、
ムーバブルアーマーを操作することを特徴とする高炉操
業方法。
In a blast furnace operation method that uses a TV camera at the furnace mouth, when mixing and charging small sintered ore, the stock line is photographed with a night vision camera installed at the furnace mouth, and the image is processed to determine the flow section. Calculate the area, and make sure that the ratio of the area of the fluidized part to the volume inside the furnace is 0.1 to 0.3 x 10^-^3/m.
A blast furnace operating method characterized by operating a movable armor.
JP15107589A 1989-06-14 1989-06-14 Method for operating blast furnace Pending JPH0317212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15107589A JPH0317212A (en) 1989-06-14 1989-06-14 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15107589A JPH0317212A (en) 1989-06-14 1989-06-14 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPH0317212A true JPH0317212A (en) 1991-01-25

Family

ID=15510765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15107589A Pending JPH0317212A (en) 1989-06-14 1989-06-14 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPH0317212A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019531A (en) * 2007-07-10 2009-01-29 Toyota Motor Corp Engine lubrication device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019531A (en) * 2007-07-10 2009-01-29 Toyota Motor Corp Engine lubrication device

Similar Documents

Publication Publication Date Title
CN102732655B (en) Blast furnace ironmaking method
WO2018170767A1 (en) Ore pellet, preparation method therefor, and preparation equipment
JPH0317212A (en) Method for operating blast furnace
CN104263915B (en) A kind of preparation method of high vanadium-titanium magnitite sinter
JP3329244B2 (en) Blast furnace operation method
JPH08239705A (en) Method for suppressing formation of deposition in blast furnace
JPH0499108A (en) Method for increasing production in blast furnace
JP3014549B2 (en) Blast furnace operation method
KR100376480B1 (en) Burden distribution control method in blast furnace by using coke
CN108085441A (en) A kind of material loading method processed of blast furnace feeding material
JPH08120311A (en) Method for charging raw material of blast furnace
JPH0211710A (en) Method for charging ore in blast furnace
CN107099631A (en) A kind of chromic vanadium-titanium ferroferrite blast furnace process furnace charge and its blast furnace smelting method
JP6631644B2 (en) Method for inspecting granulated particles inside carbon material and method for manufacturing sintered ore inside carbon material
JP2006131979A (en) Method for charging coke into bell-less blast furnace
JPS60138009A (en) Method for operating blast furnace
JPH0317211A (en) Method for operating blast furnace
JP7127395B2 (en) Pretreatment method for raw material for sintering
SU1052540A1 (en) Method for continuously measuring gas permeability of charge in blast furnace
JPH01263206A (en) Method for charging raw material into blast furnace
JPH01180911A (en) Method for charging sintered ore to blast furnace
JPH0317210A (en) Method for operating blast furnace
JPH04304305A (en) Method for charging raw material in blase furnace
JP2955461B2 (en) How to charge coke to blast furnace
JPS58171516A (en) Transferring apparatus of preliminarily reduced powdery and particulate ore in melt reduction equipment