JPH01263206A - Method for charging raw material into blast furnace - Google Patents

Method for charging raw material into blast furnace

Info

Publication number
JPH01263206A
JPH01263206A JP8971688A JP8971688A JPH01263206A JP H01263206 A JPH01263206 A JP H01263206A JP 8971688 A JP8971688 A JP 8971688A JP 8971688 A JP8971688 A JP 8971688A JP H01263206 A JPH01263206 A JP H01263206A
Authority
JP
Japan
Prior art keywords
charging
sintered ore
blast furnace
fine
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8971688A
Other languages
Japanese (ja)
Inventor
Tsutomu Tanaka
努 田中
Yoshimasa Kajiwara
梶原 義雅
Takanobu Inada
隆信 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8971688A priority Critical patent/JPH01263206A/en
Publication of JPH01263206A publication Critical patent/JPH01263206A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Abstract

PURPOSE:To reduce the cost of manufacture of pig iron by dividing plural kinds of raw materials having different compsns. and grain sizes into plural units and by charging a mixture of fine sintered ore having a specified grain size with other raw materials every time when specified units are charged. CONSTITUTION:Plural kinds of raw materials having different compsns. and diameters, e.g., coke, sintered ore, raw ore and pellets are divided into plural units and these units are successively charged into a blast furnace. At this time, a mixture of fine sintered ore having 2-10mm diameter with raw ore and pellets is charged every time 2-10 units are charged. The cost of manufacture of pig iron can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 高炉における原料装入方法に関し、更に詳しくはコーク
ス、焼結鉱、生鉱石、ペレノ1などの311成および粒
径が異なる複数種の原ネ4を複数回に分割して、これを
1単位として高炉に装入して行くいわゆる粒度別置、I
PI装入方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] Regarding the method of charging raw materials in a blast furnace, more specifically, it concerns the method of charging raw materials in a blast furnace. 4 is divided into multiple batches and charged into the blast furnace as one unit, so-called particle size separation, I.
This relates to a PI charging method.

〔従来の技術〕[Conventional technology]

近年、銑鉄コスト低域の観点から、細粒原料の高炉使用
嘘の増加が志向されているが、単純に炉前での原#4篩
目を小さくして粒径の下限値を下げただけでは炉内にお
けるガスの通気抵抗が増加するので、高炉操業が不安定
に陥ることがある。
In recent years, from the perspective of lowering pig iron costs, there has been an increase in the use of fine-grained raw materials in blast furnaces, but this is simply a matter of reducing the lower limit of particle size by reducing the mesh of the raw #4 sieve in front of the furnace. In this case, the gas ventilation resistance within the furnace increases, which may lead to unstable blast furnace operation.

そこで、細粒原料の使用量を増す際には、従来にも増し
て高炉半径方向の粒径分布を制御し、これにより半径方
向のガス流分布を適正な状部に維持し、高炉内の通気抵
抗の」:昇を抑制する必要が生じた。その1つの方法と
て「粒度別置*’l ’A人法」が提案されている。
Therefore, when increasing the amount of fine-grained raw materials used, the particle size distribution in the blast furnace radial direction is controlled more than ever before, thereby maintaining the radial gas flow distribution in an appropriate shape and increasing the flow rate inside the blast furnace. It became necessary to suppress the increase in ventilation resistance. As one method, the ``granularity separate *'l 'A person method'' has been proposed.

この方法は、例えば特開昭55−28308号に示され
ているごとく装入原料を所定の粒径を有する複数の粒径
範囲に区分して炉内に装入する方法である。第1図に基
づいて、従来の粒度別分割装入法について説明する。
In this method, for example, as shown in Japanese Patent Application Laid-Open No. 55-28308, the charging raw material is divided into a plurality of particle size ranges having a predetermined particle size and charged into a furnace. The conventional dividing charging method according to particle size will be explained based on FIG.

高炉に装入する原料は複数単位(m単位)の装入から成
っており、そのうちm−1単位は装入モードAで、残り
の1単位は装入モードBより構成されている。ずなわら
、装入の1ザイクルは(m−1)A4−Bで表わされる
The raw material to be charged into the blast furnace consists of a plurality of units (m units), of which m-1 units are in charging mode A and the remaining one unit is in charging mode B. However, one cycle of charging is represented by (m-1)A4-B.

装入モードAでは細粒焼結鉱を含まず、コークス、生鉱
石、ペレット、通常焼結鉱の各原料が4分割されて高炉
に装入される。装入モードBは細粒焼結鉱を含むモード
であり、4分割された最後の装入において細粒焼結鉱だ
けをまとめて装入することにより、細粒と粗粒のl;9
合による空隙率の低下を抑制している。
In charging mode A, the raw materials of coke, raw ore, pellets, and normal sintered ore are divided into four parts and charged into the blast furnace without containing fine sintered ore. Charging mode B is a mode that includes fine-grained sintered ore, and by charging only the fine-grained sintered ore at once in the final charging divided into four parts, the fine-grained and coarse-grained 1;9
This suppresses the decrease in porosity due to porosity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような従来の粒度別装入法には未解
決の以下の問題点がある。
However, such a conventional charging method according to particle size has the following unresolved problems.

すなわち、従来法において高炉円周方向における細粒分
布の不均一を抑制するために、装入モードBの最後の2
回の装入におい°ζ細粒焼結鉱の装入量を生鉱石、ペレ
ットおよび通常焼結鉱の合計装入量に等しくすると、装
入モードBの最後の装入において細粒焼結鉱が高炉層頂
全体を覆う現象が生ずる。その結果、ガスは必ず細粒よ
りなる層、をim遇するので通気抵抗の上昇は避けられ
ない。
That is, in the conventional method, in order to suppress the non-uniform distribution of fine particles in the circumferential direction of the blast furnace, the last two
If the charging amount of fine sintered ore is equal to the total charging amount of raw ore, pellets and normal sintered ore in the last charging of charging mode B, fine sintered ore is A phenomenon occurs in which the blast furnace layer covers the entire top of the blast furnace layer. As a result, the gas inevitably encounters a layer of fine particles, so an increase in ventilation resistance is unavoidable.

また、装入モードBの4分割された最後の装入で、高炉
に入れる細粒焼結鉱の量を少なくしたとしζも、高炉に
おける細粒の[J封AJ方向の分布が不均一になること
が懸念される。不均一な細粒の分布は、その度合がわず
かであったとしてもガスのill!気砥抗が大きいため
にガス流分布の円周方向における偏りを発生させ、高炉
操業は不安定になる。
In addition, when the amount of fine grain sintered ore put into the blast furnace is reduced in the final charging divided into four parts in charging mode B, the distribution of fine grains in the blast furnace [J direction AJ direction is uneven]. There are concerns that this will happen. Non-uniform distribution of fine particles, even if only to a small extent, can cause ill! The large air abrasion resistance causes a deviation in the gas flow distribution in the circumferential direction, making blast furnace operation unstable.

本発明は、これらの問題点を解決した粒度別分割装入方
法を提供することを目的とするものである。
The object of the present invention is to provide a method for dividing charging according to particle size, which solves these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る高炉における原料装入方法は、コークス、
焼結鉱、生鉱石、ペレットなどの組成および粒度が異な
る?M数種の原料を複数回に分割してこれを1単位とし
て高炉に装入して行く際に、2〜10単位の装入に1回
の割合で、その装入の複数に分割されたひとつの装入に
おいて、粒径が2〜10mmの細粒焼結鉱を生鉱石およ
びペレ・7トと混合して装入することを特徴とするもの
である。
The raw material charging method in a blast furnace according to the present invention includes coke,
Are the compositions and particle sizes of sintered ore, raw ore, pellets, etc. different? When dividing several kinds of raw materials into multiple parts and charging them into the blast furnace as one unit, the charging is divided into multiple parts at a rate of once for every 2 to 10 units charged. In one charging, fine sintered ore having a grain size of 2 to 10 mm is mixed with raw ore and pellets and then charged.

〔作  用〕[For production]

従来の粒度別分割装入法における問題点を解決するため
に、本発明では第1に細粒焼結鉱を屯独で装入するので
はなく、細粒焼結鉱を細粒焼結鉱よりは若干粒度が大き
いがコークスよりは粒度の小さいペレット、生鉱石と混
合して装入する方法を採用した。第2し1に本発明の原
料装入方法における装入モードを示す。
In order to solve the problems with the conventional split charging method according to particle size, the present invention firstly charges fine sintered ore instead of charging fine sintered ore separately. A method was adopted in which coke was mixed with pellets and raw ore, which were slightly larger in particle size than coke but smaller in particle size than coke. Second and first, the charging mode in the raw material charging method of the present invention is shown.

高炉に装入する原料は複数単位(m単位)の装入からな
り、そのうちm−14峰位は装入モードAであり、従来
法と同じである。しかしながら、装入モードBにおける
装入においては細粒焼結鉱を生鉱石、ペレットとともに
装入し、この点が従来法と異なる。
The raw material to be charged into the blast furnace consists of a plurality of units (m unit), of which the m-14 peak is charging mode A, which is the same as the conventional method. However, in charging in charging mode B, fine sintered ore is charged together with raw ore and pellets, which is different from the conventional method.

これによると、装入モードBにおける最後の2回の装入
では各回の装入量をほぼ等量にすることが可能であり、
高炉円周方向における細粒の不均一な分配量を抑制する
ことができる。すなわち、細粒焼結鉱を生鉱石、ペレッ
トとともに装入すると、高炉層mの斜面において粒度の
違いによる分級が生ずるため、細粒焼結鉱は高炉層頂全
体をIWうのではなく、炉壁近傍の限定された領域に偏
在する。その結果、ガスは細粒部分を避けて通過するこ
とが可能であり、通気抵抗の上昇が顕著とならなくなる
のである。
According to this, it is possible to make the amount of charging each time almost equal in the last two charging times in charging mode B,
Non-uniform distribution of fine particles in the circumferential direction of the blast furnace can be suppressed. In other words, when fine-grained sintered ore is charged together with raw ore and pellets, classification occurs on the slope of the blast furnace layer m due to differences in particle size. Unevenly distributed in limited areas near walls. As a result, the gas can pass through avoiding the fine grain portions, and the increase in ventilation resistance will not be noticeable.

細粒焼結鉱を生鉱石、ペレットとともに装入する際の配
合は、例えばそれぞれ2+1.9L、5(の重量割合が
適当であった。
When charging the fine sintered ore together with the raw ore and pellets, the appropriate weight ratio was, for example, 2+1.9 L and 5, respectively.

第2図では装入モードA、Bが4回の装入で構成されて
いるが、各モードにおける装入回数は特に限定しない、
また装入順序も特に限定するものではμく、装入モード
Bにおける細粒焼結鉱の順序も最終のw人には限らない
。装入モー1’A、Hにおける装入回数、装入原料、装
入順序はスリップ、吹抜けなどの高炉の荷下がり状況に
基づいて適宜決定される。
In Fig. 2, charging modes A and B consist of four charging times, but the number of charging times in each mode is not particularly limited.
Further, the charging order is not particularly limited, and the order of fine sintered ore in charging mode B is not limited to the final number. The number of times of charging, the raw materials to be charged, and the order of charging in the charging modes 1'A and 1'H are appropriately determined based on the unloading conditions of the blast furnace such as slip and blow-through.

第2に本発明では使用する細粒焼結鉱の粒度を2龍〜1
0inの範囲に限定することに特徴がある。
Secondly, in the present invention, the particle size of the fine sintered ore used is 2 to 1.
It is characterized by being limited to a range of 0 inches.

第3図に小型の高炉模型を用いて細粒焼結鉱の粒度を変
えて装入したときの圧力1i4夫を実際の高炉に換算し
た結果で示す。
FIG. 3 shows the pressure 1i4 when fine-grained sintered ore is charged with different particle sizes using a small-sized blast furnace model, which is converted into an actual blast furnace.

Mに示されるように、横軸に細粒焼結鉱の下限粒度(−
1)を、また縦軸に高炉充填層における)1;力損失(
kg / c+J )をとれば、31以下の下限粒度で
は急激に圧力tN失が増加し、2鳳負以下ではスラッギ
ングが発生し、操業不能となることがわかる。
As shown in M, the horizontal axis shows the minimum grain size (-
1), and the vertical axis shows the force loss (in the packed bed of the blast furnace) 1;
kg/c+J), it can be seen that at the lower limit particle size of 31 or less, the pressure tN loss increases rapidly, and at 2 or less, slagging occurs and operation becomes impossible.

したがって、高炉で使用可能な細粒の下限粒度は2富−
である。また、通常粒度の焼結鉱の粒径範囲は10量1
〜151Mなので、細粒焼結鉱の1限粒度は1oinと
する。以上のことから本発明では細粒焼結鉱の粒度範囲
を2u〜lQmmに限定する。
Therefore, the lower limit particle size of fine particles that can be used in a blast furnace is 2-
It is. In addition, the particle size range of sintered ore with normal particle size is 10
~151M, so the limit grain size of fine sintered ore is 1 oin. From the above, in the present invention, the particle size range of the fine sintered ore is limited to 2u to 1Qmm.

第3に、本発明はm単位を1サイクルとする高炉原料の
装入において、mの値を2〜10に限定する点に特徴が
ある。第4図に小型の高炉模型を用いて細粒焼結鉱を装
入する際のmの値と圧力損失の上昇率の関係を示す。
Thirdly, the present invention is characterized in that the value of m is limited to 2 to 10 in charging the blast furnace raw material in which m units are one cycle. FIG. 4 shows the relationship between the value of m and the rate of increase in pressure loss when fine-grained sintered ore is charged using a small blast furnace model.

図に示されるように、横軸に細粒焼結鉱の装入間隔を、
また縦軸に圧力損失の上昇率をとれば、炉内の圧力損失
の上昇率を最小にする細粒焼結鉱の装入間隔は高炉での
細粒焼結鉱の消費量に依存し、細粒焼結鉱の消費量の減
少とともに装入間隔が増加することがわかる。1ffi
常、高炉での細粒焼結鉱の使用量はI 000t/d 
a y 〜50t/d a yなので、mすなわち細粒
焼結鉱の装入間隔を2〜10の値に限定することが圧力
tjl失の上昇を最小にする一Fで望ましいのである。
As shown in the figure, the charging interval of fine sintered ore is plotted on the horizontal axis.
Furthermore, if we take the rate of increase in pressure loss on the vertical axis, the charging interval of fine sintered ore that minimizes the rate of increase in pressure loss in the furnace depends on the consumption amount of fine sintered ore in the blast furnace. It can be seen that the charging interval increases as the consumption of fine sintered ore decreases. 1ffi
Usually, the amount of fine sintered ore used in a blast furnace is I 000t/d.
Since a y ~50 t/d a y, it is desirable to limit m, that is, the charging interval of fine sintered ore, to a value of 2 to 10 in order to minimize the increase in pressure tjl loss.

第5図は高炉での細粒焼結鉱の消費量が200L / 
d a yの場合の細粒焼結鉱の半径方向の堆積分布を
示す。細粒焼結鉱の装入間隔m−2の場合は第5図(a
)に示ずごとく、細粒焼結鉱が粗粒原料の空隙に入り込
むため空隙率が低下し、その結果圧力ti失の上昇率は
顕著になる。逆に細粒焼結鉱の装入間隔が大でm=12
の場合は第5図(C)に示すごとく、細粒焼結鉱が高炉
の表層全体を覆うために圧力損失の上U率が大となる。
Figure 5 shows that the consumption of fine sintered ore in the blast furnace is 200L/
The radial deposition distribution of fine sintered ore in the case of d a y is shown. In the case of fine-grained sintered ore charging interval m-2, Fig.
), the fine-grained sintered ore enters into the voids of the coarse-grained raw material, so the porosity decreases, and as a result, the rate of increase in pressure ti loss becomes significant. On the other hand, the charging interval of fine-grained sintered ore is large, m = 12
In this case, as shown in FIG. 5(C), the fine sintered ore covers the entire surface layer of the blast furnace, resulting in a large upper U ratio of pressure loss.

そして、m=5の場合は第5図(b)に示すごとく、細
粒焼結鉱が炉壁近傍には偏在するために圧力を員失の上
昇率は最小になるのである。
When m=5, as shown in FIG. 5(b), the rate of increase in pressure becomes the minimum because fine sintered ore is unevenly distributed near the furnace wall.

細粒焼結鉱は以上のような堆積挙動を示すので、細粒焼
結鉱の通常使用範囲100OL/day〜50t/da
yでは、細粒焼結鉱の装入間隔mを2〜10の値に限定
することが望ましいのである。
Fine-grained sintered ore exhibits the above-mentioned deposition behavior, so the normal use range of fine-grained sintered ore is 100OL/day to 50t/day.
For y, it is desirable to limit the charging interval m of fine sintered ore to a value of 2 to 10.

〔実施例〕〔Example〕

内容積5000r&の高炉を対象に本発明の効果の確認
試験を実施した。
A test was conducted to confirm the effects of the present invention on a blast furnace with an internal volume of 5000 r&.

使用した細粒焼結鉱は粒度が5〜8龍であり、高炉での
消費量は400t/dayとした。一方、コークス、生
鉱石、通常焼結鉱、ベレー/ )の粒度はそれぞれ25
〜50鰭、15〜30鶴、lO〜15鳳朧、8〜16勤
腸であった。装入モードAにおけるコークス、生鉱石、
焼結鉱、ペレットの装入量はそれぞれ32t、18t、
85L、lotとした。また、装入モードBではコーク
ス、生鉱石、ペレットの装入量は装入モードAに一敗さ
せた。
The fine sintered ore used had a particle size of 5 to 8 yen, and the consumption amount in the blast furnace was 400 t/day. On the other hand, the particle size of coke, raw ore, normal sintered ore, beret/ ) is 25
~50 fins, 15-30 cranes, 10 ~15 hawks, and 8-16 intestines. Coke in charging mode A, raw ore,
The charging amounts of sintered ore and pellets are 32t and 18t, respectively.
85L, lot. In addition, charging mode B was completely defeated by charging mode A in terms of the amount of coke, raw ore, and pellets charged.

装入モードBの最後の装入における細粒焼結鉱の装入量
は+6tとし、mの値は4とした。
The charging amount of fine sintered ore in the last charging of charging mode B was +6 t, and the value of m was set to 4.

以上の装入条件で約1ケ月操業を行ったところ圧力tM
失の上昇は模型実験による予測値とほぼ同程度の15%
であり、極めてItIJi調に操業を行うことができた
After operating for about a month under the above charging conditions, the pressure was tM.
The increase in losses is 15%, which is almost the same as the predicted value from model experiments.
Therefore, the operation could be carried out in an extremely efficient manner.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の原料装入方法
は、粒度の小さい焼結鉱を使用するにもかかわらず、高
炉における円周方向の細粒不均一を抑1ヒすることがで
き、したがって、ガスの通気1氏抗を小さく抑制してガ
ス流分布の円周方向における偏りをなくし、高炉操業を
安定化せしめることができる。よって、本発明の原料装
入方法によれば、安価な細粒原料を高炉で支障なく使用
でき、これによる製銑コスト低減の効果はJGだ大きい
ものである。
As is clear from the above explanation, the raw material charging method of the present invention is able to suppress the non-uniformity of fine grains in the circumferential direction in the blast furnace, despite using sintered ore with a small particle size. Therefore, it is possible to suppress the gas permeation resistance to a small value, eliminate the bias in the gas flow distribution in the circumferential direction, and stabilize the blast furnace operation. Therefore, according to the raw material charging method of the present invention, inexpensive fine-grained raw materials can be used in the blast furnace without any problems, and the effect of this in reducing ironmaking costs is great for JG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ従来法及び本発明の原料装入
方法を示す模式図、第3図は細粒焼結鉱の粒度と高炉に
おける圧力IN失の関係を示す図表、第4図は細粒焼結
鉱の装入間隔と高炉の圧力損失上昇率の関係を示すグラ
フ、第5図は細粒焼結鉱の半径方向堆積分布を示す部分
断面図である。 第  1 第  2 装入モートA 装入モードB 図 装入モートB 第  3 図 細粒焼結鉱の下限粒度(mm) 第  4  図 細粒焼結鉱の装入間隔(m)
Figures 1 and 2 are schematic diagrams showing the conventional method and the raw material charging method of the present invention, respectively, Figure 3 is a chart showing the relationship between the particle size of fine sintered ore and pressure IN loss in the blast furnace, and Figure 4 5 is a graph showing the relationship between the charging interval of fine-grained sintered ore and the rate of increase in pressure loss in the blast furnace, and FIG. 5 is a partial cross-sectional view showing the radial deposition distribution of fine-grained sintered ore. Charging mode A Charging mode B Charging mode B Figure 3 Lower limit grain size of fine sintered ore (mm) Figure 4 Charging interval of fine sintered ore (m)

Claims (1)

【特許請求の範囲】[Claims] 1、コークス、焼結鉱、生鉱石、ペレットなどの組成お
よび粒度が異なる複数種の原料を複数回に分割してこれ
を1単位として高炉に装入して行く際に、2〜10単位
の装入に1回の割合で、その装入の複数に分割されたひ
とつの装入において、粒径が2〜10mmの細粒焼結鉱
を生鉱石およびペレットと混合して装入することを特徴
とする高炉における原料装入方法。
1. When dividing multiple types of raw materials with different compositions and particle sizes such as coke, sintered ore, raw ore, and pellets into multiple units and charging them into the blast furnace as one unit, 2 to 10 units of Fine-grained sintered ore with a grain size of 2 to 10 mm is mixed with raw ore and pellets and charged in one charging divided into multiple parts. Features of raw material charging method in blast furnace.
JP8971688A 1988-04-12 1988-04-12 Method for charging raw material into blast furnace Pending JPH01263206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8971688A JPH01263206A (en) 1988-04-12 1988-04-12 Method for charging raw material into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8971688A JPH01263206A (en) 1988-04-12 1988-04-12 Method for charging raw material into blast furnace

Publications (1)

Publication Number Publication Date
JPH01263206A true JPH01263206A (en) 1989-10-19

Family

ID=13978489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8971688A Pending JPH01263206A (en) 1988-04-12 1988-04-12 Method for charging raw material into blast furnace

Country Status (1)

Country Link
JP (1) JPH01263206A (en)

Similar Documents

Publication Publication Date Title
JPH01263206A (en) Method for charging raw material into blast furnace
JPH08239705A (en) Method for suppressing formation of deposition in blast furnace
JPH06271906A (en) Method for charging briquetted coke into blast furnace
JP4111055B2 (en) Blast furnace operation method
JPH08120311A (en) Method for charging raw material of blast furnace
JPS61119607A (en) Operating method of blast furnace
JPH01180911A (en) Method for charging sintered ore to blast furnace
JPH049413A (en) Method for charging hard-to-reduce ore into blast furnace
KR102231653B1 (en) Charging apparatus charging material for blast furnace and charging method of the same
JPS63317605A (en) Method for charging raw material in blast furnace
JP2955461B2 (en) How to charge coke to blast furnace
KR101510546B1 (en) Method for charging materials into blast furnace
JPH06108123A (en) Method for charging briquetted coke into blast furnace
JP2853577B2 (en) Raw material charging method to blast furnace
JPH02250909A (en) Method for charging raw material in blast furnace
JPS6112967B2 (en)
JPH02259005A (en) Method for charging raw material in blast furnace
JP2808344B2 (en) Blast furnace charging method
JPH01180940A (en) Operation of vertical type smelting furnace
JPH06220511A (en) Method for charging formed coke into blast furnace
JP3247731B2 (en) Blast furnace charging method
JPH0663008B2 (en) Coke split charging method to blast furnace
KR930001006B1 (en) Fluidized bed furnace for powder ore
JPS59143009A (en) Method and device for charging raw material to melt reducing furnace
JPH046204A (en) Method for charging raw material into blast furnace