JPH03170382A - Production of magnetic porous bonded material of oxide - Google Patents

Production of magnetic porous bonded material of oxide

Info

Publication number
JPH03170382A
JPH03170382A JP1308086A JP30808689A JPH03170382A JP H03170382 A JPH03170382 A JP H03170382A JP 1308086 A JP1308086 A JP 1308086A JP 30808689 A JP30808689 A JP 30808689A JP H03170382 A JPH03170382 A JP H03170382A
Authority
JP
Japan
Prior art keywords
particles
discharge
bonding
oxide
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1308086A
Other languages
Japanese (ja)
Inventor
Takeshi Mochizuki
望月 武史
Hiroshi Rikukawa
弘 陸川
Isamu Sasaki
勇 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP1308086A priority Critical patent/JPH03170382A/en
Publication of JPH03170382A publication Critical patent/JPH03170382A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic porous bonded material of oxide having high dimensional accuracy and low dielectric constant without deteriorating magnetic characteristics by approximately simultaneously carrying out orientation, molding under pressure and discharge electrization bonding of flaky magnetic material of oxide having relatively large particle diameter and showing approximately a monodisperse phase while causing electric discharge between powder particles. CONSTITUTION:A flaky magnetic material 14 of oxide having 1-5mm maximum diameter, >=3 maximum diameter/average thickness and showing an approximately monodisperse phase is packed into inner space between a cell 10 comprising carbon, WC, etc., and electrodes 12 composed of carbon, etc., also used as a pressure punch. Then, given pressure is applied to the electrodes 12 by a pressurizing mechanism and the electrodes 12 are connected to an electric source 18 for bonding. The electric source 18 sends an electric current of DC to which AC is superimposed to the electrodes 12 while controlling the electric current by a regulator 20. Therefore, orientation, molding under pressure and discharge electrization bonding of flaky magnetic material are approximately simultaneously carried out while causing electric discharge to the flaky particles 22 by impression of electric voltage. Consequently, a bonded material 24 wherein particles 22 are mutually bonded directly can be inexpensively produced in an extremely short time (about several minutes) in good reproducibility.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フレーク状あるいはフィラメント状の酸化物
磁性材を用い、放電・通電接合することにより結合材を
使用することなく粒子同士が直接接合した多孔質結合体
を製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses flake-like or filament-like oxide magnetic materials to directly bond particles to each other without using a binder by performing discharge/current bonding. The present invention relates to a method for manufacturing a porous composite body.

[従来の技術] 構或結晶粒子が連続しており、しかも空孔の殆どが開空
孔であるような、高寸法精度の酸化物磁性体を再現性よ
く製造する方法は未だ開発されていない。高寸法精度の
酸化物磁性体を製造する方法としては、例えば射出戒形
法等による樹脂結合型酸化物磁性体の製造方法が知られ
ているのみである。
[Prior art] No method has yet been developed to reproducibly produce oxide magnetic materials with high dimensional accuracy, in which the crystal grains are continuous and most of the pores are open pores. . As a method for manufacturing an oxide magnetic material with high dimensional accuracy, the only known method is, for example, a method for manufacturing a resin-bonded oxide magnetic material using an injection molding method or the like.

[発明が解決しようとする課題] 例えばCRTディスプレイの偏向ヨーク用コアでは画像
精度の向上のために高寸法精度化が強く求められている
。この種のコアは大型で朝顔型をなしており、従来の通
常のセラミノクス焼結製造プロセスではその寸法精度に
限界がある。そこで厳しい寸法精度をクリアするために
研削等による後加工が必要であった。射出形成法等を用
いた樹脂結合型にすれば寸法精度は向上するが、結合体
の連続性が悪くなり、所望の良好な磁気特性を得ること
が出来ない。
[Problems to be Solved by the Invention] For example, in a core for a deflection yoke of a CRT display, there is a strong demand for higher dimensional accuracy in order to improve image accuracy. This type of core is large and has a morning glory shape, and there is a limit to its dimensional accuracy using the conventional ceramic sintering manufacturing process. Therefore, post-processing such as grinding was required to meet strict dimensional accuracy. A resin-bonded type using an injection molding method or the like improves dimensional accuracy, but the continuity of the bonded body deteriorates, making it impossible to obtain desired good magnetic properties.

他方、例えばVTRのロータリートランス用コア等では
、情報量の増大に伴う広帯域化のため低誘電率化が強く
求められている。磁気特性を損なわずに低誘電率を実現
するには、焼結体の構威結晶粒子が連続した多孔質酸化
物磁性材料を製造するのが最も有利である。しかし樹脂
結合型構造にすると上記のように磁気特性が劣化してし
まう。
On the other hand, for example, in cores for rotary transformers of VTRs, etc., there is a strong demand for lower dielectric constants in order to achieve wider bands as the amount of information increases. In order to achieve a low dielectric constant without impairing magnetic properties, it is most advantageous to produce a porous oxide magnetic material in which the crystal grains of the sintered body are continuous. However, if a resin-bonded structure is used, the magnetic properties deteriorate as described above.

本発明の目的は、上記のような技術的課題を解決し、磁
気特性を劣化させることなく高寸法精度で且つ低誘電率
の酸化物磁性多孔質結合体を製造できる方法を提供する
ことにある。
An object of the present invention is to solve the above-mentioned technical problems and provide a method for manufacturing an oxide magnetic porous composite with high dimensional accuracy and a low dielectric constant without deteriorating magnetic properties. .

[課題を解決するための千段] 上記の目的を達或できる本発明は、最大直径が1〜5m
mで最大直径と平均厚さの比が3以上であり且つほぼ単
一相を呈するフレーク状、または平均長さが1〜7Iで
平均長さと平均直径の比が2以上であり且つほぼ単一相
を呈するフィラメント状の酸化物磁性材を用いる。そし
てそれらの材料を成形接合用の型内に充填し、電圧印加
により粒子間放電を起こさせながら配向と加圧成形と放
電・通電接合をほぼ同時に行わせてフレーク状またはフ
ィラメント状の粒子同士が直接接合した結合体を得る酸
化物磁性材料の多孔質結合体の製造方法である。
[A Thousand Steps to Solve the Problem] The present invention, which can achieve the above objects, has a maximum diameter of 1 to 5 m.
m, the ratio of the maximum diameter to the average thickness is 3 or more, and is almost a single phase, or the average length is 1 to 7I, the ratio of the average length to the average diameter is 2 or more, and is almost a single phase. A filament-shaped oxide magnetic material exhibiting a phase is used. Then, these materials are filled into a mold for forming and bonding, and while voltage is applied to cause interparticle discharge, orientation, pressure forming, and discharge/current bonding are performed almost simultaneously to form flake-like or filament-like particles. This is a method for producing a porous composite of oxide magnetic materials to obtain a directly bonded composite.

ここで「ほぼ単一相を呈する」とは、粉末X線回折では
異相が検出されない程度まで単一相であるものを言う。
Here, the term "substantially exhibiting a single phase" refers to a single phase to the extent that no different phase is detected by powder X-ray diffraction.

このようなほぼ単一相を呈する酸化物磁性材を製造する
には、固相反応による方法(乾式法)、焼結体を粉砕す
る方法などがある。乾式法の場合には、固体粉末原料の
混合一仮焼一粉砕の工程で製造する。Mn−Zn系以外
のフエライトは、ある程度の温度(時間との関係にもよ
るが800℃程度以上〉をかければ基本的には単一相に
なる。M n − Z n系フエライトの場合には、減
圧下や真空中で仮焼を行う方法、水素あるいは水草気等
の還元剤を使用して強制的に酸素を外す方法、化学量論
組成を窒素雰囲気中で焼或しf?e,04を加え混合物
を粉砕する方法もある。
In order to manufacture such an oxide magnetic material exhibiting a substantially single phase, there are a method using a solid phase reaction (dry method), a method of pulverizing a sintered body, and the like. In the case of the dry method, it is produced through the steps of mixing, calcination, and pulverization of solid powder raw materials. Ferrites other than Mn-Zn-based ferrites basically become a single phase when subjected to a certain temperature (approximately 800°C or higher, depending on the relationship with time).In the case of Mn-Zn-based ferrites, , a method of calcining under reduced pressure or vacuum, a method of forcibly removing oxygen using a reducing agent such as hydrogen or waterweed, a method of calcining the stoichiometric composition in a nitrogen atmosphere, or f?e,04 There is also a method of adding and pulverizing the mixture.

フレーク状の材料は、押出威形、射出戒形、シ一ト威形
などにより直接威形ずるか、またはそれらの方法により
作製した薄板を破砕することで、最大直径が1mm以上
のものを作製できる。
Flake materials with a maximum diameter of 1 mm or more can be made by directly shaping them by extrusion, injection molding, sheet shaping, etc., or by crushing thin plates made by these methods. can.

フィラメント状の材料は、押出成形法等により製造でき
る。その場合、最小長さはコンマ数mm程度が限界であ
る。また細長状の焼結体を破砕することで材料を得るこ
ともできる。
The filamentary material can be manufactured by extrusion molding or the like. In that case, the minimum length is limited to a few tenths of a millimeter. The material can also be obtained by crushing a long and narrow sintered body.

放電・通電接合は第1図に示すような構威の装置を用い
る。焼結接合用の型は、カーボン、炭化タングステン、
炭化ケイ素、金属等からなるセル10と、カーボン等か
らなり加圧パンチを兼ねる電極12との組み合わせであ
り、その内部空間に試料となるフレーク状またはフィラ
メント状の酸化物磁性材14を充填する。電極12には
加圧機構16によって所望の加圧力を加えることができ
ると共に、接合用電源18に接続される。接合用電源1
8は直流に交流が重畳した電流を供給できるものであり
、それらは制御装置20により制御される。その他、図
示されていないがセル10には配向機構が設けられ、且
つセル10内の温度をモニターできると共に、加圧変形
量もモニターできるように構威されている。配向方法と
しては振動成形法や磁場成形法などを採用できる。
Discharge/current-carrying bonding uses an apparatus with the structure shown in Figure 1. Molds for sintering are made of carbon, tungsten carbide,
It is a combination of a cell 10 made of silicon carbide, metal, etc., and an electrode 12 made of carbon, etc., which also serves as a pressure punch, and its internal space is filled with a flake-shaped or filament-shaped oxide magnetic material 14 serving as a sample. A desired pressure force can be applied to the electrode 12 by a pressure mechanism 16, and the electrode 12 is connected to a bonding power source 18. Junction power supply 1
Reference numeral 8 is a device capable of supplying a current in which alternating current is superimposed on direct current, and these are controlled by a control device 20. In addition, although not shown, the cell 10 is provided with an orientation mechanism, and is configured to be able to monitor the temperature inside the cell 10 as well as the amount of deformation under pressure. As the orientation method, vibration molding method, magnetic field molding method, etc. can be adopted.

本発明で用いる酸化物磁性材は、フレーク状粒子の場合
は最大直径が1〜5mm、またフィラメン1・状粒子の
場合は平均長さが1〜7Iの範囲内のものである。使用
する粒子寸法は、粒子の形状や性状、結合体の寸法や必
要な特性等によって最適範囲が異なる。粒子寸法を上記
のように特定した理由は、直径や長さが1mm未満のよ
うに細か過ぎると焼結が進み開空孔が得られ難いからで
あり、フレーク状の場合は5mmを超えて、またフィラ
メント状の場合には7mmを超えて大きくなると余程大
型の製品でない限り金型に適切に充填できなくなる場合
があるからである。
The oxide magnetic material used in the present invention has a maximum diameter of 1 to 5 mm in the case of flake-like particles, and an average length of 1 to 7 I in the case of filament-shaped particles. The optimum range of the particle size to be used varies depending on the shape and properties of the particles, the dimensions of the combined body, the required properties, etc. The reason why the particle size is specified as above is that if the diameter and length are too small, such as less than 1 mm, sintering will proceed and it will be difficult to obtain open pores. Further, in the case of a filament, if the size exceeds 7 mm, it may not be possible to properly fill the mold unless the product is extremely large.

本発明はMn−Zn系フエライト、NiZn系フエライ
ト、MgZn系フエライト等の製造に好適である。
The present invention is suitable for producing Mn-Zn ferrite, NiZn ferrite, MgZn ferrite, and the like.

なお本発明において「多孔質」とは、空孔率がlO%程
度以上のものを言う。本発明により得られる酸化物磁性
多孔質結合体は、そのままで用いる場合もあるし、強度
向上のために内部に樹脂を含浸させる場合も含まれる。
In the present invention, "porous" refers to a material having a porosity of approximately 10% or more. The oxide magnetic porous composite obtained by the present invention may be used as it is, or may be impregnated with a resin to improve strength.

[作用] 本発明によって多孔質(空孔率がlO%程度以上)で構
或結晶粒子が連続しており、しかも空孔の殆どが開空孔
であるような高寸法精度の酸化物磁性材料の結合体を得
ることができる。
[Function] The present invention produces an oxide magnetic material with high dimensional accuracy that is porous (porosity is about 10% or more), has continuous crystal grains, and most of the pores are open pores. A conjugate of can be obtained.

振動成形法や磁場威形法によって粒子は型内で配向し充
填される。型内に充填したフレーク状またはフィラメン
ト状の酸化物磁性材に対して高電圧を印加すると、粉粒
体は絶縁破壊を起こし放電する。この放電エネルギーは
粒子表面を活性化し汚れ等を除去して清浄化する。この
ような状態で加圧力が加わると、粒体同士が接触し、接
触部を中心にして粒体ネットワーク中で直接通電が生じ
、ジュール熱が発生する。それと同時にプラズマの衝撃
圧による放電エネルギーが加わり、更にセルが導電性を
有する場合には間接通電加熱も加わる。これらによって
加圧加熱され、粒体の界面で接合かわれる。この接合は
分単位の掻く短い時間に行われる。
Particles are oriented and filled in the mold by vibration molding or magnetic field shaping. When a high voltage is applied to the flake-like or filament-like oxide magnetic material filled in the mold, the powder causes dielectric breakdown and discharges. This discharge energy activates the particle surface, removes dirt, etc., and cleans it. When pressurizing force is applied in such a state, the grains come into contact with each other, and electricity is generated directly in the grain network centered around the contact area, generating Joule heat. At the same time, discharge energy due to plasma impact pressure is added, and if the cell is electrically conductive, indirect current heating is also added. The particles are heated under pressure and bonded at the interface of the particles. This bonding takes place in a short period of time, on the order of minutes.

このようにして第2図に拡大して示すように、構或結晶
粒子22が配向して面接触(フレーク状粒子の場合)ま
たは線接触(フィラメント状粒子の場合)に近い状態で
連続し、しかも空孔の殆どが開空孔であるような結合体
24が得られる。そのため粒状体の接合とは異なり(そ
の場合には点接触に近い)、面あるいは線接触であるか
ら磁気的特性は向上する。
In this way, as shown enlarged in FIG. 2, the structured crystal grains 22 are oriented and continuous in a state close to surface contact (in the case of flake-like particles) or line contact (in the case of filament-like particles), Furthermore, a combined body 24 in which most of the pores are open pores can be obtained. Therefore, unlike the joining of granular materials (in that case, it is close to a point contact), the magnetic properties are improved because it is a surface or line contact.

[実施例1] Fe203が46モル%、M g Oが30モル%、M
nOが3モル%、CuOが1モル%、ZnOが20モル
%の配合割合で高純度の原料を秤量し、一般的な乾式法
により酸化物磁性粒子を製造した。具体的手順は次の通
りである。
[Example 1] Fe203 is 46 mol%, MgO is 30 mol%, M
Highly purified raw materials were weighed in a blending ratio of 3 mol % nO, 1 mol % CuO, and 20 mol % ZnO, and oxide magnetic particles were produced by a general dry method. The specific steps are as follows.

振動ミルで混合した後、ミキサーを用い水を加えて7〜
8mmφ程度に造粒した。それをロータリーキルンを用
いて空気中で850℃−2時間の仮焼を行い、アトマイ
ザーで粗粉砕した。粗粉砕品に水を加えてアトライター
で微粉砕し、乾燥した。それにバインダ類と溶剤を加え
混練し、フレーク状粒子はローラーで薄板を戒形し破砕
することにより、フィラメント状粒子は押出戒形により
作製した。これらの粒子を大気中1100℃で2時間焼
結し、実験試料とした。
After mixing with a vibrating mill, add water using a mixer and cook for 7~
It was granulated to about 8 mmφ. It was calcined in air at 850° C. for 2 hours using a rotary kiln, and coarsely ground using an atomizer. Water was added to the coarsely ground product, which was then finely ground using an attritor and dried. A binder and a solvent were added and kneaded, and flake-like particles were produced by shaping and crushing a thin plate with a roller, and filament-like particles were produced by extrusion. These particles were sintered at 1100° C. for 2 hours in the air to provide experimental samples.

比較例として示した粒状粒子は加液造粒及び整粒による
戒形品の焼結体である。
The granular particles shown as a comparative example are sintered bodies of pre-shaped products obtained by liquid granulation and granulation.

これらの酸化物磁性材はX線回折的には単一相であった
。この酸化物磁性材を第1図に示す構或の装置を用いて
威形接合処理を行った。実験結果を第1表に示す。
These oxide magnetic materials had a single phase in terms of X-ray diffraction. This oxide magnetic material was subjected to a shape bonding process using an apparatus having the structure shown in FIG. The experimental results are shown in Table 1.

第1 表 共通の処理条件は次の通りである。1st table Common processing conditions are as follows.

・接合時間・・・1分 ・最大加圧力・・・5 0 0 kg/cm2・加圧速
度・・・2 5 0 kg/cm2  ・分・昇温時間
・・・2分 ・雰囲気・・・空気中 ・セル材質・・・カーボン 第1表から判るように結合体の空孔率はかなり高く、そ
れでいて透磁率は高い。また接合時間は僅か数分でよく
極めて効率がよい。比較例の粒状物の場合と比べれば明
らかなように、フレーク状やフィラメント状の粒子を使
用すると透磁率が数倍高まり、特にフレーク状の場合は
更に高くなることが判る。これは粒子同士が面で接触し
磁性体の連続性が向上ずるためである。
・Joining time...1 minute ・Maximum pressurizing force...500 kg/cm2 ・Pressing speed...250 kg/cm2 ・minutes ・Heating up time...2 minutes ・Atmosphere... Air/Cell material...Carbon As seen from Table 1, the porosity of the bonded body is quite high, yet the magnetic permeability is high. Furthermore, the bonding time is only a few minutes, which is extremely efficient. As is clear from comparison with the case of the granular material in the comparative example, it can be seen that when flake-like or filament-like particles are used, the magnetic permeability increases several times, and in particular, in the case of flake-like particles, it becomes even higher. This is because the particles come into contact with each other on their surfaces, improving the continuity of the magnetic material.

なお処理温度は、側方からセルに貫通孔を形成し、熱電
対を試料に接するように差し込んで測定した。結合体は
直径20mmφ、高さ10mmである。それを上下面3
IIITRずつ平面研削し、超音波加工によって外径8
IIIIIlφ、内径6lφのトロイダル状に打抜き、
燐酸又は塩酸で表面の加工歪を除去したものを磁気測定
用の試料として用いた。
The processing temperature was measured by forming a through hole in the cell from the side and inserting a thermocouple in contact with the sample. The combined body has a diameter of 20 mmφ and a height of 10 mm. The upper and lower surfaces 3
Surface grinding for each IIITR and ultrasonic machining to reduce outer diameter to 8
IIIIIIlφ, punched into a toroidal shape with an inner diameter of 6lφ,
A sample whose surface had been processed to remove strain with phosphoric acid or hydrochloric acid was used as a sample for magnetic measurement.

[実施例2] 処理材料としてMn−Znフェライト材を用いた。その
組威はFe.O,lが52モル%、MnOが26モル%
、ZnOが22モル%である。フィラメント状粒体の製
造方法は、前記実施例1の場合と基本的には同様である
。平均粒子寸法の異なる材料を用いて放電・通電接合を
行った。測定した結果を第2表に示す。
[Example 2] Mn-Zn ferrite material was used as a processing material. The power of the group is Fe. O,l is 52 mol%, MnO is 26 mol%
, ZnO is 22 mol%. The method for producing filamentous particles is basically the same as in Example 1 above. Discharge/current bonding was performed using materials with different average particle sizes. The measured results are shown in Table 2.

11 第 2 表 なお処理雰囲気が窒素ガス中であることを除けば処理条
件は前記実施例1と同様である。この場合にも第2表か
ら判るように結合体の空孔率はかなり高く、それでいて
透磁率は十分高いものが得られる。
11 Table 2 The processing conditions were the same as in Example 1, except that the processing atmosphere was nitrogen gas. In this case as well, as can be seen from Table 2, the porosity of the bonded body is quite high, yet the magnetic permeability is sufficiently high.

[実施例3] 処理材料として大気中で焼威したN i − Z nフ
ェライト材を用いた。その組威はFe2r3が49.5
モル%、NiOが17.7モル%、ZnOが32.8モ
ル%である。粒体の製造方法は、前記実施例1の場合と
基本的には同様である。粒子形状の異なる材料を用いて
放電・通電接合を行った。測定した結果を第3表に示す
[Example 3] A Ni-Zn ferrite material burnt out in the atmosphere was used as a treatment material. The power of the group is 49.5 for Fe2r3.
NiO is 17.7 mol% and ZnO is 32.8 mol%. The method for producing the granules is basically the same as in Example 1 above. Discharge and current-carrying bonding was performed using materials with different particle shapes. The measured results are shown in Table 3.

12 第 3 表 なお処理条件は前記実施例1と同様である。12 No. 3 table Note that the processing conditions are the same as in Example 1 above.

この場合にも第3表から判るように結合体の空孔率はか
なり高く、それでいて透磁率は十分高い。
In this case as well, as can be seen from Table 3, the porosity of the bonded body is quite high, yet the magnetic permeability is sufficiently high.

[発明の効果] 本発明は上記のように比較的寸法が大きく且つほぼ単一
相を呈するフレーク状またはフィラメント状の酸化物磁
性材を、粒体間で放電を起こさせながら磁場もしくは振
動による配向と加圧威形と放電・通電接合をほぼ同時に
行わせる方法であるから、結合材を使用することなく粒
子同士が直接接合した酸化物磁性多孔質結合体を極めて
短時間(数分程度)に再現性よく安価に製造できる。本
発明により得られる結合体は構威結晶粒子が面または線
で連続しているため磁気特性が高い。
[Effects of the Invention] As described above, the present invention is capable of orienting a flake-like or filament-like oxide magnetic material that is relatively large in size and exhibits an almost single phase using a magnetic field or vibration while causing an electric discharge between the particles. Because this method performs pressurization and discharge/current bonding almost simultaneously, it is possible to form an oxide magnetic porous composite in which particles are directly bonded to each other in an extremely short time (about a few minutes) without using a binder. Can be manufactured at low cost with good reproducibility. The composite obtained by the present invention has high magnetic properties because the crystal grains are continuous in planes or lines.

このようにして得られた結合体では、戒形と接合を同時
に行うため、ネソトシエイブ(netshape )ま
たはニアネソトシエイプ(near netshape
)が容易に得られる。従って後加工が全く不要となるか
、必要な場合でも加工しるが少なくなるため、加工コス
トを低減できる。特にCRTディスプレイの偏向ヨーク
用コアのように高寸法精度が要求される技術分野では極
めて効果が大きい。
In the bonded body obtained in this way, netshape or near netshape is used to form and join at the same time.
) can be easily obtained. Therefore, post-processing is not required at all, or even if necessary, the amount of processing is reduced, so that processing costs can be reduced. This is particularly effective in technical fields that require high dimensional accuracy, such as cores for deflection yokes in CRT displays.

更に本発明により得られる結合体は空孔の殆どが開空孔
となるため低誘電率と比較的高い透磁率を同時に実現で
きる。またその後に強度向上のために樹脂含浸等行わせ
ることも可能となる。そのため特に低誘電率化が強く求
められているロータリートランス用コア等では効果が大
きい。
Furthermore, since most of the pores in the composite obtained by the present invention are open pores, it is possible to simultaneously achieve a low dielectric constant and a relatively high magnetic permeability. Further, it is also possible to impregnate the material with a resin afterwards to improve its strength. Therefore, it is particularly effective in cores for rotary transformers, etc., where a low dielectric constant is strongly desired.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いる威形接合装置の概念図、第2図
は本発明で得られる多孔質結合体の拡大説明図である。 10・・・セル、l2・・・電極、14・・・酸化物磁
性材、l6・・・加圧機構、18・・・接合用電源、2
0・・・制御装置、22・・・構威結晶粒子、24・・
・結合体。
FIG. 1 is a conceptual diagram of a compact bonding device used in the present invention, and FIG. 2 is an enlarged explanatory diagram of a porous bonded body obtained by the present invention. DESCRIPTION OF SYMBOLS 10... Cell, l2... Electrode, 14... Oxide magnetic material, l6... Pressure mechanism, 18... Power source for bonding, 2
0...Control device, 22...Construction crystal particle, 24...
- Combined body.

Claims (2)

【特許請求の範囲】[Claims] 1.最大直径が1〜5mm、最大直径と平均厚さの比が
3以上で且つほぼ単一相を呈するフレーク状の酸化物磁
性材を、成形接合用の型内に充填し、電圧印加により粒
子間放電を起こさせながら配向と加圧成形と放電・通電
接合をほぼ同時に行わせてフレーク状粒子同士が直接接
合した結合体を得ることを特徴とする酸化物磁性多孔質
結合体の製造方法。
1. A flaky oxide magnetic material with a maximum diameter of 1 to 5 mm, a ratio of maximum diameter to average thickness of 3 or more, and a nearly single phase is filled into a mold for forming and joining, and the particles are separated by applying a voltage. A method for producing an oxide magnetic porous composite body, which comprises performing orientation, pressure molding, and discharge/current bonding almost simultaneously while generating electric discharge to obtain a composite body in which flake-like particles are directly bonded to each other.
2.平均長さが1〜7mm、平均長さと平均直径の比が
2以上で且つほぼ単一相を呈するフィラメント状の酸化
物磁性材を、成形接合用の型内に充填し、電圧印加によ
り粒子間放電を起こさせながら配向と加圧成形と放電・
通電接合をほぼ同時に行わせてフィラメント状粒子同士
が直接接合した結合体を得ることを特徴とする酸化物磁
性多孔質結合体の製造方法。
2. A filament-shaped oxide magnetic material with an average length of 1 to 7 mm, a ratio of average length to average diameter of 2 or more, and a nearly single phase is filled into a mold for forming and joining, and voltage is applied to separate the particles. Orientation, pressure forming, and discharge while causing electrical discharge.
1. A method for producing an oxide magnetic porous composite body, which comprises performing electrical bonding almost simultaneously to obtain a composite body in which filamentary particles are directly bonded to each other.
JP1308086A 1989-11-28 1989-11-28 Production of magnetic porous bonded material of oxide Pending JPH03170382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308086A JPH03170382A (en) 1989-11-28 1989-11-28 Production of magnetic porous bonded material of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308086A JPH03170382A (en) 1989-11-28 1989-11-28 Production of magnetic porous bonded material of oxide

Publications (1)

Publication Number Publication Date
JPH03170382A true JPH03170382A (en) 1991-07-23

Family

ID=17976700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308086A Pending JPH03170382A (en) 1989-11-28 1989-11-28 Production of magnetic porous bonded material of oxide

Country Status (1)

Country Link
JP (1) JPH03170382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181923A (en) * 2007-01-23 2008-08-07 Fuji Electric Device Technology Co Ltd Magnetic component and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380164A (en) * 1989-08-22 1991-04-04 Isuzu Motors Ltd Porous sintered body and production therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380164A (en) * 1989-08-22 1991-04-04 Isuzu Motors Ltd Porous sintered body and production therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181923A (en) * 2007-01-23 2008-08-07 Fuji Electric Device Technology Co Ltd Magnetic component and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR102150818B1 (en) MXene particle material, slurry, secondary battery, transparent electrode, manufacturing method of MXene particle material
CN103189936A (en) Soft magnetic powder, powder granules, dust core, electromagnetic component, and method for manufacturing dust core
JP2010245216A (en) Magnetic powder material, granulating powder, compact, baked object for magnetic core, and method of manufacturing electromagnetic component and baked object for magnetic core
JPH03170382A (en) Production of magnetic porous bonded material of oxide
JP2789121B2 (en) Method for producing resin-bound oxide magnetic material
EP1238947B1 (en) Fine glass particle containing embedded oxide and process for producing the same
JPH0689827A (en) Manufacture of ferrite magnet by dry magnetic field molding method
JPH03170381A (en) Production of magnetic porous bonded material of oxide
JP2791592B2 (en) Method for producing resin-bound oxide magnetic material
JPH0521220A (en) Method for producing injection-molded pure iron-sintered soft magnetic material with high residual magnetic flux density
JP4215992B2 (en) Oxide magnetic powder and core manufacturing method, core molding method, magnetic component and coil component
JP2001010867A (en) Method for producing ceramic raw material particle
KR102364724B1 (en) Method for producing an inductive component and inductive component
JPH0393670A (en) Production of high-density oxide magnetic material
JPH03180434A (en) Manufacture of cermet type ferrite
JPH01111303A (en) Manufacture of rare earth magnet
JPH0722229A (en) Production of oxide magnetic material
JP2006206384A (en) Ceramic material for non-reciprocal circuit element and its production method
JPH06151146A (en) Oxide magnetic material and manufacture thereof
JPH0374811A (en) Ferrite magnetic material
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JPH09157021A (en) Production of dielectric material for low temperature sintering
SU593648A3 (en) Method of obtaining ferrite-garnet powders
JPS62293702A (en) Manufacture of ceramic zinc oxide varistor material
JPH04300235A (en) Production of ceramic body