JPH03180434A - Manufacture of cermet type ferrite - Google Patents

Manufacture of cermet type ferrite

Info

Publication number
JPH03180434A
JPH03180434A JP1319300A JP31930089A JPH03180434A JP H03180434 A JPH03180434 A JP H03180434A JP 1319300 A JP1319300 A JP 1319300A JP 31930089 A JP31930089 A JP 31930089A JP H03180434 A JPH03180434 A JP H03180434A
Authority
JP
Japan
Prior art keywords
powder
ferrite
magnetic
bonding
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1319300A
Other languages
Japanese (ja)
Inventor
Takeshi Mochizuki
望月 武史
Hiroshi Rikukawa
弘 陸川
Isamu Sasaki
勇 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP1319300A priority Critical patent/JPH03180434A/en
Publication of JPH03180434A publication Critical patent/JPH03180434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PURPOSE:To manufacture a composite body having good magnetic characteristics by mixing ferrite powder with magnetic powder, filling the mixture into a die and simultaneously executing compacting and electric discharge- conduction bonding by voltage impression. CONSTITUTION:Ferrite powder having an almost single phase and metallic (alloy) magnetic powder are mixed, and the mixture is filled into a die. The die is a combination of a cell 10 and an electrode 12 serving also as a pressure punch, and its internal space is filled with sample powder 14. Desired pressurizing force is applied to the electrode 12 by a pressurizing mechanism 16, and a power source 18 for heating supplies an electric current of which DC is overlapped with AC. They are controlled by a control device 20. By voltage impression, compacting and electric discharge-conduction bonding are almost simultaneously executed while intergranular electric discharge is generated, by which a cermet type composite body in which grains are directly bonded each other can be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フェライト粉末と金属系磁性粉末とを放電・
通電接合することにより、粒子同士が直接接合した複合
体(サーメット型フェライト)を製造する方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method of discharging and discharging ferrite powder and metallic magnetic powder.
The present invention relates to a method for manufacturing a composite (cermet-type ferrite) in which particles are directly bonded to each other by electrically bonding.

[従来の技術] 金属と酸化物の複合材料であるサーメットは構造材料等
として広く実用化されている。しかし金属あるいは合金
の磁性材料と強磁性酸化物であるフェライトとの複合材
料(これを「サーメット型フェライト」という)に関す
る研究報告は少ない、数少ない従来技術として、特公昭
62−38411号公報に記載されているように、フェ
ライトvJl末と磁性金属粉末または磁性合金粉末との
混合物に無水硼酸(B*Os)を1〜lO重量%添加し
、600〜800℃の温度で焼成する方法がある。
[Prior Art] Cermet, which is a composite material of metal and oxide, has been widely put into practical use as a structural material. However, there are few research reports on composite materials of magnetic materials such as metals or alloys and ferrite, which is a ferromagnetic oxide (this is called "cermet-type ferrite"). As described above, there is a method in which boric anhydride (B*Os) is added in an amount of 1 to 10% by weight to a mixture of ferrite vJl powder and magnetic metal powder or magnetic alloy powder, and the mixture is fired at a temperature of 600 to 800°C.

【発明が解決しようとする課題] サーメット型フェライトが実用化された例が少ない理由
は、金属や合金の磁性材料を作る高真空の雰囲気とフェ
ライトを作る酸化性雰囲気との差があまりにも著しく、
その複合化が困難なためである。金属あるいは合金の磁
性粉末にフェライト粉末を混合して焼成する場合には、
少なくとも900℃以上に加熱しないと十分に焼結させ
ることができない、しかし、そのような条件で焼結した
場合には金属層の酸化やフェライト相との著しい反応が
生じフェライト単相に近いがそれよりも劣る特性になっ
てしまう。
[Problems to be Solved by the Invention] The reason why there are few examples of cermet-type ferrite being put into practical use is that the difference between the high vacuum atmosphere that creates magnetic materials such as metals and alloys and the oxidizing atmosphere that creates ferrite is extremely large.
This is because it is difficult to combine them. When mixing ferrite powder with magnetic powder of metal or alloy and firing it,
Sufficient sintering cannot be achieved unless the temperature is heated to at least 900°C. However, when sintered under such conditions, oxidation of the metal layer and significant reaction with the ferrite phase occur, resulting in a ferrite phase that is close to a single phase. This results in inferior characteristics.

逆に金属の酸化を防ぐために低温で処理しようとすると
、フェライト相の反応不足が生し金属系単相に近いがそ
れよりも劣る特性となる。これらのため材料を複合化し
でも従来の焼結方法ではプラス・アルファの効果は生し
ない。
On the other hand, if the treatment is performed at low temperatures to prevent metal oxidation, the reaction of the ferrite phase will be insufficient, resulting in properties close to, but inferior to, metallic single-phase. For these reasons, even if materials are composited, conventional sintering methods will not produce positive effects.

そこで従来技術では、BzOi という低融点酸化物を
混入して低温度で結合する方法を採用した。つまりB2
O3が金属や合金の磁性粉末とフェライト粉末との間に
入って粒子同士を間接的に結合させ、複合体を作り上げ
ていた。言い換えると有効な複合化を行うためには従来
技術では非磁性の結合材(B、 Off )の存在が必
須であった。そのためル51気的特性や機械的強度が低
下することは避けられなかった。
Therefore, in the prior art, a method was adopted in which a low melting point oxide called BzOi was mixed and bonded at a low temperature. In other words, B2
O3 entered between the magnetic powder of metal or alloy and the ferrite powder, indirectly bonding the particles to each other and creating a composite. In other words, in the prior art, the presence of a non-magnetic binder (B, Off) was essential for effective compositing. Therefore, it was inevitable that the mechanical properties and mechanical strength would deteriorate.

本発明の目的は、結合材を使用することなくフェライト
粉末と金属系磁性粉末を直接接合して両材料の長所を合
わせ持った良好な磁気的特性を有する複合磁性体を製造
する方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a composite magnetic material having good magnetic properties that combines the advantages of both materials by directly bonding ferrite powder and metallic magnetic powder without using a binder. There is a particular thing.

[課題を解決するための手段] 上記のような技術的課題を解決できる本発明は.ほぼ単
一相を呈するフェライト粉末と金属系(金属または合金
)Mi磁性粉末を混合して成型接合用の型内に充填し、
電圧印加により粒子間放電を起こさせながら加圧成型と
放電・通電接合をほぼ同時に行わせて粒子同士が直接接
合した複合体くサーメット型フェライト)の製造方法で
ある。
[Means for Solving the Problems] The present invention can solve the above technical problems. Ferrite powder exhibiting almost a single phase and metallic (metal or alloy) Mi magnetic powder are mixed and filled into a mold for forming and joining,
This is a method for producing a composite (cermet-type ferrite) in which particles are directly bonded to each other by performing pressure molding and discharge/current bonding almost simultaneously while causing interparticle discharge by applying a voltage.

ここで「はぼ単一相を呈する」とは、粉末X線回折では
異相が検出されない程度まで単一相になっているものを
言う。このようなほぼ単一相を呈するフェライト粉末を
製造するには、固相反応による方法(乾式法)、溶液中
での反応による方法(例えば共沈法〉、気相反応による
方法(例えば噴霧熱分解法)など任意の方法を用いてよ
い。乾式法の場合には、固体粉末原料の混合−乾燥一仮
焼一粉砕の工程で製造する。
Here, "exhibiting a single phase" refers to a material that is a single phase to the extent that no different phases are detected by powder X-ray diffraction. In order to produce such a ferrite powder exhibiting an almost single phase, there are methods using a solid phase reaction (dry method), a method using a reaction in a solution (e.g. coprecipitation method), and a method using a gas phase reaction (e.g. spray heat method). Any method such as the decomposition method may be used.In the case of a dry method, it is produced through the steps of mixing, drying, calcination, and pulverization of solid powder raw materials.

M n −Z n系以外のフェライトは、ある程度の焼
成温度(時間との関係にもよるが800℃程度以上)を
かければ基本的には単一相になる。
Ferrites other than Mn-Zn-based ferrites basically become a single phase when subjected to a certain firing temperature (approximately 800°C or higher, depending on the relationship with time).

Mn−Zn系フェライトの場合には、減圧下や真空中で
仮焼を行う方法、水素あるいは水蒸気等の還元剤を使用
して強制的に酸素を外す方法、化学量論組成を窒素雰囲
気中で焼成しFe、04を加え混合物を粉砕する方法等
もある。
In the case of Mn-Zn ferrite, methods include calcination under reduced pressure or vacuum, methods to forcibly remove oxygen using a reducing agent such as hydrogen or water vapor, and methods to determine the stoichiometric composition in a nitrogen atmosphere. There is also a method of firing, adding Fe and 04, and pulverizing the mixture.

共沈法は、原14に強アルカリを加えて溶解−沈澱析出
一空気酸化一濾過一乾燥の工程で製造する。噴霧熱分解
法の場合には、原料の溶解−噴霧熱分解−解砕の工程で
製造する。
In the coprecipitation method, a strong alkali is added to the raw material 14, and the raw material 14 is produced through the steps of dissolution, precipitation, air oxidation, filtration, and drying. In the case of the spray pyrolysis method, it is produced through the steps of dissolving raw materials, spray pyrolysis, and crushing.

放電・通電接合は第1図に示すような槽底の装置を用い
る。成型接合用の型は、カーボン、炭化タングステン、
炭化ケイ素、金属等からなるセル10と、カーボン等か
らなり加圧パンチを兼ねる電極12との組み合わせであ
り、その内部空間に試料となるフェライト粉末と金属系
磁性わ)末とのrR合物を充填する。電極12には加Y
E機横16によって所望の加圧力を加えることができる
と共に、加熱用?ii源18に接続される。加熱用電源
18は直流に交流が重畳した電流を供給できるものであ
り、それらは制御装置20により制御される。その他、
図示されていないが、セル内の温度及び加圧変形量をモ
ニターできるようになっている。
For discharge/current bonding, a device at the bottom of the tank as shown in Fig. 1 is used. The mold for molded joining is made of carbon, tungsten carbide,
It is a combination of a cell 10 made of silicon carbide, metal, etc., and an electrode 12 made of carbon, etc., which also serves as a pressurizing punch. Fill. The electrode 12 is
The desired pressing force can be applied by the E machine side 16, and it can also be used for heating. ii source 18. The heating power source 18 is capable of supplying a current in which alternating current is superimposed on direct current, and these are controlled by a control device 20 . others,
Although not shown, the temperature inside the cell and the amount of deformation under pressure can be monitored.

本発明で用いるフェライト粉末は、平均粒子径が0.0
5〜3μm程度のものが望ましい。
The ferrite powder used in the present invention has an average particle size of 0.0
A thickness of about 5 to 3 μm is desirable.

また金属系磁性粉末は、10μm以下のものを用いるの
が望ましい。その理由は、平均粒子径が粗すぎると放電
・通電接合時に加圧を行っていても粒子同士のバンキン
グがうまくいき難いからである。逆に平均粒子径が小さ
ずぎでもI5)宋の架橋によりパッキングがうまくいき
難くなる他、反応姓が高くなりすぎてマイクロスドラク
チャ−を制御し難くなったり、微わ)のため汚染され易
く水分や不純物の付着が生し取り扱いが困難となるし、
セルとの反応も起こり易くなるからである。
Further, it is desirable to use metal-based magnetic powder with a diameter of 10 μm or less. The reason for this is that if the average particle diameter is too coarse, banking between particles will be difficult to achieve even if pressure is applied during discharge/current bonding. On the other hand, even if the average particle size is small, it becomes difficult to pack properly due to cross-linking, and the reaction rate becomes too high, making it difficult to control the microstructure, and contamination is more likely to occur. Moisture and impurities adhere to it, making it difficult to handle.
This is because reactions with cells are likely to occur.

フェライト粉末としては、M n −Z n系、Mg−
Zn系、N i−7,n系など任意のものであってよい
、金属系磁性粉末としては、金属磁性粉末の他、合金磁
性粉末でもよく、例えばカーボニル鉄粉やセンダスト粉
末等を用いることができる。フェライト粉末と金属系磁
性粉末との混合割合は、最終的に得る複合体の磁気特性
に応して広い範囲にわたって可変できる。
As the ferrite powder, Mn-Zn type, Mg-
The metal-based magnetic powder may be of any type such as Zn-based, Ni-7, n-based, etc. In addition to metal magnetic powder, alloy magnetic powder may also be used; for example, carbonyl iron powder, sendust powder, etc. may be used. can. The mixing ratio of ferrite powder and metallic magnetic powder can be varied over a wide range depending on the magnetic properties of the final composite.

実際の接合処理工程では、窒素やアルゴン雰囲気等の不
活性雰囲気下、あるいは真空中や減圧下で金属系磁性粉
末の酸化が生じないようにして行う。
The actual bonding process is performed in an inert atmosphere such as a nitrogen or argon atmosphere, or in a vacuum or reduced pressure to prevent oxidation of the metal magnetic powder.

[作用1 本発明方法によってフェライトと金属系磁性材料との複
合体であるサーメット型フェライトを短時間で製造でき
る。型内に充填したフェライト粉末及び金属系磁性粉末
に対して高電圧を印加すると、粉末は絶縁破壊を起こし
放電する。
[Operation 1] Cermet-type ferrite, which is a composite of ferrite and metallic magnetic material, can be produced in a short time by the method of the present invention. When a high voltage is applied to the ferrite powder and metallic magnetic powder filled in the mold, the powder causes dielectric breakdown and discharges.

この放電エネルギーは粒子表面を活性化し汚れ等を除去
し清浄化する。このような状態で加圧力が加わると、粉
末同士が密に接触し、接触点を中心にして粉末ネットワ
ーク中で直接通電が生じ、ジュール熱が発生する。それ
と同時にプラズマの衝撃圧による放電エネルギーが加わ
り、更にセルが導電性を有する場合には間接通電加熱も
加わる。これらによって加圧加熱される。
This discharge energy activates the particle surface, removes dirt, etc., and cleans it. When pressurizing force is applied in this state, the powders come into close contact with each other, and electricity is generated directly in the powder network around the contact points, generating Joule heat. At the same time, discharge energy due to plasma impact pressure is added, and if the cell is electrically conductive, indirect current heating is also added. Pressurized and heated by these.

本発明方法では反応時間が分単位と非常に短く、そのた
め粉末同士の界面近傍でのみ反応が生じて接合する。フ
ェライトと金属系磁性材料との間での粉末内部に達する
ようなイオン拡散反応は生しない0本発明で得られるサ
ーメット型フェライトを模式的に示すと第2図A、Bの
ようになる。最終的に複合化されたときのマトリ7クス
の構成はフェライトと金属系磁性材との混合比率や粒子
サイズ等により変化する゛、同図Aはフェライトが少な
い場合、Bはフェライトが多い場合である0本発明では
粒子同士が表面のみで直接接合しているだけだからフェ
ライトや金属系磁性材料の特性が失われることはない、
このため従来得られなかった高抵抗率(フェライト)と
高磁束密度(金属系磁性材$4)の特徴を合わせ持った
高周波用高磁束密度材料が得られることになる。
In the method of the present invention, the reaction time is very short, on the order of minutes, so that the reaction occurs only near the interface between the powders, resulting in bonding. An ion diffusion reaction that reaches the inside of the powder between the ferrite and the metallic magnetic material does not occur. The cermet type ferrite obtained by the present invention is schematically shown in FIGS. 2A and 2B. The composition of the matrix 7 when finally composited varies depending on the mixing ratio of ferrite and metallic magnetic material, particle size, etc. In the same figure, A shows a case where there is little ferrite, and B shows a case where there is a lot of ferrite. In the present invention, the particles are only directly bonded to each other on the surface, so the properties of ferrite and metallic magnetic materials are not lost.
Therefore, it is possible to obtain a high-frequency high-magnetic-flux-density material that has both the characteristics of high resistivity (ferrite) and high magnetic flux density (metallic magnetic material $4), which have not been previously available.

本発明により得られる材料は、磁気へラドコツ用、高周
波電源用、フライバンクトランス用、チシニク用などに
好適である。
The material obtained by the present invention is suitable for use in magnetic helmets, high-frequency power sources, flybank transformers, chishniks, and the like.

〔実施例1] フェライト粉末として共沈法により作製した平均粒子径
0.1請mのM n −Z nフェライトを使用した。
[Example 1] Mn-Zn ferrite with an average particle diameter of 0.1 cm was used as ferrite powder, which was produced by a coprecipitation method.

その組成はFeよOlが52.5モル%、M n Oが
31.5モル%、ZnOが・16.0モル%である。こ
のフェライト粉末はX41回折的には単一相である。金
属系磁性粉末としては平均粒子径1μmの球状カーボニ
ル鉄粉を使用した。
Its composition is 52.5 mol% of Fe-Ol, 31.5 mol% of MnO, and 16.0 mol% of ZnO. This ferrite powder has a single phase in terms of X41 diffraction. As the metallic magnetic powder, spherical carbonyl iron powder with an average particle diameter of 1 μm was used.

上記のM n −Z nフェライトとカーボニル鉄粉を
1対1の重量比で播潰機にて30分混合した。そして第
1図に示ず構成の装置を用いて外径25−―φ、内径1
5m+mφ、高さ5請−のトロイダル状の試料を作製し
た。処理条件は次の通りである。
The above M n -Z n ferrite and carbonyl iron powder were mixed at a weight ratio of 1:1 using a crusher for 30 minutes. Then, using a device with a configuration not shown in Fig. 1, the outer diameter is 25--φ and the inner diameter is 1.
A toroidal sample measuring 5 m+mφ and 5 cm in height was prepared. The processing conditions are as follows.

・最大加圧力・・・500 kg/cm”・加圧速度・
・・250 kg/cm”  ・分・雰囲気・・・窒素
ガス中 ・昇温時間・・・2分 ・接合処理時間・・・1分 接合処理温度(加熱処理でのトップ温度)を300〜9
00℃の範囲で可変して得た試料の特性を第1表に示す
、なお温度測定は、セルに側方から貫通孔を形威し熱電
対を試料に接するように差し込んで行った。
・Maximum pressurizing force...500 kg/cm"・Pressing speed・
...250 kg/cm" ・Minutes ・Atmosphere: In nitrogen gas ・Temperature rising time: 2 minutes ・Bonding processing time: 1 minute Bonding processing temperature (top temperature in heat treatment): 300-9
Table 1 shows the properties of the samples obtained by varying the temperature in the range of 00°C.The temperature was measured by forming a through hole in the cell from the side and inserting a thermocouple in contact with the sample.

第1表 第1表から分かるように、接合温度が500℃という低
温でもかなり高密度化され、それ以上の接合温度で高密
度すなわち高磁束密度の複合体が得られる。800℃以
上の処理ではフェライトと金属間の酸化還元反応が起こ
るため磁気特性は劣化する。これらの理由により本実施
例の条件では最適範囲は500〜800℃である。但し
これは使用する材料や混合比、粒径等によって変動する
。この実施例から本発明によって低温且つ短時間で接合
が完了し良好な複合体が得られることが実証された。
Table 1 As can be seen from Table 1, even when the bonding temperature is as low as 500° C., the density can be considerably increased, and at a bonding temperature higher than that, a composite with a high density, that is, a high magnetic flux density can be obtained. If the treatment is performed at a temperature of 800° C. or higher, an oxidation-reduction reaction occurs between the ferrite and the metal, resulting in deterioration of the magnetic properties. For these reasons, the optimum range is 500 to 800°C under the conditions of this example. However, this varies depending on the materials used, mixing ratio, particle size, etc. This example proves that the present invention can complete bonding at low temperatures and in a short time and yield a good composite.

[実施例2] フェライト粉末として通常の乾式法で作製した1n−相
のMg−Zn系フェライトを用いた。
[Example 2] 1n-phase Mg-Zn-based ferrite produced by a normal dry method was used as ferrite powder.

その平均粒子径は0.5μmである。組成はFezO,
が46モル%、MgOが30モル%MnOが3モル%、
CuOが1モル%、ZnOが20モル%である。金属系
磁性粉末としては平均粒子径が3μmの球状カーボニル
鉄粉を使用した。
Its average particle diameter is 0.5 μm. The composition is FezO,
is 46 mol%, MgO is 30 mol%, MnO is 3 mol%,
CuO is 1 mol% and ZnO is 20 mol%. As the metallic magnetic powder, spherical carbonyl iron powder with an average particle diameter of 3 μm was used.

上記のフェライト粉末と球状カーボニル鉄粉を配合比率
を変えて混合し、600℃の接合温度で処理を行った。
The above ferrite powder and spherical carbonyl iron powder were mixed at different blending ratios and processed at a bonding temperature of 600°C.

その他の処理条件は実施例1と同様である。実験結果を
第2表に示す。
Other processing conditions are the same as in Example 1. The experimental results are shown in Table 2.

第2表 第2表から、フェライトや金属系磁性材料単体では得ら
れない高抵抗率で且つ高磁束密度の材料が得られること
が分かる。飽和磁束密度はカーボニル鉄粉の重量比の増
大に従って単調増加するが、この実施例の場合、高抵抗
率を維持するためにはカーボニル鉄粉は50重量%以下
が好ましい。このようにフェライト材料の中では最も高
抵抗率であるMgZn系フェライトとカーボニル鉄粉と
の混合物を接合処理することにより、高抵抗率で高磁束
密度材料が得られることか実証された。
Table 2 It can be seen from Table 2 that a material with high resistivity and high magnetic flux density, which cannot be obtained with ferrite or metallic magnetic materials alone, can be obtained. The saturation magnetic flux density increases monotonically as the weight ratio of carbonyl iron powder increases, but in the case of this example, in order to maintain high resistivity, the carbonyl iron powder is preferably 50% by weight or less. In this way, it has been demonstrated that a material with high resistivity and high magnetic flux density can be obtained by bonding a mixture of MgZn-based ferrite, which has the highest resistivity among ferrite materials, and carbonyl iron powder.

[実施例31 実施例1のMn−Znフェライト粉末と平均粒子径2μ
mのセンダスト粉末とを重量比で6対4の割合で混合し
、600℃で接合処理を行った。処理条件は基本的には
実施例1と同様であるが、昇温時間を1分とし接合時間
を変化させた。実験結果を第3表に示す。
[Example 31 Mn-Zn ferrite powder of Example 1 and average particle size of 2μ
m Sendust powder was mixed at a weight ratio of 6:4, and a bonding process was performed at 600°C. The processing conditions were basically the same as in Example 1, but the temperature increase time was 1 minute and the bonding time was varied. The experimental results are shown in Table 3.

第3表 第3表から、金属系磁性粉末としてカーボニル鉄粉以外
の材f4でも実施可能なこと、また極く短y、¥間で接
合が可能なことが実証された。接合時間に対して特性は
殆ど変化しないことから、昇温中に接合が殆ど完了して
いることが分かる。
Table 3 Table 3 shows that it is possible to use a material f4 other than carbonyl iron powder as the metallic magnetic powder, and that it is possible to bond within extremely short distances y and ¥. Since the characteristics hardly change with respect to the bonding time, it can be seen that the bonding is almost completed during the temperature rise.

[発明の効果] 本発明は上記のようにほぼ単一相を呈するフェライト粉
末と金属系磁性粉末とを混合して粉末間で放電を起こさ
せながら加圧成型と放電・通電接合をほぼ同時に行わせ
る方法だから、結合材を使用することなく、それら材料
の複合体を極めて短時間で製造できる0本発明では処理
時間が短いため、フェライトと金属との間の界面近傍の
みで反応が生じて接合し、フェライト粉末と金属系磁性
粉末との間で内部まで達するようなイオン拡散反応は殆
ど生しず、そのため高抵抗率(フェライト)と高磁束密
度(金属磁性材料)の特徴を合わせ持った従来技術では
得られない高周波用高磁束密度材料が得られる。
[Effects of the Invention] As described above, the present invention mixes ferrite powder exhibiting a substantially single phase and metallic magnetic powder, and performs pressure molding and discharge/current bonding almost simultaneously while causing electric discharge between the powders. Since the process of the present invention is short, the reaction occurs only near the interface between the ferrite and the metal, resulting in a bonding process. However, almost no ion diffusion reaction that reaches the interior occurs between the ferrite powder and the metal-based magnetic powder, and therefore conventional materials that have both the characteristics of high resistivity (ferrite) and high magnetic flux density (metallic magnetic materials) A high magnetic flux density material for high frequencies, which cannot be obtained by other technologies, can be obtained.

更に本発明では結合材等を一切使用しないため、それら
による磁気的特性やmwt的強度の低下等の問題も生じ
ない。
Furthermore, since the present invention does not use any binding materials, problems such as reduction in magnetic properties and mwt strength due to such materials do not occur.

また本発明では成型と接合を同時に行うためニアネット
シエイプ(near net 5hape)が得られ、
加工しろが少ないために加工コストを低減できる、処理
時間も分オーダと非常に短いために製造効率が向上し製
造コストが低減する。
In addition, in the present invention, since molding and bonding are performed simultaneously, a near net shape (near net 5 shape) can be obtained.
Processing costs can be reduced because there is less machining allowance, and the processing time is very short, on the order of minutes, improving manufacturing efficiency and reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で用いる成型接合装置の概念図、第2図
A、Bは本発明により得られる複合体の説明図である。 10・・・セル、12・・・電極、14・・・試料粉末
、16・・・加圧機構、18・・・加熱用電源、20・
・・制御装置、22・・・フェライト、24・・・金属
系磁性材料。
FIG. 1 is a conceptual diagram of a molding and joining device used in the present invention, and FIGS. 2A and 2B are explanatory diagrams of a composite obtained by the present invention. DESCRIPTION OF SYMBOLS 10... Cell, 12... Electrode, 14... Sample powder, 16... Pressure mechanism, 18... Heating power supply, 20...
...control device, 22...ferrite, 24...metallic magnetic material.

Claims (1)

【特許請求の範囲】[Claims] 1.ほぼ単一相を呈するフェライト粉末と金属系磁性粉
末とを混合して成型接合用の型内に充填し、電圧印加に
より粒子間放電を起こさせながら加圧成型と放電・通電
接合をほぼ同時に行わせて粒子同士が直接接合した複合
体を得ることを特徴とするサーメット型フェライトの製
造方法。
1. A ferrite powder exhibiting a nearly single phase and a metallic magnetic powder are mixed and filled into a mold for forming and bonding, and pressure forming and discharge/current bonding are performed almost simultaneously while applying a voltage to cause interparticle discharge. A method for producing cermet-type ferrite, characterized by obtaining a composite in which particles are directly bonded to each other.
JP1319300A 1989-12-09 1989-12-09 Manufacture of cermet type ferrite Pending JPH03180434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1319300A JPH03180434A (en) 1989-12-09 1989-12-09 Manufacture of cermet type ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1319300A JPH03180434A (en) 1989-12-09 1989-12-09 Manufacture of cermet type ferrite

Publications (1)

Publication Number Publication Date
JPH03180434A true JPH03180434A (en) 1991-08-06

Family

ID=18108658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1319300A Pending JPH03180434A (en) 1989-12-09 1989-12-09 Manufacture of cermet type ferrite

Country Status (1)

Country Link
JP (1) JPH03180434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7686894B2 (en) 2002-06-06 2010-03-30 Robert Bosch Gmbh Magnetically soft powder composite material, method for manufacturing same, and its use
CN102000805A (en) * 2010-12-27 2011-04-06 深圳大学 Metal micro part forming mold and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509798A (en) * 1973-06-01 1975-01-31
JPS5432107A (en) * 1977-08-16 1979-03-09 Agency Of Ind Science & Technol Sintering method using graphite disk
JPS5490312A (en) * 1977-12-28 1979-07-18 Kogyo Gijutsuin Sintered body by electric discharge of titanium diboride
JPS61243103A (en) * 1985-04-19 1986-10-29 Yoshinobu Kobayashi Production of tool tip of composite material consisting of hard poor conductor material powder and metallic powder
JPS6238411A (en) * 1985-08-13 1987-02-19 Olympus Optical Co Ltd Curving operation device for endoscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509798A (en) * 1973-06-01 1975-01-31
JPS5432107A (en) * 1977-08-16 1979-03-09 Agency Of Ind Science & Technol Sintering method using graphite disk
JPS5490312A (en) * 1977-12-28 1979-07-18 Kogyo Gijutsuin Sintered body by electric discharge of titanium diboride
JPS61243103A (en) * 1985-04-19 1986-10-29 Yoshinobu Kobayashi Production of tool tip of composite material consisting of hard poor conductor material powder and metallic powder
JPS6238411A (en) * 1985-08-13 1987-02-19 Olympus Optical Co Ltd Curving operation device for endoscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7686894B2 (en) 2002-06-06 2010-03-30 Robert Bosch Gmbh Magnetically soft powder composite material, method for manufacturing same, and its use
CN102000805A (en) * 2010-12-27 2011-04-06 深圳大学 Metal micro part forming mold and method

Similar Documents

Publication Publication Date Title
CN103996475B (en) A kind of high-performance Ne-Fe-B rare-earth permanent magnet and manufacture method with compound principal phase
CN102483991B (en) Molded rare-earth magnet and process for producing same
US2221983A (en) Layered magnetizable material and structure for electrical purposes
KR100194504B1 (en) Manufacturing Method of Silver-Metal Oxide Composite
CN109215919B (en) Soft magnetic powder, method for producing same, and dust core using same
CN100561621C (en) The silver-tungsten carbide base electric contact material of high resistance fusion welding and processing technology thereof
CN103189936A (en) Soft magnetic powder, powder granules, dust core, electromagnetic component, and method for manufacturing dust core
JP5550013B2 (en) Magnetic nanocomposite and method for producing the same
CN110157932A (en) A kind of preparation method of the graphene Modified Cu base electric contact material based on fabricated in situ
JPH02225637A (en) Preparation of material for electric contact point and production of contact point element containing material therefor
JP2020509163A (en) Improved electrical contact alloy for vacuum contactors
US4701301A (en) Process for producing an internal-oxidized alloy or a shaped article thereof
JP2009164402A (en) Manufacturing method of dust core
CA3197992A1 (en) Method of iron electrode manufacture and articles and systems therefrom
CN107326250B (en) The method of the supper-fast preparation high-performance ZrNiSn block thermoelectric material of one step
CN110931237B (en) Preparation method of soft magnetic powder material with high resistivity and high mechanical strength
JPH03180434A (en) Manufacture of cermet type ferrite
CN101572194A (en) Profiled high conductivity copper-tungsten electrical contact material and processing technique thereof
US4450135A (en) Method of making electrical contacts
JP2022168543A (en) Magnetic metal/ferrite composite and method of producing the same
US4859825A (en) Spot welding electrode and method for making it
CN106381432B (en) A kind of high heat-conductive diamond/multi-metal composite material preparation method
CN105405685A (en) Disconnecting switch contact material and processing technology therefor
JPH03278501A (en) Soft magnetic core material and manufacture thereof
CN105957682B (en) A kind of ferrocart core and preparation method thereof