JPH03170266A - Electrolytic dressing method and device - Google Patents

Electrolytic dressing method and device

Info

Publication number
JPH03170266A
JPH03170266A JP30852289A JP30852289A JPH03170266A JP H03170266 A JPH03170266 A JP H03170266A JP 30852289 A JP30852289 A JP 30852289A JP 30852289 A JP30852289 A JP 30852289A JP H03170266 A JPH03170266 A JP H03170266A
Authority
JP
Japan
Prior art keywords
electrode
dressing
grinding
grindstone
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30852289A
Other languages
Japanese (ja)
Other versions
JP2580807B2 (en
Inventor
Tsutomu Takahashi
務 高橋
Naoto Oikawa
及川 尚登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1308522A priority Critical patent/JP2580807B2/en
Publication of JPH03170266A publication Critical patent/JPH03170266A/en
Application granted granted Critical
Publication of JP2580807B2 publication Critical patent/JP2580807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

PURPOSE:To keep good grinding efficiency over a long period by electrifying an electrode in connection to a power cathode and an abrasive grain layer in connection to a power anode while setting a dressing jig back and forth to a stone so that a resistance value between the electrode and the abrasive grain layer or a pole-to-pole voltage value can be within a given range. CONSTITUTION:The end at least of an electrode 16 is coated with insulator 15 to form a slit 18, which is large enough to put in the outer periphery of a stone 10 to be given dressing, at the end of the insulator 15. A dressing jig 14 for which the end face of an electrode 16 is exposed is arranged on the bottom face of the slit 18, and the outer periphery of the stone 10 is arranged in the slit 18 in such a manner that the end face of the insert electrode 16 is faced to the grinding face of the stone at a constant space. Next, electrolytic grinding liquid is supplied in between the electrode and the grinding face, and a resistance value between the electrode and an abrasive grain layer or a pole- to-pole voltage value is measured by measurement 21, 23, to electrify the electrode in connection to a power cathode and the abrasive grain layer in connection to a power anode while setting the dressing jig back and forth to the stone so that this value can be within a given range.

Description

【発明の詳細な説明】 「産業」二の利用分野」 本発明は、導電性結合剤を使用した砥石に電解ドレッン
ングを施すための方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION ``Industrial'' Second Field of Application The present invention relates to a method and apparatus for electrolytically draining a grinding wheel using a conductive binder.

「従来の技術」 シリコン、フエライト、セラミックス等の硬質脆性材料
の切断または研削を行なう場合には、砥石の耐摩耗性を
高めるために、砥粒として超砥粒を使用するとともに、
結合剤として金属を使用したメタルボンド砥石または電
鋳砥石等が使用されることが多い。
``Prior art'' When cutting or grinding hard and brittle materials such as silicon, ferrite, and ceramics, superabrasive grains are used as abrasive grains to increase the wear resistance of the grinding wheel.
Metal bonded grindstones or electroformed grindstones using metal as a bonding agent are often used.

3 ところで、この種のメタルボンド砥石または電鋳砥石で
は、上記のような硬質脆性材料の切断を行なうと、結合
剤の摩耗速度に比して超砥粒の摩耗が早く、研削開始後
の早期に研削面における超砥粒の切刃の平坦化が生じて
突出量が小さくなり、切れ味の低下が昔しいという問題
があった。
3. By the way, when using this type of metal bonded grinding wheel or electroformed grinding wheel, when cutting hard and brittle materials such as those mentioned above, the superabrasive grains wear out faster than the bonding agent, and the grinding process occurs early after the start of grinding. There was a problem in that the cutting edge of the superabrasive grain on the grinding surface became flattened, the amount of protrusion became smaller, and the sharpness deteriorated.

このため従来では、切れ味の回復を図るために、SiC
やA I t O a砥粒を用いたドレッシング砥石を
、研削の合間に頻繁にあるいは研削と同時に砥石の研削
面に当て、ドレッシングを行なう方法が採られていた。
For this reason, in the past, in order to restore sharpness, SiC
A method has been adopted in which dressing is performed by applying a dressing grindstone using abrasive grains such as A. or A.I.t.o.a.

しかし、この方法では、結合剤とともに超砥粒も破損ず
るため、砥粒層の摩耗が激しく、砥石寿命が大幅Zこ短
縮するうえ、ドレッシング作業によって研削盤の稼動率
が制限され、作業効率の低下を招く欠点があった。
However, with this method, the superabrasive grains are damaged along with the binder, resulting in severe abrasion of the abrasive grain layer and significantly shortening the life of the grinding wheel.The dressing operation also limits the operating rate of the grinder, reducing work efficiency. There were drawbacks that led to a decline.

そこで、第5図に示すように、研削と並行して研削面の
電解ドレッンングを行なう方法が一部で提案されている
Therefore, as shown in FIG. 5, some methods have been proposed in which the ground surface is electrolytically drained in parallel with the grinding.

図中符号1は円板状の切断砥石で、研削盤のス−4 ピンドル軸2に装着され、この砥石1の外周の一郎を覆
って電極3が配置されている。
Reference numeral 1 in the drawing denotes a disc-shaped cutting grindstone, which is attached to a spindle shaft 2 of a grinding machine, and an electrode 3 is arranged to cover the outer circumference of the grindstone 1.

この電極3は全体が銅などの金属で成形され、一対の三
日月状の側板3Aと、これら側板3Aを平行に固定する
天板部3Bとからなり、天坂部3Bの中央には給液路4
が接続されている。
This electrode 3 is entirely made of metal such as copper, and consists of a pair of crescent-shaped side plates 3A and a top plate part 3B that fixes these side plates 3A in parallel.
is connected.

そして砥石lを回転させ、被削材Wを研削しつつ、砥石
1のスピンドル軸2に電源の陽極を、電極3に陰極を接
続し、同時に給液路4から電解液を供給することにより
、回転する砥石lの砥粒層の金属結合剤を徐々に溶出さ
せる。
Then, while rotating the grinding wheel 1 and grinding the workpiece W, by connecting the anode of the power source to the spindle shaft 2 of the grinding wheel 1 and the cathode to the electrode 3, and simultaneously supplying electrolyte from the liquid supply path 4, The metal binder in the abrasive grain layer of the rotating grindstone 1 is gradually eluted.

この方法によれば、砥拉を残して結合剤だけを除去ずる
から、超砥粒を損傷することなく、その発刃を促進して
切れ味を良好に維持する効果が得られる。
According to this method, since only the binder is removed while leaving the abrasive, it is possible to promote blade formation and maintain good sharpness without damaging the superabrasive grains.

[−発明が解決しようとする課題」 ところが」二記のドレッシング方法では、砥石lに陽極
を直接接続しているうえ、電極3が側板部3Aを有する
ため、これら例板部3Aと対向する砥石の側面部におい
てもドレッシングが進行する。
[-Problems to be Solved by the Invention] However, in the dressing method described in Section 2, the anode is directly connected to the grinding wheel l, and the electrode 3 has the side plate portion 3A. Dressing also progresses on the side surfaces.

このため、この方法を特に半導体素子の加工などZこ使
用される極薄刃砥石に使用すると、砥石の薄肉化が無視
できず、切断幅の精度が低下する等の欠点があった。
For this reason, when this method is applied to ultra-thin blade grindstones that are used for processing semiconductor devices, etc., the thinning of the grindstone cannot be ignored, resulting in drawbacks such as a decrease in cutting width accuracy.

また、上記の方法では、電極3と砥石1との間隙量は数
ffffから数ci程度の比較的大きな値に設定せざる
を得ないから、砥石の研fil+而の凹凸を形状修正す
る効果は低く、ツルーイングは別途行なわねばならなか
った。
In addition, in the above method, since the gap between the electrode 3 and the grinding wheel 1 must be set to a relatively large value of several ffff to several ci, the effect of modifying the shape of the grinding fil + the unevenness of the grinding wheel is It was so low that truing had to be done separately.

「課題を解決するための手段」 本発明は」二記の各課題を解決するためになされたもの
で、まず本発明の電解ドレッシング方法は、電極の少な
くとも先端郎を絶縁体で被覆し、この絶縁体の先端郎に
ドレッシングすべき砥石の外周部が入りうるスリットを
形威して、このスリットの底面に電極の先端面を露出さ
せてなるドレッシング治具を、前記スリットに砥石の外
周部を差し入れ電極の前記先端面が砥石の研削而と一定
間隔を空けて対向するように配置し、 電極と研削面との間に電解研削肢を供給するとともに、
電極と砥粒層との抵抗値あるいは極間電圧を測定し、こ
の値が一定範囲に入るように前記ドレソンング治具を砥
石に対し進退させつつ、電極を電源陰極、砥粒層を電源
陽極に接続して通電することを特徴とする。
``Means for Solving the Problems'' The present invention has been made to solve the following two problems.Firstly, the electrolytic dressing method of the present invention covers at least the tip of the electrode with an insulator. A dressing jig is formed by forming a slit in the tip of the insulator into which the outer circumference of the whetstone to be dressed can fit, and exposing the tip of the electrode at the bottom of the slit, and inserting the outer circumference of the whetstone into the slit. The tip surface of the inserted electrode is arranged so as to face the grinding surface of the grindstone at a certain distance, and an electrolytic grinding limb is provided between the electrode and the grinding surface,
Measure the resistance value or inter-electrode voltage between the electrode and the abrasive grain layer, and while moving the draining jig forward and backward with respect to the grinding wheel so that this value falls within a certain range, set the electrode as a power cathode and the abrasive grain layer as a power anode. It is characterized by being connected and energized.

なお、電解トレッシングに先立ち電極の先端を絶縁体で
覆っておき、この絶縁体に対しドレッシングづ−べき砥
石で切り込むことにより前記スリッ}・を形成してもよ
い。
Note that the slits may be formed by covering the tip of the electrode with an insulator prior to electrolytic dressing and cutting into the insulator with a grindstone to be used for dressing.

−・方、本発明の電解ドレッシング装置は、電極の先端
部を絶縁体で被覆し、この絶縁体の先端部にドレッノン
グずへき砥石の外周部か入りうるスリッl・を形成して
、このスリットの底面に電極の先端而を露出させてなる
ドレッノング治具と、前記電極および砥粒層の間の抵抗
値あるいは極間電圧を測定する離間量検出機構と、電極
の先端面が砥石の研削而ど対向するようにドレッノング
治具を支持するとともに、前記離間量検出機構からの出
力信号に応じてドレッシング治具を砥石に向けて進退さ
せる離間量調整機構と、電極と研削而と7 の間隙に電解研削液を供給ずるための給液手段と電極を
陰極、砥粒層を陽極として通電する給電機構とを具備し
たことを特徴とする。
- On the other hand, in the electrolytic dressing device of the present invention, the tip of the electrode is covered with an insulator, a slit is formed in the tip of the insulator into which the outer periphery of the grinding wheel can be inserted. a drainage jig in which the tip of the electrode is exposed on the bottom surface of the grinding jig, a distance detection mechanism for measuring the resistance value or voltage between the electrodes and the abrasive grain layer; a spacing adjustment mechanism that supports the dressing jig so as to face each other and advances or retreats the dressing jig toward the grinding wheel according to an output signal from the spacing detection mechanism; The present invention is characterized in that it is equipped with a liquid supply means for supplying electrolytic grinding fluid and a power supply mechanism that supplies electricity with the electrode as a cathode and the abrasive grain layer as an anode.

なお、前記ドレッシング治具は、給肢手段として前記ス
リッl・内に開口する給肢路を具備していてもよい。
In addition, the said dressing jig may be equipped with the limb feeding path which opens into the said slit as a limb feeding means.

「作 用」 上記の電解ドレッシング方法および装置によれば、ドレ
ッシング速度は通電量を調整することによりフィードバ
ック制御可能なので、研削と同時進行してドレッシング
を行なうことにより、研削面での砥粒摩耗速度とドレッ
シング速度を均衡させることが可能で、長期に亙って良
好な研削効率を維持できる。
"Function" According to the electrolytic dressing method and device described above, the dressing speed can be feedback-controlled by adjusting the amount of current, so by performing dressing simultaneously with grinding, the abrasive wear rate on the grinding surface can be increased. It is possible to balance the dressing speed and grinding speed, and it is possible to maintain good grinding efficiency over a long period of time.

また、スリットの両側壁而で砥石の砥粒層の側面が電気
的に遮蔽されるため、砥粒層の側面部分には電流が殆ど
流れず、砥粒層の側面がドレッシングされることが少な
い。したがって砥粒層の薄肉化を防いで、長期に亙って
一定の切断精度が維持できる。
In addition, since the sides of the abrasive grain layer of the grinding wheel are electrically shielded by the walls on both sides of the slit, almost no current flows through the side surfaces of the abrasive grain layer, and the sides of the abrasive grain layer are rarely dressed. . Therefore, thinning of the abrasive grain layer is prevented, and constant cutting accuracy can be maintained over a long period of time.

8 また、砥粒層と電極との間の抵抗値あるいは極間電圧を
検出してドレッシング治具の位置を制御ずるので、研削
面と電極の間隙量を正確な極く小さい一定値に保つこと
が容易である。このため、研削面の凹凸に対応して鋭敏
に結合剤の溶出速度が変化し、研削面の形状修正効果が
高い。
8 In addition, since the position of the dressing jig is controlled by detecting the resistance value or inter-electrode voltage between the abrasive grain layer and the electrode, the gap between the grinding surface and the electrode can be maintained at an accurate, extremely small constant value. is easy. Therefore, the elution rate of the binder changes sharply in accordance with the irregularities of the ground surface, and the effect of modifying the shape of the ground surface is high.

さらに、ドレッシング治具にスリッl・の内郎に開1」
する給液路を形成し、この給肢路を通じて電解研削液を
供給した場合には、電極と研削面との狭い間隙にも効果
的に電解研削液がfJ(給でき、ドレッシング効率が高
められるとともに、研削面から溶出した金属イオンが速
やかに排出され、結合剤が電極表面に再度析出してドレ
ッシングを阻害することが防げる。
In addition, the dressing jig has a slit open to the inside.
When a liquid supply path is formed and the electrolytic grinding liquid is supplied through this supply path, the electrolytic grinding liquid can be effectively supplied fJ (fJ) even into the narrow gap between the electrode and the grinding surface, increasing the dressing efficiency. At the same time, the metal ions eluted from the grinding surface are quickly discharged, and the binding agent is prevented from depositing again on the electrode surface and inhibiting dressing.

「実施例」 第1図は、本発明に係わる電解ドレッンング装置の一実
施例を示す概略図である。
Embodiment FIG. 1 is a schematic diagram showing an embodiment of an electrolytic drainage apparatus according to the present invention.

図中符号10は、導電性結合剤を使用したメタルボンド
砥石、電鋳砥石あるいは電着砥石等の切断砥石であり、
研削盤のスピンドル軸+1に固定され、ワークテーブル
I2上に固定されたワークWをノズルl3から研削液を
供給しつつ切断する。
The reference numeral 10 in the figure is a cutting whetstone such as a metal bond whetstone, an electroformed whetstone, or an electroplated whetstone using a conductive binder.
A work W fixed to a spindle shaft +1 of a grinding machine and fixed on a work table I2 is cut while supplying grinding fluid from a nozzle l3.

一方、符号I4はドレッシング治具で、これは第2図に
示すように直方体状の絶縁体15と、この絶縁体15の
内部に水平に埋設された細長い板状の電極I6から構成
されている。また絶縁体I5の中心には電極16と平行
に給液孔l7が形成されるとともに、絶縁体15の先端
面の中央には、砥石10の外周部がほぼ隙間なく入る幅
のスリットl8が上下に向けて形成され、このスリット
18の底面において前記電極I6の先端面の一部か露出
している。
On the other hand, reference numeral I4 denotes a dressing jig, which, as shown in FIG. 2, is composed of a rectangular parallelepiped-shaped insulator 15 and an elongated plate-shaped electrode I6 horizontally buried inside this insulator 15. . In addition, a liquid supply hole l7 is formed in the center of the insulator I5 in parallel with the electrode 16, and a slit l8 with a width that allows the outer circumference of the grinding wheel 10 to fit almost without any gap is formed in the center of the tip surface of the insulator 15. A portion of the tip surface of the electrode I6 is exposed at the bottom surface of the slit 18.

このようなスリット18を形成するには、第4図に示す
ように、電極l6を基端部のみが露出した状態で絶縁体
I5の内部に埋設した後、この電極16の先端が露出す
る位置までドレッシングすべき砥石lOで研削ずる。こ
の方法によれば、砥石肉厚に適合した幅を有するスリッ
トI8の形成が容易である。
In order to form such a slit 18, as shown in FIG. 4, after embedding the electrode l6 inside the insulator I5 with only the base end exposed, a position where the tip of the electrode 16 is exposed is created. Grind with a grinding wheel lO until dressing. According to this method, it is easy to form the slit I8 having a width that matches the thickness of the grindstone.

なお、絶縁体15の材質としては、各種のプラスチック
、セラミックス、その他いかなる絶縁材を用いてもよい
が、被削性の良いものが好ましい。
Note that as the material of the insulator 15, various types of plastics, ceramics, and any other insulating materials may be used, but materials with good machinability are preferred.

また電極I6の材質としては、Ni,Ni基合金.ステ
ンレス,Ta等の高耐食性金属、あるいはカーボン、グ
ラファイト等が好適である。なお、図示の電極I6は細
長い板状であるが、この形状に限る必要はなく、九棒状
や管状、端子状としてもよい。
The material of the electrode I6 is Ni, Ni-based alloy. Highly corrosion resistant metals such as stainless steel and Ta, carbon and graphite are suitable. Although the illustrated electrode I6 has an elongated plate shape, it is not limited to this shape and may be shaped like a bar, a tube, or a terminal.

また電極l6の厚さは、砥石径や砥石厚さζこ応じて決
定される。
Further, the thickness of the electrode l6 is determined depending on the diameter of the grinding wheel and the thickness of the grinding wheel ζ.

ドレッシング治具14は離間量調整機構19の駆動部2
0に固定され、スリットl8に砥石IOの外周部を奥ま
で挿入した状態で支持されている。
The dressing jig 14 is the driving part 2 of the separation amount adjustment mechanism 19.
0, and is supported with the outer peripheral part of the grindstone IO fully inserted into the slit l8.

この離間量調整機構19は駆動源として高精度ステッピ
ングモー夕等を具備し、後述するM間量検出機構24か
らの出力信号に応じてドレッシング治具l4を砥石10
に向けて進退させる。
This spacing adjustment mechanism 19 is equipped with a high-precision stepping motor or the like as a drive source, and moves the dressing jig l4 to the grindstone 10 in accordance with an output signal from an M spacing detection mechanism 24, which will be described later.
advance and retreat toward.

そして、電極l6とスピンドル軸11の間には、電極I
6を陰極、スピンドル軸I+を陽極として電流計21を
介して給電装置22が接続され、設定可能な一定電流が
供給される。給電装置22の出力容量は、砥石■0の種
類、必要なドレッシング速度等を考慮して決定すべきで
あるが、通常の砥石に対しては50VXIOA程度あれ
ばよい。
Between the electrode l6 and the spindle shaft 11, an electrode I
A power supply device 22 is connected via an ammeter 21 with 6 as a cathode and the spindle shaft I+ as an anode, and a settable constant current is supplied. The output capacity of the power supply device 22 should be determined in consideration of the type of grinding wheel 0, the required dressing speed, etc., but for a normal grinding wheel, about 50VXIOA is sufficient.

また、給電装置22の両極間には電圧計23が接続され
、この電圧計23はさらに離間量検出機構24に接続さ
れている。この離間量検出機構24は、両極間の電圧が
所定の上限値を上回る(電極I6と砥石10間の抵抗が
増犬ずる)とM H IJk調整機構19を作動させ、
極間電圧が上限{j’jを下回る位置までドレッシング
治具I4を前進させる。
Further, a voltmeter 23 is connected between both poles of the power supply device 22, and this voltmeter 23 is further connected to a separation amount detection mechanism 24. This separation amount detection mechanism 24 operates the M H IJk adjustment mechanism 19 when the voltage between the two poles exceeds a predetermined upper limit (the resistance between the electrode I6 and the grinding wheel 10 increases),
The dressing jig I4 is advanced to a position where the voltage between the electrodes is below the upper limit {j'j.

また、両極間電圧が下限値を下回る(電極16と砥石I
O間の抵抗か減少する)と、離間量凋整機構19を作動
させて下限値を上回る位置までドレッシング治具I4を
後退させる構成となっている。
In addition, the voltage between the electrodes is lower than the lower limit (the electrode 16 and the grinding wheel I
0), the spacing adjustment mechanism 19 is activated to retract the dressing jig I4 to a position exceeding the lower limit value.

以」二の装置を使用するには、給液孔l7を給肢ボンプ
(図示略)に接続し、一定流量で電解研削液をスリット
18と砥石IOの間隙に供給する。そして給電装置22
、離間量検出機構24、離間量網整機構■9をそれぞれ
作動させ、ドレッシング治具14を動かして、電極l6
と砥石lOの研削面との間隔が一定範囲となるように調
節する。
To use the second device, the liquid supply hole 17 is connected to a supply pump (not shown), and electrolytic grinding liquid is supplied at a constant flow rate to the gap between the slit 18 and the grindstone IO. and power supply device 22
, the spacing detection mechanism 24, and the spacing adjustment mechanism 9 are operated, the dressing jig 14 is moved, and the electrode l6
The distance between the grinding surface of the grinding wheel lO and the grinding surface of the grinding wheel lO is adjusted to be within a certain range.

両者の最適離間量は砥石10の種類によって異なり、例
えばM鋳薄刃砥石の場合には1〜500μm、望ましく
は5〜200μ尻程度に設定される。1μ肩未満では電
極l6と砥石IOとの短絡がドレッノング開始当初に生
じてドレッシング効率が低下したり、切粉の通過により
電極l6の損耗が進んで好ましくない。一方、500μ
友より大では形状修正効果が低下するとともに、砥石r
Ill面がドレッシングされる割合が相対的に増加し、
砥石研削面のドレッンング効率が相対的に低下する問題
が生じる。
The optimum distance between the two differs depending on the type of the grindstone 10, and for example, in the case of an M cast thin blade grindstone, it is set to about 1 to 500 μm, preferably about 5 to 200 μm. If the shoulder is less than 1 μm, a short circuit between the electrode 16 and the grinding wheel IO occurs at the beginning of drenching, resulting in a decrease in dressing efficiency, and the wear of the electrode 16 progresses due to passage of chips, which is undesirable. On the other hand, 500μ
If the size is larger than that, the shape correction effect will decrease, and the grindstone r
The proportion of the Ill surface being dressed increases relatively,
A problem arises in which the draining efficiency of the grinding surface of the whetstone is relatively reduced.

また、電極16の先端面での電流密度は0.  1〜l
00、望ましくは0.5−50A/ax’とされる。0
.IA/cy′未満では十分なドレッシングが行なえず
、I O 0 A / ax2より大では電解液の電気
分解速度が増大し、電流増に見合うドレッシング効果が
期待てきない。
Further, the current density at the tip surface of the electrode 16 is 0. 1~l
00, preferably 0.5-50A/ax'. 0
.. If it is less than IA/cy', sufficient dressing cannot be performed, and if it is more than I O 0 A / ax2, the electrolysis rate of the electrolyte increases, and a dressing effect commensurate with the increase in current cannot be expected.

電極I6への通電は連続的に行なうことが望ましいか、
研r111中?こ断続的?こ行なってもほぼ同様な効果
が得られる。また、電流は図示のように直流であっても
、直流バイアスをかIJた交流電流、パルス電流等であ
ってもよい。
Is it desirable to energize electrode I6 continuously?
During research r111? Is this intermittent? Almost the same effect can be obtained by doing this. Further, the current may be a direct current as shown in the figure, or an alternating current with an IJ bias, a pulse current, or the like.

電解研削液としては、砥石10と電極16との間隔が小
さいことから、通常使用されている電気伝導度の低い研
削液も使用可能であるが、ドレッソング効率を高めるに
は、電気伝導度を向上ずるため?二No3−,CI−,
SO4’一等を含む電解質を適度に添加することが望ま
しい。また、これらの電解質の添加による装置本体の腐
食を防止するため、併せてインヒビターを添加してもよ
い。
As the electrolytic grinding fluid, since the distance between the grinding wheel 10 and the electrode 16 is small, a commonly used grinding fluid with low electrical conductivity can also be used, but in order to increase the dressing efficiency, it is necessary to improve the electrical conductivity. To cheat? 2 No. 3-, CI-,
It is desirable to add an appropriate amount of electrolyte containing SO4' and the like. Furthermore, in order to prevent corrosion of the device body due to the addition of these electrolytes, an inhibitor may be added at the same time.

上記構成からなる電解ドレッシング装置および方法によ
れば、ドレッシング速度は電極I6への通電量を凋整す
ることによりフィードバック制御可能なので、研削と同
時進行してドレッシングを行なえば、研削面での砥粒摩
耗速度とドレッシング速度を均衡させることが可能で、
長期に亙って適正な砥粒突出量を維持できる。
According to the electrolytic dressing device and method having the above configuration, the dressing speed can be feedback-controlled by adjusting the amount of current applied to the electrode I6, so if the dressing is performed simultaneously with the grinding, the abrasive particles on the grinding surface can be controlled. It is possible to balance wear rate and dressing rate,
Appropriate abrasive grain protrusion amount can be maintained over a long period of time.

また、絶縁体I5に形成されたスリット18の両側壁面
で砥石IOの砥粒層の側面を電気的に遮蔽ずろため、砥
粒層の側面部分はトレッンングされることが少ない。し
たがって、砥粒層の薄肉化を防いで、薄肉化による切断
代減少などの精度低下が防止できる。
Further, since the side surfaces of the abrasive grain layer of the grinding wheel IO are electrically shielded by both side wall surfaces of the slit 18 formed in the insulator I5, the side portions of the abrasive grain layer are less likely to be trained. Therefore, it is possible to prevent the abrasive grain layer from becoming thinner, thereby preventing a decrease in accuracy such as a decrease in cutting allowance due to the thinning.

また、給電装置22の両極間の電圧を計測してトレッシ
ング治具14の位置を制御するので、研削面と電極16
との間隙を正確な極く小さい一定値に保つことが容易で
ある。このため、研削而の凹凸に対応して鋭敏に結合剤
の溶出速度が変化し、研削面の形状修正効果が高く、ツ
ルーイングを別に行なう必要性が低減できろ。同時に、
砥石IOど電極16間の抵抗値を直接計測する構成に比
して装置が単純化できる。
In addition, since the position of the tracing jig 14 is controlled by measuring the voltage between both poles of the power supply device 22, the grinding surface and the electrode 16 are
It is easy to maintain the gap between the two at an accurate, extremely small constant value. Therefore, the elution rate of the binder changes sharply in response to the unevenness of the grinding surface, and the shape modification effect of the ground surface is high, reducing the need for separate truing. at the same time,
The apparatus can be simplified compared to a configuration in which the resistance value between the grindstone IO and the electrodes 16 is directly measured.

さらに、上記実施例では、ドレッシング治具■4に電極
I6の間に給液孔l7を形成し、この給液孔I7を通じ
てスリット18内に電解研削液をf共給しているので、
電極l6と砥石IOとの狭い間隙に効果的に電解研削液
が供給でき、ドレッシング効率が高められるとともに、
研削面から溶出した金属イオンが速やかに排出され、電
極l6のl5 露出而に析出しにくいという利点も得られる。
Furthermore, in the above embodiment, a liquid supply hole l7 is formed in the dressing jig (4) between the electrodes I6, and the electrolytic grinding liquid is co-supplied into the slit 18 through this liquid supply hole I7.
Electrolytic grinding fluid can be effectively supplied to the narrow gap between the electrode l6 and the grinding wheel IO, improving dressing efficiency, and
Another advantage is that the metal ions eluted from the grinding surface are quickly discharged and are less likely to precipitate on the exposed portion of the electrode l6.

なお、本発明は上記実施例に限定されず、必要に応じて
以下のように各部構成を変更してよい。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and the configuration of each part may be changed as required as described below.

例えば、−1二記実施例では定電流型の給電装置22の
両極間の電圧を測定することにより、電極16と砥石1
0との抵抗を間接的に検出していたが、その代わりに、
砥石IOのスピンドル軸IIと電極16間の抵抗値を直
接計測して治具位置を制御してもよい。
For example, in the embodiment -12, the voltage between the electrode 16 and the grinding wheel 1 is measured by measuring the voltage between the two poles of the constant current type power supply device 22.
The resistance with 0 was detected indirectly, but instead,
The jig position may be controlled by directly measuring the resistance value between the spindle shaft II of the grindstone IO and the electrode 16.

また、ドレッシング治具■4の内部に給肢路17を形成
せず、外部から給液ずる構成としてもよいし、さらに、
カップ型砥石や内周刃型砥石など円板形砥石以外の砥石
に本発明を適用することも可能である。
Alternatively, the limb supply path 17 may not be formed inside the dressing jig 4, and the liquid may be supplied from the outside.
It is also possible to apply the present invention to grindstones other than disc-shaped grindstones, such as cup-shaped grindstones and inner peripheral edge-type grindstones.

「実験例」 次に、実験例を挙げて本発明の効果を実証する。"Experiment example" Next, the effects of the present invention will be demonstrated by giving experimental examples.

(実験例l) 第1図と同様の装置を作威し、研削と平行して下記のダ
イヤモンド電鋳砥石(電折Niボンド)のドレッシング
を行なった。
(Experimental Example 1) An apparatus similar to that shown in FIG. 1 was used, and in parallel with the grinding, the following dressing of a diamond electroformed grindstone (electroformed Ni bond) was carried out.

I6 外径+01111JIX厚さ0.37Iux内径40x
xダイヤモン1・砥粒径 2 0/3 0μ肩砥粒含有
率32vol%、刃先突出量511I!l・レッシング
治具としては、厚さ2.0■×幅5yixO) S U
 S 3 0 4板を電極として基端のみ露出さU・て
エボキシ樹脂中に埋設し、樹脂硬化後、電極の上部に電
極と平行に6xzφの給液孔を形成した。
I6 Outer diameter + 01111JIX Thickness 0.37Iux Inner diameter 40x
xDiamond 1, abrasive grain diameter 2 0/3 0μ shoulder abrasive grain content 32vol%, cutting edge protrusion 511I! l・As a lessing jig, thickness 2.0 x width 5yixO) S U
An S304 plate was used as an electrode and embedded in epoxy resin with only the base end exposed, and after the resin was cured, a 6xzφ liquid supply hole was formed in the upper part of the electrode in parallel with the electrode.

さらに電極の基端にリード線を接続した後、基端を絶縁
材で被覆した。
Furthermore, after connecting a lead wire to the base end of the electrode, the base end was covered with an insulating material.

次に、このドレッシング治具を、マイクロメータを備え
た離間量調整機構を介してスライシングマシンに固定し
、砥石の中心に向けて進退可能として砥石の外周部に対
向させた。さらに、電極と砥石との間に抵抗計を接続し
た。
Next, this dressing jig was fixed to a slicing machine via a spacing adjustment mechanism equipped with a micrometer, and was opposed to the outer periphery of the grindstone so that it could move forward and backward toward the center of the grindstone. Furthermore, a resistance meter was connected between the electrode and the grindstone.

次いでスラインングマシンを作動させ、電鋳薄刃砥石を
回転させつつ、離間量調整機構によりドレッシング治具
を砥石に向けて移動し、その先端面に切り込んだ。そし
て抵抗計が短絡を示した時点で切り込みを停止し、その
位置からマイクロメータを用い1・レッノング治具を5
μm後退させた。
Next, the slining machine was operated, and while rotating the electroformed thin-blade grindstone, the dressing jig was moved toward the grindstone using the spacing adjustment mechanism, and a cut was made into the tip surface of the grindstone. Then, when the resistance meter shows a short circuit, stop cutting, and from that point, use a micrometer to adjust the
It was moved back by μm.

次いで、電極を直流定電流電源の陰極に、スピンドルを
陽極にそれぞれ接続し、給液孔の先端に給液ノズルを固
定したうえ、給液孔の基端に給液ボンプを連結した。
Next, the electrode was connected to the cathode of a DC constant current power source, the spindle was connected to the anode, a liquid supply nozzle was fixed to the tip of the liquid supply hole, and a liquid supply pump was connected to the base end of the liquid supply hole.

以」二の準備が完了した後、以下の研削条件およびドレ
ッシング条件で研削実験を行なった。
After completing the above two preparations, a grinding experiment was conducted under the following grinding and dressing conditions.

被削材:AL03・TiC材、 縦75灰だ×横75尻n×厚さ4mm 送り速度:30m次/min. 切込深さ:4.51111F    ピッチ:Iui総
研削距離:5 25灰 研削液二市水+インヒビター少量 十N aN O 3 1 0 9/ Qドレッシング電
流+0.09A 電極と研削而の距M:5〜50μm その結果、法線方向の切断抵抗は切断初期でII kg
Wを示した後、0 . 6 k9Wで一定化した。52
5尻切断後の電鋳薄刃砥石の半径摩耗は34μm、被削
材表面における各切断ラインでの最大チッピングのばら
つき範囲は20〜25μRの非常に狭い範囲にあった。
Work material: AL03/TiC material, vertical 75mm x width 75mm x thickness 4mm Feed speed: 30m/min. Depth of cut: 4.51111F Pitch: Iui Total grinding distance: 5 25 ash Grinding liquid 2 parts Water + Small amount of inhibitor 10 N aN O 3 1 0 9/ Q Dressing current + 0.09 A Distance between electrode and grinding machine M: 5 ~50μm As a result, the cutting resistance in the normal direction is II kg at the initial stage of cutting.
After showing W, 0. It was stabilized at 6 k9W. 52
The radius wear of the electroformed thin-blade grindstone after 5-butt cutting was 34 μm, and the range of maximum chipping variation at each cutting line on the surface of the workpiece was within a very narrow range of 20 to 25 μR.

また、刃先の形状変化を別の同材質の被削材にハーフカ
ットで切り込んで、形成された溝の断面形状から凋べた
ところ、刃先先端から2 0 0 717+の位置での
摩耗による砥石の薄肉化量は僅か12μ尻であった。
In addition, when the shape change of the cutting edge was half cut into another workpiece made of the same material, and the cross-sectional shape of the groove formed was reduced, the thin wall of the grinding wheel due to wear at a position 2 0 0 717+ from the tip of the cutting edge. The amount of carbonization was only around 12μ.

次に、砥石切り込み量を摩耗分補正した後、ドレッンン
グ治具の位置を適正化し、再び新たな前記と同材質の被
削材の切断を、前記と同じ研削条件で行ない、これらの
操作を繰り返して被削材を5回切断した。
Next, after correcting the cutting depth of the grinding wheel for wear, the position of the draining jig is optimized, and a new workpiece of the same material is cut again under the same grinding conditions as above, and these operations are repeated. The work material was cut five times.

各切断完了後のカーフ幅、切断抵抗、最大ヂッピング、
刃先先端から200μ肩の位置での薄肉化量および半径
方向の累積摩耗量をそれぞれ測定した。その結果を第1
表に示す。なお、測定を行なったのは、各被削材の最終
切断ラインの中央部である。
Kerf width, cutting resistance, maximum tipping after each cut is completed,
The amount of thinning and the amount of cumulative wear in the radial direction at a position 200μ shoulder from the tip of the cutting edge were measured. The result is the first
Shown in the table. Note that the measurement was performed at the center of the final cutting line of each workpiece.

(比較例1) 前記実験例1におけるトレッノング治具の代わりに、幅
15izx厚さ15■の矩形状のドレッシ9 ング砥石(WC400・ビl・リファイド砥石)を前記
と同じ被削材の前端に沿って配置し、前記と同じ切断条
件で披削材の切断を行なうとともに、各切断ライン毎に
ドレッシング砥石を切断した。このようにして被削材1
枚を加工し終イつる毎に切り込み量を補正しつつ、5枚
の被削材を切断した。
(Comparative Example 1) Instead of the training jig in Experimental Example 1, a rectangular dressing grindstone (WC400/Bil/Refined grindstone) with a width of 15 mm and a thickness of 15 mm was used at the front end of the same workpiece as described above. The dressing grindstone was placed along the cutting line, and the cutting material was cut under the same cutting conditions as above, and the dressing grindstone was cut at each cutting line. In this way, the work material 1
Five workpieces were cut while correcting the depth of cut after each workpiece.

前記実験例と同じ項目について測定した結果を第1表に
示す。
Table 1 shows the results of measurements on the same items as in the above experimental example.

(以下余白) 20 (尖験例2) 第1図と同様の装置を作成し、研削と平行して下記のダ
イヤモンドメタルボンド砥石(ボンF:85wt%Cu
+15+vt%Sn)のドレッシングを行なった。
(Left below) 20 (Example 2) A device similar to that shown in Figure 1 was created, and the following diamond metal bond grinding wheel (Bond F: 85wt%Cu
+15+vt%Sn) dressing was performed.

外径1011IIlIx厚さ1.Ozix内径40■ダ
イヤモンド砥粒径:40/60μ仄 砥粒含有率25vol%、刃先突出員10mmトレッシ
ング治具としては、厚さ5.0■×幅5amのカーボン
板を電極として基端のみ露出させてエボキン樹脂中に埋
設し、樹脂硬化後、電極の」一部に電極と平行(こ6z
zφの給液孔を形成した。さらに電極の基端にリード線
を接続した後、基端を絶縁材で被覆した。
Outer diameter 1011IllIx Thickness 1. Ozix inner diameter: 40 ■ Diamond abrasive grain size: 40/60 μ, abrasive grain content: 25 vol%, cutting edge protrusion: 10 mm As a tracing jig, a carbon plate with a thickness of 5.0 mm and a width of 5 am is used as an electrode, and only the base end is exposed. After the resin hardens, a part of the electrode is parallel to the electrode (6z).
A liquid supply hole of zφ was formed. Furthermore, after connecting a lead wire to the base end of the electrode, the base end was covered with an insulating material.

次に、このドレッシング治具を、マイクロメータを備え
た離間量調整機構を介してスライシングマンンに固定し
、砥石の中心に向けて進退可能として砥石の外周部に対
向させた。さらに、電極と砥石との間に抵抗計を接続し
た。
Next, this dressing jig was fixed to the slicing man via a spacing adjustment mechanism equipped with a micrometer, and was opposed to the outer periphery of the grindstone so that it could move forward and backward toward the center of the grindstone. Furthermore, a resistance meter was connected between the electrode and the grindstone.

次いてスライシングマシンを作動させ、メタルボンド砥
石を回転させつつ、離間量調整機構によリドレッシング
治具を砥石に向けて移動し、その先端面に切り込んだ。
Next, the slicing machine was operated, and while the metal bond grindstone was being rotated, the redressing jig was moved toward the grindstone using the spacing adjustment mechanism, and a cut was made into the tip surface of the grindstone.

そして抵抗計が短絡を示した時点で切り込みを停止し、
その位置からマイクロメータを用いドレッシング治具を
300μ次後退させた。
Then, when the ohmmeter shows a short circuit, stop cutting,
From that position, the dressing jig was moved back 300 μm using a micrometer.

次いで、電極を直流定電流電源の陰極に、スピンドルを
陽極に接続し、給液孔の先端に給液ノズルを固定したう
え、給肢孔の基端に給液ボンプを連結した。
Next, the electrode was connected to the cathode of a DC constant current power source, the spindle was connected to the anode, a liquid supply nozzle was fixed to the tip of the liquid supply hole, and a liquid supply pump was connected to the base end of the limb supply hole.

次に、砥石を回転させ、給液ボンプを作動して給液ノズ
ルから研IYI+ 1を供給し、直流安定化電源の電流
値を0.15Aに設定して電極間に通電し、電極間の電
圧を測定した。得られた電圧値+2Vに対して直流電源
の電圧上限を+4V、下限をIIVに設定し、研削中は
これら上限・下限値に従って離間m調整機構を作動させ
、砥石の研削面と電極との離間量を一定化する構威とし
た。
Next, rotate the whetstone, operate the liquid supply pump to supply grinding IYI+1 from the liquid supply nozzle, set the current value of the DC stabilized power supply to 0.15A, and apply electricity between the electrodes. The voltage was measured. For the obtained voltage value +2V, set the upper voltage limit of the DC power supply to +4V and the lower limit to IIV, and during grinding, operate the distance m adjustment mechanism according to these upper and lower limit values to adjust the distance between the grinding surface of the grinding wheel and the electrode. The structure was designed to keep the amount constant.

以」二の準備が完了した後、以下の研削条件およびドレ
ッンング条件で研削実験を行なった。
After completing the above two preparations, a grinding experiment was conducted under the following grinding and draining conditions.

被削材:AI,03材、 縦2 0 0 rtrmx横1 2 0 iiX厚さ5
xM送り速度: 3 0 xR/min 切込深さ:6.5■   ビッチ:21l尻総研削距離
・ IOi 研削液,市水+インヒビター少量 +NaCI 5g/12 ドレッシング電流: 0.1 5A その結果、法線方向の切断抵抗は切断初期で2I kg
Wを示した後、約1.5kgWで一定化した。
Work material: AI, 03 material, vertical 200 rtrm x horizontal 120 ii x thickness 5
xM feed rate: 30 xR/min Depth of cut: 6.5 ■ Bitch: 21l total grinding distance・IOi Grinding fluid, city water + small amount of inhibitor + NaCI 5g/12 Dressing current: 0.1 5A As a result, method The cutting resistance in the linear direction is 2I kg at the beginning of cutting.
After showing W, it became constant at about 1.5 kgW.

10JI切断後のメタルボンド砥石の半径摩耗量は36
8μm、被削材表面にお1ノる各切断ラインでの最大チ
ッピングのばらつき範囲は30〜35μ肩の非常に狭い
範囲にあった。
The radius wear amount of the metal bond grindstone after 10JI cutting is 36
The variation range of maximum chipping at each cutting line of 8 μm on the surface of the workpiece was in a very narrow range of 30 to 35 μm.

また、刃先の形状変化を別の同材質の被削材にハーフカ
ットで切り込んで、形成された溝の断面形状から調べた
ところ、刃先先端から500μmの位置での摩耗による
砥石の薄肉化量は僅か22μだであった。
In addition, when we investigated the change in the shape of the cutting edge by making a half-cut into another workpiece made of the same material and looking at the cross-sectional shape of the groove formed, we found that the amount of thinning of the grinding wheel due to wear at a position 500 μm from the tip of the cutting edge was It was only 22μ.

(比較例2) 前記実験例2におけるドレッシング治具の代わりに、幅
15RxX厚さ+5zzの矩形状のドレッシング砥石(
WC220・ビトリファイド砥石)を前記と同じ被削材
の前端に沿って配置し、前記と同じ切断条件で被削材の
切断を行なうとともに、各切断ライン毎にドレッシング
砥石を切断した。
(Comparative Example 2) Instead of the dressing jig in Experimental Example 2, a rectangular dressing grindstone (width 15RxX thickness + 5zz) was used.
A WC220 vitrified grindstone) was placed along the front edge of the same workpiece as above, and the workpiece was cut under the same cutting conditions as above, and a dressing grindstone was cut for each cutting line.

前記実験例と同じ項目について測定した結果、法線方向
の切断抵抗は切断初期で2.4kgWを示した後、切断
距離3mで3.IkgW,6mで4.8kgW、10M
で5.9k9Wと切断距離の増加に従い徐々に増加した
As a result of measuring the same items as in the above experimental example, the cutting resistance in the normal direction was 2.4 kgW at the initial stage of cutting, and then 3.5 kgW at a cutting distance of 3 m. IkgW, 4.8kgW at 6m, 10M
The power consumption was 5.9k9W, which gradually increased as the cutting distance increased.

Ion切断後のメタルボンド砥石の半径摩耗員は580
μMだった。被削材表面にお(フる各切断ラインでの最
大チッピングのばらつき範囲は35〜50μMだった。
Radius wear force of metal bond grinding wheel after Ion cutting is 580
It was μM. The maximum chipping variation range at each cutting line on the surface of the workpiece was 35 to 50 μM.

また刃先先端から500μnの位置での摩耗による砥石
の薄肉化量は45μmだった。
Further, the amount of thinning of the grindstone due to wear at a position 500 μn from the tip of the cutting edge was 45 μm.

(実験例3) 第1図と同様の装置を作成し、研削と平行して下記のダ
イヤモンド電鋳砥石(電折Niボンド)のドレッシング
を行なった。
(Experimental Example 3) An apparatus similar to that shown in FIG. 1 was prepared, and in parallel with the grinding, the following dressing of a diamond electroformed grindstone (electroformed Ni bond) was performed.

外径76.2111J!X厚さ0.I3zuX内径40
mmダイヤモンド砥粒径:8/16μl 砥粒含有率32vol%、刃先突出量3zmドレッシン
グ治具としては、厚さ1.0■×幅522のNi板を電
極として基端のみ露出させてエボキシ樹脂中に埋設し、
樹脂硬化後、電極の上部に電極と平行に6渭肩φの給液
孔を形成した。さらに電極の基端にリード線を接続した
後、基端を絶縁材で被覆した。
Outer diameter 76.2111J! X thickness 0. I3zuX inner diameter 40
mm Diamond abrasive grain size: 8/16 μl Abrasive grain content 32 vol%, cutting edge protrusion 3 zm As a dressing jig, a Ni plate with a thickness of 1.0 cm and a width of 522 cm was used as an electrode, with only the base end exposed, and placed in epoxy resin. buried in
After the resin had hardened, a liquid supply hole with a diameter of 6 sides was formed on the top of the electrode in parallel with the electrode. Furthermore, after connecting a lead wire to the base end of the electrode, the base end was covered with an insulating material.

次に、このドレッソング治具を、マイクロメータを備え
た離間量調整機構を介してスライシングマソンに固定し
、砥石の中心に向けて進退可能として砥石の外周部に対
向させた。
Next, this Dressong jig was fixed to the slicing mason via a spacing adjustment mechanism equipped with a micrometer, and was opposed to the outer periphery of the grindstone so that it could move forward and backward toward the center of the grindstone.

次に、直流安定化電源に対し前記と同様に電極およびス
ピンドルを接続し、電流値を0.04A,電圧値を16
Vに合わせ、両極間に通電しつつスライシングマシンを
作動させ、電鋳薄刃砥石を回転させつつ、離間量凋整機
構によりドレッシング治具を砥石に向fノで移動し、そ
の先端面に切り込んた。そして両極間に電流が流れて両
極間の電圧が降下し、短絡を示した時点で切り込みを停
止し、その位置からマイクロメータを用いドレッシング
治具を50μm後退させた。次いで、給液孔の先端に給
肢ノズルを固定したうえ、給肢孔の基端に給液ボンプを
連結した。
Next, connect the electrode and spindle to the DC stabilized power supply in the same way as above, and set the current value to 0.04A and the voltage value to 16.
V, the slicing machine was operated while applying electricity between the two poles, and while the electroformed thin-edged grindstone was being rotated, the dressing jig was moved in the direction of the grindstone using the spacing adjustment mechanism, and a cut was made into the tip surface of the grindstone. . Then, when a current flowed between the two electrodes and the voltage between the two electrodes dropped, indicating a short circuit, the cutting was stopped, and the dressing jig was retreated 50 μm from that position using a micrometer. Next, a limb supply nozzle was fixed to the tip of the liquid supply hole, and a liquid supply pump was connected to the base end of the limb supply hole.

以上の準備が完了した後、以下の研削条件およびドレッ
シング条件で研削実験を行なった。
After completing the above preparations, a grinding experiment was conducted under the following grinding and dressing conditions.

被削材.鏡面研摩されたH I Fフエライト(ワック
スでテーブルに接合) 縦20uix横50111lx厚さ2u送り速度.20
■/min 切込深さ 2.5x1l   ピッチ:0.5Mm総切
断ライン数・ 90(ライン)xl00(被削材) 研削K1二市水十インヒビター少量 + N aN 0 35 0 9/ i2ドレソソング
電流:0.04A 前記試験を5回実施したが、いずれも被削材の合金から
の剥離・飛散を生じることなく、それぞれ設定値である
9000ラインの切断が行なえた。
Work material. Mirror-polished H IF ferrite (bonded to table with wax) 20 uix length x 50111 lx width x 2u thickness feed speed. 20
■/min Depth of cut 2.5x1l Pitch: 0.5mm Total number of cutting lines 90 (lines) x l00 (work material) Grinding K1 Niichi Mizuju inhibitor small amount + NaN 0 35 0 9/ i2 Dreso song current: 0.04A The above test was conducted five times, and in each case, the set value of 9000 lines could be cut without causing any peeling or scattering of the work material from the alloy.

(比較例3) 前記実験例3におけるドレッンング治具を用いず、他の
条件は実験例3と同一にして、切断試験を5回実施した
(Comparative Example 3) A cutting test was conducted five times under the same conditions as in Experimental Example 3 without using the draining jig in Experimental Example 3 above.

その結果、いずれの切断試験においても、設定値に至る
前に被削材が合金から剥離・飛散し、平均的な被削材の
飛散を生じるまでの切断ライン数は826ラインだった
As a result, in all cutting tests, the work material peeled off and scattered from the alloy before reaching the set value, and the average number of cutting lines until the work material was scattered was 826 lines.

「発明の効果」 以上説明したように、本発明に係わる電解ドレッシング
方法および装置によれば、以下のような優れた効果が得
られる。
"Effects of the Invention" As explained above, according to the electrolytic dressing method and apparatus according to the present invention, the following excellent effects can be obtained.

■ ドレッシング速度は通電量を詞整することによりフ
ィードバック制御可能なので、研削と同時進行してドレ
ッシングを行なうことにより、研削面での砥粒摩耗速度
とドレッシング速度を均衡させることが可能で、長期に
亙って良好な研削効率を維持できる。
■ Dressing speed can be feedback-controlled by adjusting the amount of current, so by performing dressing at the same time as grinding, it is possible to balance the abrasive wear rate on the grinding surface and the dressing speed, resulting in a long-term Good grinding efficiency can be maintained throughout.

■ スリッ1・の両側壁面で砥石の砥粒層の側面が電気
的に遮蔽されるため、砥粒層の側面部分には電流が殆ど
流れず、砥粒層の側面がドレッシングされることが少な
い。したがって、砥粒層の薄肉化を防いで、長期に亙っ
て良好な研削精度が維持できる。
■ Since the sides of the abrasive grain layer of the grinding wheel are electrically shielded by both side walls of the slit 1, almost no current flows through the side surfaces of the abrasive grain layer, and the sides of the abrasive grain layer are rarely dressed. . Therefore, thinning of the abrasive grain layer can be prevented and good grinding accuracy can be maintained over a long period of time.

■ 砥粒層と電極との間の抵抗値を検出してドレッシン
グ治具の位置を制御するので、研削面と電極の間隙量を
正確な極く小さい一定値に保つことが容易である。この
ため、研削面の凹凸に対応して鋭敏にドレッシング強度
が変化し、研削面の形状修正効果が高い。
■ Since the position of the dressing jig is controlled by detecting the resistance value between the abrasive grain layer and the electrode, it is easy to maintain the gap between the grinding surface and the electrode at an accurate, extremely small constant value. Therefore, the dressing strength changes sharply in response to the unevenness of the grinding surface, and the effect of modifying the shape of the grinding surface is high.

■ ドレッシング治具にスリットの内部に開口する給肢
路を形成し、この給岐路を通じて電解研削液を供給した
場合には、電極と研削面との狭い間隙にも効果的に電解
研削岐が供給でき、ドレッシング効率が高められるとと
もに、研削面から溶出した金属イオンが速やかに排出さ
れ、電極表面に析出しにくいという利点も得られる。
■ If a feeding path that opens inside the slit is formed in the dressing jig and electrolytic grinding fluid is supplied through this feeding path, the electrolytic grinding fluid can be effectively supplied to the narrow gap between the electrode and the grinding surface. This not only improves the dressing efficiency but also provides the advantage that metal ions eluted from the grinding surface are quickly discharged and are less likely to be deposited on the electrode surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる電解トレッシング装置の一実施
例を示す概略図、第2図および第3図は同装置のトレッ
ノング治具を示す縦断面図および正面図、第4図はスリ
ット形成前のドレソシング治具を示す縦断面図である。 −・方、第5図は従来の電解l・レッンング方法を示す
概略図である。 W・・・被削材、IO・・・砥石、I1・・・スピンド
ル軸、14 ・ドレッノング治具、I5 ・絶縁体、I
6・・電極、17 ・給液孔(給液路)、18・・・ス
リット、■9 M間量調整機構、20・駆動部、21・
・電流計、22・・・給電機構、23・・・電圧計、2
4・・・離間量検出機構。
Fig. 1 is a schematic diagram showing an embodiment of the electrolytic tresting device according to the present invention, Figs. 2 and 3 are longitudinal cross-sectional views and front views showing a treading jig of the same device, and Fig. 4 is a slit forming FIG. 3 is a longitudinal cross-sectional view showing the previous dressing jig. On the other hand, FIG. 5 is a schematic diagram showing a conventional electrolytic lending method. W... Work material, IO... Grinding wheel, I1... Spindle shaft, 14 ・Draining jig, I5 ・Insulator, I
6.Electrode, 17.Liquid supply hole (liquid supply path), 18.Slit, ■9.M distance adjustment mechanism, 20.Drive unit, 21.
・Ammeter, 22...Power supply mechanism, 23...Voltmeter, 2
4... Separation amount detection mechanism.

Claims (4)

【特許請求の範囲】[Claims] (1)導電性結合剤を使用した砥粒層を有する砥石を軸
回りに回転しつつ、前記砥粒層の研削面を電解ドレッシ
ングする方法であって、 電極の少なくとも先端部を絶縁体で被覆し、この絶縁体
の先端部にドレッシングすべき砥石の外周部が入りうる
スリットを形成して、このスリットの底面に電極の先端
面を露出させてなるドレッシング治具を、前記スリット
に砥石の外周部を差し入れ電極の前記先端面が砥石の研
削面と一定間隔を空けて対向するように配置し、 電極と研削面との間に電解研削液を供給するとともに、
電極と砥粒層との抵抗値あるいは極間電圧を測定し、こ
の値が一定範囲に入るように前記ドレッシング治具を砥
石に対し進退させつつ、電極を電源陰極、砥粒層を電源
陽極にそれぞれ接続して通電することを特徴とする電解
ドレッシング方法。
(1) A method of electrolytically dressing the ground surface of the abrasive layer while rotating a grindstone having an abrasive layer using a conductive binder around its axis, the method comprising: coating at least the tip of the electrode with an insulator; A slit into which the outer circumference of the whetstone to be dressed can fit is formed at the tip of this insulator, and a dressing jig consisting of exposing the tip of the electrode at the bottom of the slit is inserted into the slit to fit the outer circumference of the whetstone. Insert the part so that the tip surface of the electrode faces the grinding surface of the grindstone at a constant distance, and supply electrolytic grinding fluid between the electrode and the grinding surface,
Measure the resistance value or inter-electrode voltage between the electrode and the abrasive grain layer, and while moving the dressing jig forward and backward with respect to the grinding wheel so that this value falls within a certain range, set the electrode as a power cathode and the abrasive grain layer as a power anode. An electrolytic dressing method characterized by connecting each and applying electricity.
(2)前記電解ドレッシングに先立ち、前記電極の先端
を絶縁体で覆っておき、この絶縁体に対しドレッシング
すべき砥石で切り込むことにより、前記スリットを形成
することを特徴とする請求項1記載の電解ドレッシング
方法。
(2) Prior to the electrolytic dressing, the tip of the electrode is covered with an insulator, and the slit is formed by cutting the insulator with a grindstone to be dressed. Electrolytic dressing method.
(3)導電性結合剤を使用した砥粒層を有する砥石を軸
回りに回転しつつ、前記砥粒層の研削面を電解ドレッシ
ングする装置であって、 電極の先端部を絶縁体で被覆し、この絶縁体の先端部に
ドレッシングすべき砥石の外周部が入りうるスリットを
形成して、このスリットの底面に電極の先端面を露出さ
せてなるドレッシング治具と、前記電極および砥粒層の
間の抵抗値あるいは極間電圧を測定する離間量検出機構
と、電極の先端面が砥石の研削面と対向するようにドレ
ッシング治具を支持するとともに、前記離間量検出機構
からの出力信号に応じてドレッシング治具を砥石に向け
て進退させる離間量調整機構と、電極と研削面との間隙
に電解研削液を供給するための給液手段と、電極を陰極
、砥粒層を陽極として通電する給電機構とを具備したこ
とを特徴とする電解ドレッシング装置。
(3) A device for electrolytically dressing the ground surface of the abrasive layer while rotating a grindstone having an abrasive layer using a conductive binder around an axis, the tip of the electrode being covered with an insulator. A dressing jig is provided, in which a slit is formed at the tip of the insulator into which the outer circumferential portion of the grinding wheel to be dressed can fit, and the tip surface of the electrode is exposed at the bottom of the slit, and the electrode and the abrasive layer are A separation amount detection mechanism that measures the resistance value or voltage between the electrodes, and a dressing jig that supports the dressing jig so that the tip end surface of the electrode faces the grinding surface of the grindstone, and responds to the output signal from the separation amount detection mechanism. a distance adjustment mechanism for moving the dressing jig forward and backward toward the grindstone; a liquid supply means for supplying electrolytic grinding fluid to the gap between the electrode and the grinding surface; and a supply means for supplying electricity with the electrode as a cathode and the abrasive grain layer as an anode. An electrolytic dressing device characterized by comprising a power supply mechanism.
(4)前記ドレッシング治具は、給液手段として前記ス
リット内に開口する給液路を具備していることを特徴と
する請求項3記載の電解ドレッシング装置。
(4) The electrolytic dressing device according to claim 3, wherein the dressing jig includes a liquid supply path opening into the slit as a liquid supply means.
JP1308522A 1989-11-28 1989-11-28 Electrolytic dressing method and apparatus Expired - Lifetime JP2580807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308522A JP2580807B2 (en) 1989-11-28 1989-11-28 Electrolytic dressing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308522A JP2580807B2 (en) 1989-11-28 1989-11-28 Electrolytic dressing method and apparatus

Publications (2)

Publication Number Publication Date
JPH03170266A true JPH03170266A (en) 1991-07-23
JP2580807B2 JP2580807B2 (en) 1997-02-12

Family

ID=17982044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308522A Expired - Lifetime JP2580807B2 (en) 1989-11-28 1989-11-28 Electrolytic dressing method and apparatus

Country Status (1)

Country Link
JP (1) JP2580807B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184766A (en) * 1989-12-15 1991-08-12 Hitachi Ltd Grinding method for ceramics member and device thereof
EP0791813A2 (en) * 1996-02-22 1997-08-27 Seiko Instruments R&D Center Inc. Semiconductor acceleration or pressure sensor
EP0793103A2 (en) * 1996-02-27 1997-09-03 Seiko Instruments R&D Center Inc. Semiconductor acceleration sensor
US6158283A (en) * 1996-02-28 2000-12-12 Seiko Instruments R&D Center Inc. Semiconductor acceleration sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184766A (en) * 1989-12-15 1991-08-12 Hitachi Ltd Grinding method for ceramics member and device thereof
EP0791813A2 (en) * 1996-02-22 1997-08-27 Seiko Instruments R&D Center Inc. Semiconductor acceleration or pressure sensor
EP0791813A3 (en) * 1996-02-22 1998-04-22 Seiko Instruments R&D Center Inc. Semiconductor acceleration or pressure sensor
EP0793103A2 (en) * 1996-02-27 1997-09-03 Seiko Instruments R&D Center Inc. Semiconductor acceleration sensor
EP0793103A3 (en) * 1996-02-27 1998-10-07 Seiko Instruments R&D Center Inc. Semiconductor acceleration sensor
US6158283A (en) * 1996-02-28 2000-12-12 Seiko Instruments R&D Center Inc. Semiconductor acceleration sensor

Also Published As

Publication number Publication date
JP2580807B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
EP0576937A2 (en) Apparatus for mirror surface grinding
US4013526A (en) Electrochemical grinding with a conductivity-controlled wheel electrode
US5032238A (en) Method of and apparatus for electropolishing and grinding
JPH03170266A (en) Electrolytic dressing method and device
KR970003491B1 (en) Method of dressing, dressing system and dressing electrode for conductive grindstone
Kundrák et al. Improvements of the dressing process of super abrasive diamond grinding wheels
JP2580806B2 (en) Electrolytic dressing method and apparatus
JPH04115867A (en) Electrolytic interval dressing grinding method
US3591473A (en) Method and apparatus for electrochemically machining rotating parts
JP3494463B2 (en) Whetstone electrolytic dressing device
US3730861A (en) Method of electrochemical machining
JP2565385B2 (en) Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool
JP3345532B2 (en) Electrolytic dressing grinding method and equipment
JPH06114733A (en) Grinding wheel shaping method by on-machine discharge truing method
JPH0329097Y2 (en)
JP3274592B2 (en) Electrolytic in-process dressing grinding method and apparatus
JPH0811344B2 (en) Conductive vacuum chuck
RU2055717C1 (en) Method of polishing
JP2003311628A (en) Thin-edged blade and its manufacturing method
JPH0615574A (en) Manufacture of abrasive grain electroplated tool
JPH11114820A (en) Electrolytic in-process dressing grinding method and device therefor
JPH0276679A (en) In-process dressing device for grinding machine
JP2684624B2 (en) Grinding cutting device
JPH08229817A (en) Grinding method and device
JPH02100872A (en) Electrolytic dressing method