JPH03169393A - Wastewater treatment apparatus - Google Patents
Wastewater treatment apparatusInfo
- Publication number
- JPH03169393A JPH03169393A JP30798389A JP30798389A JPH03169393A JP H03169393 A JPH03169393 A JP H03169393A JP 30798389 A JP30798389 A JP 30798389A JP 30798389 A JP30798389 A JP 30798389A JP H03169393 A JPH03169393 A JP H03169393A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen consumption
- aeration
- consumption rate
- batch tank
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004065 wastewater treatment Methods 0.000 title claims 3
- 238000005273 aeration Methods 0.000 claims abstract description 43
- 238000011282 treatment Methods 0.000 claims abstract description 38
- 230000036284 oxygen consumption Effects 0.000 claims abstract description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000002351 wastewater Substances 0.000 claims abstract description 11
- 239000000852 hydrogen donor Substances 0.000 claims abstract description 10
- 239000010802 sludge Substances 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 5
- 239000002683 reaction inhibitor Substances 0.000 claims description 5
- 239000006228 supernatant Substances 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 2
- 239000000284 extract Substances 0.000 claims 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 abstract description 33
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 8
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 abstract description 7
- 229910000037 hydrogen sulfide Inorganic materials 0.000 abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 5
- 229910021529 ammonia Inorganic materials 0.000 abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 4
- 239000001301 oxygen Substances 0.000 abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 4
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000010865 sewage Substances 0.000 description 4
- 239000010840 domestic wastewater Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- HTKFORQRBXIQHD-UHFFFAOYSA-N allylthiourea Chemical compound NC(=S)NCC=C HTKFORQRBXIQHD-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000386 donor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
A,産業上の利用分野
本発明は下水や生活排水等を生物学的に処理するための
装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an apparatus for biologically treating sewage, domestic wastewater, and the like.
B.発明の概要
本発明は有機廃水を嫌気処理と回分式活性汚泥処理との
組み合わせにより処理するための装置において、
回分槽における曝気量を活性汚泥の酸素消費速度に基づ
いて調整すると共に、硝化作用に伴う酸素消費速度に基
づいて水素供与体を回分槽に供給することによって、効
率的,経済的な処理ができるようにしたものである。B. Summary of the Invention The present invention is an apparatus for treating organic wastewater by a combination of anaerobic treatment and batch activated sludge treatment. By supplying the hydrogen donor to the batch tank based on the accompanying oxygen consumption rate, efficient and economical treatment can be achieved.
C.従来の技術及び発明が解決しようとする課題従来、
高濃度有機廃水の処理に用いられていた嫌気性処理は嫌
気性微生物の固定化技術,バイオソアクターの発達など
バイオテクノロジーの発展とともに、下水を初めとする
低濃度有機廃水の処理にも利用されてきている。しかし
、嫌気性処理は、硫化水素が生成したり、処理水に透明
感がない、臭気が強いなど、嫌気性処理単独では好気性
処理プロセスの処理水に匹敵するような処理水が得られ
ないという問題がある。これらの問題を克服するために
、後段に活性汚泥法,接触酸化法,回分式活性汚泥法な
どの好気性処理を組み合わせ、嫌気性処理の利点を生か
す効率的な嫌気+好気性処理システムの開発が進められ
ている。C. Problems to be solved by conventional techniques and inventions Conventionally,
Anaerobic treatment, which had been used to treat high-concentration organic wastewater, has been used to treat low-concentration organic wastewater, including sewage, along with the development of biotechnology such as anaerobic microorganism immobilization technology and the development of bioreactors. It's coming. However, with anaerobic treatment, hydrogen sulfide is generated, the treated water is not transparent, and has a strong odor, so anaerobic treatment alone cannot produce treated water comparable to treated water from an aerobic treatment process. There is a problem. In order to overcome these problems, we have developed an efficient anaerobic + aerobic treatment system that takes advantage of the advantages of anaerobic treatment by combining aerobic treatments such as activated sludge method, contact oxidation method, and batch activated sludge method in the latter stage. is in progress.
本発明はこうした背景のもとになされたものであり、そ
の目的は、下水や生活排水を嫌気処理と回分式活性汚泥
処理の組み合わせで処理するにあたって、効率的かつ経
済的に処理することにある。The present invention was made against this background, and its purpose is to efficiently and economically treat sewage and domestic wastewater by a combination of anaerobic treatment and batch activated sludge treatment. .
D.課題を解決するための手段
本発明は、回分槽内の廃水をサンプリングし、硝化反応
抑制剤により硝化反応を抑制した状態で酸素消費速度(
ATO−rr)を測定する機能と硝化反応抑制剤を用い
ない状態で酸素消費速度(『r)を測定する機能とを備
えた酸素消費速度測定部と、
回分槽内に水素供与体を補充供給する供給手段と、
回分槽の処理開始時における前記酸素消費速度測定部よ
りの酸素消費速度(ATU−rr)及び( r ,)の
各測定値と回分槽の処理終了時の酸素消費速度の前記各
測定値とに基づいて水素供与体の供給量を制御する第1
の制御部と、
曝気開始直後には活性汚泥処理に十分な曝気量となるよ
うに曝気制御指令を出力し、その後は回分槽の処理開始
時における前記酸素消費速度(rr)の測定値とそのと
きの酸素消費速度( r ,)の測定値との比較結果に
基づいて曝気制御指令を出力する第2の制御部とを設け
たことを特徴とする。D. Means for Solving the Problems The present invention samples wastewater in a batch tank, and measures the oxygen consumption rate (
An oxygen consumption rate measurement unit with a function to measure the oxygen consumption rate (ATO-rr) and a function to measure the oxygen consumption rate (r) without using a nitrification reaction inhibitor, and a replenishment supply of hydrogen donor into the batch tank. each measurement value of the oxygen consumption rate (ATU-rr) and (r,) from the oxygen consumption rate measurement unit at the start of processing in the batch tank and the oxygen consumption rate at the end of processing in the batch tank; the first to control the supply amount of hydrogen donor based on each measured value;
Immediately after the start of aeration, the controller outputs an aeration control command so that the amount of aeration is sufficient for activated sludge treatment, and then outputs the measured value of the oxygen consumption rate (rr) at the start of treatment of the batch tank and its value. The second control unit outputs an aeration control command based on the comparison result with the measured value of the oxygen consumption rate (r,) at the time.
E.作用
第2図は回分式活性汚泥法の曝気工程において曝気開始
直後と1〜4時間曝気後での溶存酸素(Do)の時間的
変化の測定結果を示す。ここに現れたDoの時間的変化
は酸素消費速度(rr)に対応するのもである。第2図
中(1)〜(5)は夫々曝気開始直後、及び1、2、3
、4時間後の測定結果である。E. Figure 2 shows the measurement results of the temporal change in dissolved oxygen (Do) immediately after the start of aeration and after 1 to 4 hours of aeration in the aeration process of the batch activated sludge method. The temporal change in Do that appears here corresponds to the oxygen consumption rate (rr). In Figure 2, (1) to (5) are immediately after the start of aeration, and 1, 2, and 3, respectively.
, is the measurement result after 4 hours.
また第3図は回分式活性汚泥法の曝気工程において硝化
反応抑制剤により硝化反応を抑制した状態でDoの時間
的変化を測定した結果である。ここに現れたDoの時間
的変化は硝化反応を抑制した状態における酸素消費速度
(ATU−rr)に対応するものである。第3図中(1
)〜(5)は夫々曝気開始直後、及び1,2、3、4時
間後の測定結果である。硝化反応抑制剤としては例えば
N−アリルチオ尿素を挙げることができ、これを活性汚
泥混合液中に添加すると、硝化閑による硝化反応が抑制
される。これらrr.とATU−rrとの経時変化を示
すと夫々第4図の(1).(2)のグラフのように表さ
れる。Furthermore, FIG. 3 shows the results of measuring changes in Do over time in a state where the nitrification reaction was suppressed by a nitrification reaction inhibitor in the aeration step of the batch activated sludge method. The temporal change in Do that appears here corresponds to the oxygen consumption rate (ATU-rr) in a state where the nitrification reaction is suppressed. In Figure 3 (1
) to (5) are the measurement results immediately after the start of aeration, and 1, 2, 3, and 4 hours later, respectively. Examples of the nitrification reaction inhibitor include N-allylthiourea, and when this is added to the activated sludge mixture, the nitrification reaction due to nitrification is suppressed. These rr. (1) in Figure 4 shows the changes over time between ATU-rr and ATU-rr. It is expressed as in graph (2).
以上において、『1は有機物の酸化分解に要する酸素消
費速度と硝化作用に使われる酸素消費速度及び他の還元
性無機物の酸化で使われる酸素消費速度の和として表さ
れ、従って『,とATU−r..の差は硝化作用に使わ
れた酸素消費速度(Nit rr)を表している。こ
の例ではrrのうち50%程度をNit−rrが占めて
いる。In the above, ``1'' is expressed as the sum of the oxygen consumption rate required for oxidative decomposition of organic matter, the oxygen consumption rate used for nitrification, and the oxygen consumption rate used for oxidation of other reducing inorganic substances, and therefore ``, and ATU- r. .. The difference represents the oxygen consumption rate (Nit rr) used for nitrification. In this example, Nit-rr accounts for about 50% of rr.
第2図及び第4図よりrrは曝気fjF1始直後が最ら
大きく、時間の経過とともに一定の割合で減少するが、
ある時間を過ぎると減少割合が小さくなる。嫌気処理水
の活性汚泥処理においては、残存rT機物の他に嫌気処
理で生じる硫化水素やアンモニアの酸化に要する酸素も
消費される。特に硫化水素の酸化は、化学的な空気酸化
のみならず生物学的酸化もあり、硫化水素を酸化する閑
の比呼吸速度は通常の活性汚泥の数倍ら大きいといイっ
れている。このことより、本発明では酸素消費の激しい
曝気開始時では、例えば5〜10分間程度曝気亀を多く
し、その後は適当な時間にrrを測定し、それに見合う
ように曝気量を調整する。具体的には例えば曝気開始直
後のr1の測定値とそのときのr、の測定値との偏差に
基づいて曝気量を制御する。From Figures 2 and 4, rr is greatest immediately after the start of aeration fjF1, and decreases at a constant rate over time;
After a certain period of time, the rate of decrease becomes smaller. In activated sludge treatment of anaerobically treated water, in addition to residual rT substances, oxygen required for oxidation of hydrogen sulfide and ammonia produced in anaerobic treatment is also consumed. In particular, hydrogen sulfide oxidation involves not only chemical air oxidation but also biological oxidation, and it is said that the specific respiration rate of the air that oxidizes hydrogen sulfide is several times higher than that of ordinary activated sludge. Therefore, in the present invention, at the start of aeration when oxygen consumption is high, the aeration rate is increased, for example, for about 5 to 10 minutes, and thereafter, rr is measured at an appropriate time and the aeration amount is adjusted accordingly. Specifically, for example, the amount of aeration is controlled based on the deviation between the measured value of r1 immediately after the start of aeration and the measured value of r at that time.
一方回分式活性汚泥法の特徴の一つに硝化、脱窒による
窒素除去が行えるという利点があるが、硝化、脱窒を効
率良く行うには、処理される水の130D/N比が重要
な因子となる。嫌気性処理の後段に設置された回分式活
性汚泥法では、嫌気性処理によってBODが低下した嫌
気処理水はBOD/N比が小さくなり、このため嫌気処
理水のBODでは脱窒に必要な水素供与体の不足を生ず
る。On the other hand, one of the characteristics of the batch activated sludge method is that it can remove nitrogen through nitrification and denitrification, but in order to perform nitrification and denitrification efficiently, the 130D/N ratio of the treated water is important. Become a factor. In the batch activated sludge method installed after anaerobic treatment, the BOD/N ratio of anaerobically treated water whose BOD has decreased due to anaerobic treatment is small, and therefore the BOD of anaerobic treated water does not contain the hydrogen necessary for denitrification. This results in a shortage of donor.
そこで、本発明では、活性汚泥処理開始時にrr及びA
TU−rrを測定して、その差であるNit−r..を
求め、例えばATU rrとNitrrとに是づいて
B O D/N比を予測すると共に、その前の回の活性
汚泥処理で得られた処理水にっいてN+t−rrを求め
、このNit−rrと先に予測した結果とに基づいて、
即ち被処理水のBOD/比と前回の硝化の進行状態とに
基づいて水素供与体の供給量を決定する。Therefore, in the present invention, at the start of activated sludge treatment, rr and A
TU-rr is measured and the difference between them, Nit-r. .. For example, calculate the B O D/N ratio based on ATU rr and Nitrr, calculate N+t-rr for the treated water obtained in the previous activated sludge treatment, and calculate this Nit- Based on rr and the previously predicted result,
That is, the supply amount of the hydrogen donor is determined based on the BOD/ratio of the water to be treated and the progress state of the previous nitrification.
F.実施例
第l図においてlは嫌気処理槽であり、嫌気性菌を主体
とする菌群を付着した接触濾材2を有している。この嫌
気処理槽1の後段には例えば互いに同一構造の2つの回
分槽3が設置されている。F. Embodiment In FIG. 1, 1 is an anaerobic treatment tank, which has a contact filter medium 2 to which bacteria, mainly anaerobic bacteria, are attached. At the rear of the anaerobic treatment tank 1, for example, two batch tanks 3 having the same structure are installed.
4は回分槽3内の廃水をサンプリングし、ATU−rr
を測定する機能とrrを測定する機能とを備えた酸素消
費速度測定部である。5はブロヮ、6はブロワ5のコン
トローラであり、これらによって曝気手段が構成されて
いる。7は回分槽3内に水素供与体としてのメタノール
を供給するためのメタノール供給手段である。8lは第
lの制御部であり、ATU−rr及びrrの各測定値に
基づいてメタノール供給量を演算し、その演算結果を指
令植としてメタノール供給手段7に与える。8,は第2
の制御部であり、r..の測定値に基づいて前記コント
ローラ6に曝気制御指令を出力する。4 samples the wastewater in batch tank 3, and ATU-rr
This is an oxygen consumption rate measuring section that has a function of measuring RR and a function of measuring RR. 5 is a blower, 6 is a controller for the blower 5, and these constitute an aeration means. 7 is a methanol supply means for supplying methanol as a hydrogen donor into the batch tank 3. Reference numeral 8l denotes a l-th control section, which calculates the methanol supply amount based on each measured value of ATU-rr and rr, and provides the calculation result to the methanol supply means 7 as a command set. 8, is the second
a control unit for r. .. An aeration control command is output to the controller 6 based on the measured value.
9は散気バイブ、Pは処理水を排出するボンブである。9 is an aeration vibrator, and P is a bomb for discharging treated water.
次にこの実施例の作用について述べると、先ず下水や生
活排水等の廃水を嫌気処理槽lの底部に導入し、接触濾
材2の嫌気性菌群により嫌気処理を行う。次いでこの上
部から流出した廃水(嫌気処理水)を回分槽3に供給し
て回分式活性汚泥処理を行う。即ち活性汚泥液の入った
回分槽3に嫌気処理水を投入し、ブロワ5から散気パイ
プ9を通じて送風することにより曝気及び混合を同時に
行い、廃水を好気処理する。次いで固液分離をした後上
澄液を処理水としてボンブPにより取り出す。その排出
量は槽内の液の例えば50%とされる。Next, the operation of this embodiment will be described. First, wastewater such as sewage or domestic wastewater is introduced into the bottom of the anaerobic treatment tank 1, and anaerobic treatment is performed by the anaerobic bacteria group of the contact filter medium 2. Next, the wastewater (anaerobically treated water) flowing out from the upper part is supplied to the batch tank 3 to perform batch activated sludge treatment. That is, anaerobically treated water is put into the batch tank 3 containing the activated sludge liquid, and air is blown from the blower 5 through the aeration pipe 9 to perform aeration and mixing at the same time, thereby aerobically treating the wastewater. Next, after solid-liquid separation, the supernatant liquid is taken out using a bomb P as treated water. The discharge amount is, for example, 50% of the liquid in the tank.
ここで酸素消費速度測定部4の役割等について述べると
、先ずこの測定部4にて曝気開始時に回分槽3内の活性
汚泥混合液をサンプリングし、そのサンプリング液のr
rを測定し、次いで当該サンプリング液に硝化反応抑制
剤を添加してATU−rrを測定する。第1の制御部8
,は、r..の測定値からATU−rrの測定値を差し
引いて硝化に伴う酸素消費速度(Nit rr)を求
め、ATU−rrとNit−rrとにより被処理水のB
OD/N比を推定する。一方酸素消費速度測定部4を用
いて前回の汚泥処理の終了後回分槽3内に残った混合液
あるいは上澄液のrr、ATU−rrを測定しておき、
この測定値を第1の制御部8.に与えておく。第1の制
御部8,は、同様にしてNit−rrを求めて硝化の程
度を推定する。そして先の推定と組み合わせて、具体的
には曝気開始時のATU−rr及びNitrrと前回の
汚泥処理終了時のNit−rrとに基づいてメタノール
供給量を演算し、メタノール供給手段7はその演算結果
に応じてメタノールを回分槽3内に供給する。To describe the role of the oxygen consumption rate measuring section 4, first, the measuring section 4 samples the activated sludge mixture in the batch tank 3 at the start of aeration, and the r
r is measured, and then a nitrification reaction inhibitor is added to the sampled liquid to measure ATU-rr. First control unit 8
, is r. .. The oxygen consumption rate (Nit rr) due to nitrification is obtained by subtracting the measured value of ATU-rr from the measured value of
Estimate the OD/N ratio. On the other hand, the oxygen consumption rate measurement unit 4 is used to measure the rr and ATU-rr of the mixed liquid or supernatant liquid remaining in the batch tank 3 after the previous sludge treatment,
This measured value is sent to the first control unit 8. I'll give it to you. The first control unit 8 similarly obtains Nit-rr and estimates the degree of nitrification. Then, in combination with the above estimation, specifically, the methanol supply amount is calculated based on ATU-rr and Nitrr at the time of starting aeration and Nit-rr at the end of the previous sludge treatment, and the methanol supply means 7 calculates the methanol supply amount. Methanol is supplied into the batch tank 3 depending on the result.
また嫌気処理水中には嫌気処理で生じた硫化水素やアン
モニアが含まれており、先述したように曝気開始時には
酸素消費が激しい。従って曝気開始直後には活性汚泥処
理に十分な曝気量で曝気を行い、その後適当な時間にr
eを測定して曝気開始直後のrrの測定値とそのときの
『2の測定値とを比較し、その比較結果に基づいて曝気
量を調整する。具体的には曝気開始直後にブロワ5の送
風量がv0となるよう第2の制御部8,からコントロー
ラ6に制御指令を与えると共に、その後適当な時間間隔
で人力される酸素消費速度測定部4よりのrrの測定値
と曝気開始直後のr..の測定値との偏差をとり、その
偏差分に対応した制御指令をコントローラ6に出力する
。この結果曝気開始直後の曝気量は大きいが、その後r
.が小さくなって前記偏差分が大きくなるにつれて曝気
量は小さくなる。In addition, the anaerobically treated water contains hydrogen sulfide and ammonia generated by the anaerobic treatment, and as mentioned above, oxygen consumption is intense at the start of aeration. Therefore, immediately after the start of aeration, aeration is carried out at a sufficient aeration amount for activated sludge treatment, and then at an appropriate time.
e is measured and the measured value of rr immediately after the start of aeration is compared with the measured value of ``2'' at that time, and the aeration amount is adjusted based on the comparison result. Specifically, immediately after the start of aeration, the second control unit 8 gives a control command to the controller 6 so that the air flow rate of the blower 5 becomes v0, and thereafter the oxygen consumption rate measuring unit 4 is manually operated at appropriate time intervals. The measured value of rr and the r.r. value immediately after the start of aeration. .. The deviation from the measured value is calculated and a control command corresponding to the deviation is output to the controller 6. As a result, the amount of aeration is large immediately after the start of aeration, but after that
.. As the difference becomes smaller and the deviation becomes larger, the amount of aeration becomes smaller.
G.発明の効果
本発明によれば嫌気処理と回分式活性汚泥処理との組み
合わせで処理するにあたって、嫌気処理で生じる硫化水
素やアンモニアの酸化のために回分槽における曝気初期
時の『,が相当大きいことに行目し、曝気開始直後の『
、の測定値とそのときのrrの測定値との比較結果に基
づいて曝気量を調整しているため、酸素消費に見合った
送風を行うことができ、曝気に要する電気エネルギの省
エネルギー化を図ることができると共に、効率的な好気
処理を行うことができる。G. Effects of the Invention According to the present invention, when a combination of anaerobic treatment and batch activated sludge treatment is performed, the ``,'' at the initial stage of aeration in the batch tank is considerably large due to the oxidation of hydrogen sulfide and ammonia generated in the anaerobic treatment. , immediately after the start of aeration.
Since the aeration amount is adjusted based on the comparison result between the measured value of In addition, efficient aerobic treatment can be performed.
回分式活性汚泥による窒素除去においては、BOD/N
比が除去率に最も大きく関与する因子であり、B O
D/N比の把握は運転操作条件の評価からも重要である
。本発明は更にこの点にも着目し、rr及びATU−r
rを指標としてB O D/N比及び硝化の進行状態を
把握し、それらの値に応じて水素供与体を供給している
ため高い窒素除去率を図ることができる。また測定に時
間のかかるBODやNを直接測定するのではなくてrr
及びA’ru−rrの測定値を指標としているので、測
定時間が短くて済み、効率的な処理ができる。In nitrogen removal using batch activated sludge, BOD/N
B O
Understanding the D/N ratio is also important from the perspective of evaluating driving conditions. The present invention further focuses on this point, and the rr and ATU-r
Since the B O D/N ratio and the progress state of nitrification are determined using r as an index, and the hydrogen donor is supplied according to these values, a high nitrogen removal rate can be achieved. Also, instead of directly measuring BOD and N, which take time to measure,
Since the measured values of and A'ru-rr are used as indicators, the measurement time is short and efficient processing is possible.
第l図は本発明の実施例を示す構或図、第2図及び第3
図は、夫々硝化反応を抑制しない場合及び抑制した場合
のDoの経時変化を示すグラフ、第4図は酸素消費速度
の経時変化を示すグラフである。
l・・・嫌気処理層、3・・・回分槽、4・・・酸素消
費速度測定部、5・・・ブロワ、7・・・メタノール供
給手段、8。81・・制御部。
第2図
Doの時間変化のグラフ
時間(min)
硝化反応抑制時のDoの時間変化のグラフO
5
10
15
20
25
30
35
40
時
間
(min)FIG. 1 is a structural diagram showing an embodiment of the present invention, FIG. 2 and FIG.
The figures are graphs showing changes in Do over time when the nitrification reaction is not suppressed and when the nitrification reaction is suppressed, respectively, and FIG. 4 is a graph showing changes over time in the oxygen consumption rate. l... Anaerobic treatment layer, 3... Batch tank, 4... Oxygen consumption rate measuring section, 5... Blower, 7... Methanol supply means, 8. 81... Control section. Fig. 2 Graph of time change of Do Time (min) Graph of time change of Do when nitrification reaction is suppressed O 5 10 15 20 25 30 35 40 Time (min)
Claims (1)
液の入った回分槽に投入して、ここで曝気工程、固液分
離工程を経て上澄み液を処理水として取り出す廃水処理
装置において、 回分槽内の廃水をサンプリングし、硝化反応抑制剤によ
り硝化反応を抑制した状態で酸素消費速度(ATU−r
_r)を測定する機能と硝化反応抑制剤を用いない状態
で酸素消費速度(r_r)を測定する機能とを備えた酸
素消費速度測定部と、回分槽内に水素供与体を補充供給
する供給手段回分槽の処理開始時における前記酸素消費
速度測定部よりの酸素消費速度(ATU−r_r)及び
(r_r)の各測定値と回分槽の処理終了時の酸素消費
速度の前記各測定値とに基づいて水素供与体の供給量を
制御する第1の制御部と、 曝気開始直後には活性汚泥処理に十分な曝気量となるよ
うに曝気制御指令を出力し、その後は回分槽の処理開始
時における前記酸素消費速度(r_r)の測定値とその
ときの酸素消費速度(r_r)の測定値との比較結果に
基づいて曝気制御指令を出力する第2の制御部とを設け
たことを特徴とする廃水処理装置。(1) In a wastewater treatment device in which wastewater is treated anaerobically in an anaerobic treatment tank, then introduced into a batch tank containing activated sludge liquid, where it undergoes an aeration process and a solid-liquid separation process, and then extracts the supernatant liquid as treated water, The wastewater in the batch tank was sampled, and the oxygen consumption rate (ATU-r
an oxygen consumption rate measuring section having a function of measuring the oxygen consumption rate (r_r) and a function of measuring the oxygen consumption rate (r_r) without using a nitrification reaction inhibitor; and a supply means for replenishing the hydrogen donor into the batch tank. Based on the measured values of the oxygen consumption rate (ATU-r_r) and (r_r) from the oxygen consumption rate measurement unit at the start of batch tank processing and the measured values of the oxygen consumption rate at the end of batch tank processing. a first control unit that controls the amount of hydrogen donor supplied by using a first control unit; The present invention is characterized by further comprising a second control unit that outputs an aeration control command based on a comparison result between the measured value of the oxygen consumption rate (r_r) and the measured value of the oxygen consumption rate (r_r) at that time. Wastewater treatment equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30798389A JPH03169393A (en) | 1989-11-28 | 1989-11-28 | Wastewater treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30798389A JPH03169393A (en) | 1989-11-28 | 1989-11-28 | Wastewater treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03169393A true JPH03169393A (en) | 1991-07-23 |
Family
ID=17975493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30798389A Pending JPH03169393A (en) | 1989-11-28 | 1989-11-28 | Wastewater treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03169393A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008023498A (en) * | 2006-07-25 | 2008-02-07 | Ihi Corp | Activated sludge treating method and apparatus of wastewater |
-
1989
- 1989-11-28 JP JP30798389A patent/JPH03169393A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008023498A (en) * | 2006-07-25 | 2008-02-07 | Ihi Corp | Activated sludge treating method and apparatus of wastewater |
JP4687597B2 (en) * | 2006-07-25 | 2011-05-25 | 株式会社Ihi | Activated sludge treatment method and activated sludge treatment apparatus for wastewater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8956540B2 (en) | Process and apparatus for controlling aeration during nitrification and denitrification of water | |
JPH09150185A (en) | Treatment of organic sewage | |
JP2002126779A (en) | Sludge treatment method and apparatus used therefor | |
JPH04104896A (en) | Method for controlling drainage | |
JPH07299495A (en) | Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate | |
JPH03169393A (en) | Wastewater treatment apparatus | |
JPH07148496A (en) | Method for controlling operation of modified process for circulation of activated sludge | |
JP2001314892A (en) | Method for controlling denitrification apparatus of wastewater | |
JP3551526B2 (en) | Aerobic treatment of organic wastewater | |
JPH0724492A (en) | Method for controlling operation of activated sludge circulation change method | |
JPH05154496A (en) | Controlling method for operation in anaerobic and aerobic activated sludge treating equipment | |
JPS6154295A (en) | Denitrifying and dephosphorizing method of sewage | |
JPS6154296A (en) | Treatment of sewage | |
JPH0691294A (en) | Operation control method of batch type active sludge treatment | |
JPH09174071A (en) | Method for treating organic sewage and apparatus therefor | |
JP2001009497A (en) | Biological water treatment and equipment therefor | |
CN111547850B (en) | Wastewater denitrification combined device and method for shortcut nitrification-anaerobic ammonia oxidation | |
JPH06182390A (en) | Operation control method for batch type active sludge treatment | |
JP5801506B1 (en) | Operation method of biological denitrification equipment | |
JP2005000715A (en) | Method for controlling operation of aerating stirrer | |
JP3387718B2 (en) | Wastewater treatment method and apparatus | |
JP3677811B2 (en) | Biological denitrification method | |
JP3134145B2 (en) | Wastewater biological denitrification method | |
JP3690537B2 (en) | Intermittent aeration | |
JPH0910796A (en) | Operation control of circulation type nitration and denitrification method |