JPH03168567A - Absorption type space cooling and heating device - Google Patents

Absorption type space cooling and heating device

Info

Publication number
JPH03168567A
JPH03168567A JP30768689A JP30768689A JPH03168567A JP H03168567 A JPH03168567 A JP H03168567A JP 30768689 A JP30768689 A JP 30768689A JP 30768689 A JP30768689 A JP 30768689A JP H03168567 A JPH03168567 A JP H03168567A
Authority
JP
Japan
Prior art keywords
refrigerant
piping
layer
air
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30768689A
Other languages
Japanese (ja)
Inventor
Tomihisa Ouchi
大内 富久
Akira Nishiguchi
章 西口
Haruichiro Sakaguchi
坂口 晴一郎
Hiroshi Kushima
大資 久島
Michihiko Aizawa
相沢 道彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30768689A priority Critical patent/JPH03168567A/en
Publication of JPH03168567A publication Critical patent/JPH03168567A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an indoor device and an outdoor device made of light weight piping without any air leakage and improve an installing work of the indoor and outdoor devices by a method wherein an evaporator and the indoor device are connected through a refrigerant circulation pump by a refrigerant piping having oxygen non-permeable layer complexed with a flexible plastic material. CONSTITUTION:An absorption type space cooling or heating device is comprised of regenerators 1 and 2, an air-cooled condenser 3, a flash evaporator 4, air- cooled absorbers 5a to 5c, a jet condenser 11, solution heat exchangers 6 and 7, solution pumps 9a and 9b, an indoor device 22, a refrigerant pump 10 and piping systems for operatively connecting these devices. The flash evaporator 4, the jet condenser 11 and the indoor device 22 are connected through the refrigerant circulation pump 10 and transfer valves 33, 34 and 35 by refrigerant pipings 23 and 24 having oxygen non-permeable layer complexed on a flexible plastic material. In order to improve an installing workability, the refrigerant pipings 23 and 24 having oxygen non-permeable layer arranged on the flexible plastic material are comprised of a polyethylene layer, a metallic layer and a polyethylene layer and then the oxygen non-permeable layer is made of metal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気調和装置用の吸収冷暖房機に係り、特に、
冷媒に水を使用して液冷媒を直接室内機に循環するのに
好適な吸収冷暖房機に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an absorption air conditioner for an air conditioner, and in particular,
The present invention relates to an absorption air conditioner suitable for using water as a refrigerant and directly circulating a liquid refrigerant to an indoor unit.

〔従来の技術〕[Conventional technology]

従来この種の吸収冷暖房機は、いわゆる、冷温水機であ
る。すなわち,冷房運転時は蒸発器伝熱管群上に液冷媒
を散布してその蒸発潜熱により伝熱管内を流れる冷水を
冷却し、冷温水ポンプにより冷温水配管を経由して室内
機に送って空気と熱交換させて冷房作用を得ていた。ま
た、暖房運転時は温水熱交換器に高温冷媒蒸気を凝縮さ
せてその凝縮潜熱により伝熱管内を流れる温水を加熱し
て冷温水ポンプにより冷温水配管を経由して室内機に送
って空気と熱交換させて暖房作用を得ていた。なお、冷
温水の温度差による冷温水の体積膨張を逃すために補給
水配管と接続したシスターン、又は、膨張タンクを冷温
水配管に接続配備されている。しかし、この種の吸収冷
暖房機では、蒸発器における冷媒と冷水の熱交換温度差
が大きく,システムとしての温度利用効率が低いため機
器が大型化するという問題があり、フラッシュ蒸発器を
使って、直接、熱交換する方式の冷媒循環システムの吸
収冷暖房機がある。
Conventionally, this type of absorption air conditioner is a so-called water chiller/heater. In other words, during cooling operation, liquid refrigerant is spread over the evaporator heat transfer tube group, and the latent heat of evaporation cools the cold water flowing through the heat transfer tubes.The cold/hot water pump sends the cooled water via the cold/hot water piping to the indoor unit, which then cools the air. The cooling effect was achieved by exchanging heat with the air conditioner. In addition, during heating operation, high-temperature refrigerant vapor is condensed in the hot water heat exchanger, and the hot water flowing through the heat transfer tubes is heated by the latent heat of condensation, and the hot water is sent to the indoor unit via the cold/hot water piping by the cold/hot water pump. The heating effect was obtained by exchanging heat. In addition, in order to release the volumetric expansion of the cold and hot water due to the temperature difference between the cold and hot water, a cistern or an expansion tank connected to the make-up water pipe is connected to the cold and hot water pipe. However, with this type of absorption air conditioner, there is a problem that the heat exchange temperature difference between the refrigerant and chilled water in the evaporator is large, and the temperature utilization efficiency of the system is low, resulting in an increase in the size of the equipment. There are absorption air conditioners with refrigerant circulation systems that directly exchange heat.

上述の従来装置は,例えば、特開昭63−176957
号、特開昭63−176964号公報に記載のようにな
っていた。
The above-mentioned conventional device is disclosed in, for example, Japanese Patent Application Laid-Open No. 63-176957.
No., JP-A-63-176964.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この種の吸収冷暖房機では,室外機のフラッシ
ュ蒸発器は室内機を連絡する冷媒配管系統を真空に保持
する必要があり、冷媒配管系統が金属を用いるために重
くて作業性が悪いという問題があり、機内に空気がもれ
るとその酸素の働きにより機器の腐食劣化が著しく、ま
た、熱伝達低下により溶液が過濃縮されて結晶が起こっ
てサイクル構成が不能になる,さらに、油気装置を大型
にする必要があるなと、実用的な冷媒直接循環式の吸収
冷暖房機の実現は困難であった。
However, in this type of absorption air conditioner, the flash evaporator in the outdoor unit requires the refrigerant piping system that connects the indoor unit to be maintained in a vacuum, and since the refrigerant piping system is made of metal, it is heavy and difficult to work with. If air leaks into the cabin, the oxygen will cause significant corrosion and deterioration of equipment, and the solution will become overconcentrated and crystallize due to reduced heat transfer, making the cycle configuration impossible. It was difficult to create a practical absorption air conditioner with direct refrigerant circulation because the equipment needed to be large.

本発明の目的は室内機と室外機を空気漏れのない軽量の
配管として施工性の良い実用的な吸収冷暖房機を提供す
ることにある。
An object of the present invention is to provide a practical absorption air-conditioning system that is easy to install and uses lightweight piping that connects an indoor unit and an outdoor unit with no air leakage.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達戒するために、本発明に係る吸収冷暖房機
の構成は、再生器,空冷凝縮器,フラッシュ蒸発器,空
冷吸収器,ジェット凝縮器,溶液熱交換器,溶液ポンプ
,室内機,冷媒ポンプ,および、これらを作動的に接続
する配管系からなり、フラッシュ蒸発器及びジェット凝
縮器と室内機とを冷媒循環ポンプ及び切り替え弁を介し
て可撓性プラスチックに酸素不透層を複合配置した冷媒
配管で接続したものである。
In order to achieve the above object, the structure of the absorption air conditioner according to the present invention includes a regenerator, an air-cooled condenser, a flash evaporator, an air-cooled absorber, a jet condenser, a solution heat exchanger, a solution pump, an indoor unit, It consists of a refrigerant pump and a piping system that operatively connects these, and connects the flash evaporator, jet condenser, and indoor unit via a refrigerant circulation pump and switching valve, and an oxygen-impermeable layer is arranged in a flexible plastic layer. It is connected with refrigerant piping.

さらに、施工性を向上するために撓性プラスチックに酸
素不透層を複合配置した冷媒配管をポリエチレン層と金
属層及びポリエチレン層の3層から構威され、酸素不透
層が金属であるようにしたものである。
Furthermore, in order to improve workability, the refrigerant piping is composed of three layers: a polyethylene layer, a metal layer, and a polyethylene layer, and the oxygen-impermeable layer is made of metal. This is what I did.

〔作用〕[Effect]

冷房時、フラッシュ蒸発器では室内機で熱交換して高温
になった高温液冷媒を飽和温度よりも低温のフラッシュ
蒸発器に導き自己蒸発させて,その蒸発潜熱で液冷媒を
冷却して低温の液冷媒を生或する。なお、蒸発した冷媒
蒸気は吸収器に送って溶液に吸収させ、再生器で外部熱
源により加熱されて冷媒蒸気を発生して溶液は濃縮され
、冷媒蒸気は凝縮器で冷却されて凝縮液化されてフラッ
シュ蒸発器に送られる。また,濃縮された溶液は吸収器
に戻る。このように、冷房サイクルが真空下で動作して
おり、可撓性プラスチックに酸素不透層を複合配置した
冷媒配管内を低温の液冷媒が流れる。液冷媒は室内機ま
での距離が遠いときや室内機が高い位置にあるときは冷
媒ポンプヘッドが高いため、液圧は冷媒ポンプ運転中は
大気圧よりも高いが、停止時は大気圧よりも低圧である
During cooling, in the flash evaporator, the high-temperature liquid refrigerant that has become high through heat exchange with the indoor unit is guided to the flash evaporator, which is lower than the saturation temperature, to self-evaporate, and the latent heat of evaporation cools the liquid refrigerant, resulting in low-temperature refrigerant. Produces liquid refrigerant. The evaporated refrigerant vapor is sent to the absorber and absorbed into the solution, heated by an external heat source in the regenerator to generate refrigerant vapor and the solution is concentrated, and the refrigerant vapor is cooled in the condenser and condensed into liquid. Sent to flash evaporator. The concentrated solution also returns to the absorber. In this manner, the cooling cycle operates under vacuum, and low-temperature liquid refrigerant flows through refrigerant piping made of flexible plastic with a composite oxygen-impermeable layer. The liquid refrigerant has a high refrigerant pump head when the distance to the indoor unit is long or when the indoor unit is in a high position, so the liquid pressure is higher than atmospheric pressure when the refrigerant pump is operating, but when it is stopped it is lower than atmospheric pressure. Low pressure.

しかし、酸素不透層の働きにより、酸素が配管内の冷媒
に侵入しない。
However, due to the action of the oxygen-impermeable layer, oxygen does not enter the refrigerant in the pipes.

暖房時、ジェット凝縮器は室内機から戻る低温の液冷媒
に再生器で発生した冷媒蒸気を凝縮させて加熱して高温
の液冷媒を生或する。高温の液冷媒は冷媒循環ポンプ及
び切り替え弁を介して可撓性プラスチックに酸素不透層
を複合配置した冷媒配管を経由して室内機に送られ空気
と熱交換して、再び切り替え弁を介して可撓性プラスチ
ックに酸素不透層を複合配置した冷媒配管を経由してジ
ェット凝縮器内に散布される。この,高温液冷媒は大気
圧力よりも低圧であるが、酸素不透層の働きにより、酸
素が配管内の冷媒に侵入しない。
During heating, the jet condenser condenses the refrigerant vapor generated in the regenerator on the low-temperature liquid refrigerant returned from the indoor unit and heats it to produce high-temperature liquid refrigerant. The high-temperature liquid refrigerant is sent to the indoor unit via a refrigerant circulation pump and a switching valve, via refrigerant piping made of flexible plastic with a composite oxygen-impermeable layer, where it exchanges heat with the air, and is then sent back through the switching valve. The refrigerant is then dispersed into the jet condenser via a refrigerant pipe made of flexible plastic with a composite oxygen-impermeable layer. Although this high-temperature liquid refrigerant has a pressure lower than atmospheric pressure, the action of the oxygen-impermeable layer prevents oxygen from entering the refrigerant in the pipes.

以上により、どんな運転条件でも可撓性プラスチックに
酸素不透層を複合配置した冷媒配管を酸素が透過して吸
収冷暖房機内に侵入しないので、機器の腐食劣化や熱伝
達低下による溶液の過濃縮による結晶が起こらず、安全
確実に運転できる。
As a result of the above, under any operating conditions, oxygen will not pass through the refrigerant piping, which is made of flexible plastic with a composite oxygen-impermeable layer, and will not enter the absorption air conditioner. Crystals do not form, allowing safe and reliable operation.

また、抽気装置を小型に出来るため,機器をコンパクト
にできる。
Furthermore, since the air extraction device can be made smaller, the equipment can be made more compact.

さらに、ポリエチレンに金属フィルムを酸素不透層とし
たので管内、及び、管外の摩擦抵抗が小さく、液の流動
圧力損失を小さくすることができる。また、カバーのコ
ンジットパイプにこれら配管を挿入する際の摩擦が小さ
いため作業性が良い。
Furthermore, since a metal film is used as an oxygen-impermeable layer on polyethylene, frictional resistance inside and outside the tube is small, and liquid flow pressure loss can be reduced. In addition, since there is little friction when inserting these pipes into the conduit pipe of the cover, workability is good.

さらに、金属フイルムはプラスチックに比べ一般に薄く
て強度があり、そのため、軽量で、さらに長時間の応力
に対するクリープ特性が優れているという便利さがある
Furthermore, metal films are generally thinner and stronger than plastics, and therefore have the advantage of being lightweight and having excellent creep properties against long-term stress.

〔実施例〕〔Example〕

以下、本発明の各実施例を第■図および第2図を参照し
て説明する。まず、第1図は、本発明の一実施例に係る
吸収冷暖房機のサイクル系統図である。
Embodiments of the present invention will be described below with reference to FIGS. First, FIG. 1 is a cycle system diagram of an absorption air conditioner according to an embodiment of the present invention.

第1図に示す吸収冷暖房機は、高温再生器1,低温再生
器2,空冷凝縮器(以下単に凝縮器という)3,フラッ
シュ蒸発器4,空冷吸収器(以下単に吸収器という)5
,低温熱交換器6,高温熱交換器7,溶液循環ポンプ(
以下単1こ溶液ポンプトイう)8,溶液スプレボンプ9
,冷媒循環ボンプ10,ジェット凝縮器土工,温冷媒循
環ボンプ↓2,バーナ14、およびこれらを作動的に接
続する溶液,冷媒配管系,凝縮器3および吸収器5へ冷
却空気を白い矢印方向に供給する冷却ファン15からな
る室外機16,冷冷媒空気熱交換器17,温冷媒熱交換
器18,送風ファン19,冷媒制御弁20,温冷媒制御
弁21、からなる室内機22、及び、冷媒配管23,温
冷媒配管24から構成されている。
The absorption air conditioner shown in FIG.
, low temperature heat exchanger 6, high temperature heat exchanger 7, solution circulation pump (
Single solution pump toy below) 8, Solution spray pump 9
, refrigerant circulation pump 10, jet condenser earthwork, hot refrigerant circulation pump ↓2, burner 14, and the solution that operatively connects these, refrigerant piping system, condenser 3 and absorber 5 in the direction of the white arrow. An outdoor unit 16 consisting of a cooling fan 15 that supplies refrigerant, an indoor unit 22 consisting of a refrigerant air heat exchanger 17, a hot/refrigerant heat exchanger 18, a blowing fan 19, a refrigerant control valve 20, a hot/refrigerant control valve 21, and a refrigerant. It is composed of a pipe 23 and a hot/refrigerant pipe 24.

室外[16は、吸収器5が気相部でフラッシュ蒸発器4
に接続され、凝縮器3が低温再生器2の気相部と接続さ
れ、高温再生器1の気相部がジエット凝縮器11及び低
温再生器2の加熱管部にそれぞれ接続されている。
Outdoor [16] The absorber 5 is in the gas phase and the flash evaporator 4
The condenser 3 is connected to the gas phase part of the low temperature regenerator 2, and the gas phase part of the high temperature regenerator 1 is connected to the jet condenser 11 and the heating pipe part of the low temperature regenerator 2, respectively.

ここに、フラッシュ蒸発器4の液冷媒は冷媒循環ポンプ
10により、逆止弁25,冷媒配管23を経て室内器2
2の冷冷媒空気熱交換器l7に流入し、さらに、冷媒制
御弁20,冷媒配管23を経て、再び、フラッシュ蒸発
器4に戻る冷冷媒循環系を構威している。なお、フラッ
シュ蒸発器4は、吸収器5の蒸気入り口部に隣接して冷
媒散布装置26,金網充填物27,液滴除去機構28,
液冷媒タンク29からなる。
Here, the liquid refrigerant in the flash evaporator 4 is passed through the check valve 25 and the refrigerant pipe 23 to the indoor unit 2 by the refrigerant circulation pump 10.
A refrigerant circulation system is constructed in which the refrigerant flows into the refrigerant air heat exchanger l7 of No. 2, passes through the refrigerant control valve 20 and refrigerant piping 23, and returns to the flash evaporator 4 again. Note that the flash evaporator 4 includes a refrigerant distribution device 26, a wire mesh filling 27, a droplet removal mechanism 28,
It consists of a liquid refrigerant tank 29.

また、ジェット凝縮器11の液冷媒は温冷媒循環ポンプ
12により、逆止弁26,温冷媒配管24を経て室内器
22の温冷媒空気熱交換器18に流入し、さらに,温冷
媒制御弁21,温冷媒配管24を経て、再び、ジェット
凝縮器11に戻る温冷媒循環系を構威している。なお、
ジェット凝縮器11の上部に冷媒散布装置30が設置さ
れ、温冷媒循環ポンプ12のサクション管3lから分岐
して逆U字液シール37を経て高温再生器1に戻る液冷
媒戻り流路が設けられている。
Further, the liquid refrigerant in the jet condenser 11 flows into the hot refrigerant air heat exchanger 18 of the indoor unit 22 via the check valve 26 and the hot refrigerant pipe 24 by the hot refrigerant circulation pump 12, and further flows into the hot refrigerant air heat exchanger 18 of the indoor unit 22. , and a hot/refrigerant circulation system that returns to the jet condenser 11 via the hot/refrigerant piping 24. In addition,
A refrigerant distribution device 30 is installed above the jet condenser 11, and a liquid refrigerant return flow path is provided that branches from the suction pipe 3l of the hot refrigerant circulation pump 12 and returns to the high temperature regenerator 1 via an inverted U-shaped liquid seal 37. ing.

つぎに、冷房運転時のサイクルの動作について説明する
。高温再生器1内の臭化リチウム水溶液はバーナ14で
燃焼される石油,都市ガスなどの燃焼ガスで加熱されて
沸騰し、冷媒蒸気を発生して濃縮される。発生した冷媒
蒸気は低温再生器2の管内で凝縮し、その凝縮潜熱で管
外の溶液を加熱する。凝縮液化した液冷媒は減圧手段を
経て空冷凝縮器3に送られる。また、加熱された溶液は
冷媒蒸気を発生して濃縮される。発生した冷媒蒸気は凝
縮器3に導かれ、空冷ファン15で送風される冷却空気
で冷却されて凝縮する。この液冷媒はU字液シール13
を経てフラッシュ蒸発器4に送られる。一方、高温再生
器1で濃縮された溶液は高温熱交換器7を経由して低温
再生器2で濃縮された溶液と一緒に低温熱交換器8を経
て,溶液スプレボンプ9により空冷吸収器5の管内に散
布され、冷却空気で冷却され、フラッシュ蒸発器4から
の冷媒蒸気を吸収して希溶液となり溶液循環ポンプ8で
再び低温熱交換器7を経て低温再生器2,及び、高温再
生器1へ送られる。また、フラッシュ蒸発器4で冷媒の
一部を蒸発させて低温になった液冷媒は,冷媒循環ポン
プ10により、逆止弁22,冷媒配管23を経由して室
内機22の冷媒空気熱交換器17に送られ送風ファン1
9で送られる室内の空気と熱交換して冷房作用を発揮す
る。冷媒空気熱交換器17で温められた冷媒は冷媒制御
弁20,冷媒配管23を経由して室外器16に戻り、フ
ラッシュ蒸発器4の冷媒散布装置26から金網充填物2
7上に分散されて一部を蒸発させる。この金網充填物2
7は液冷媒の気液接触面積を大きくして蒸発効率を上げ
るのに役立つ。
Next, the operation of the cycle during cooling operation will be explained. The lithium bromide aqueous solution in the high-temperature regenerator 1 is heated by combustion gas such as oil or city gas in the burner 14 and boils, generating refrigerant vapor and condensing. The generated refrigerant vapor condenses inside the tube of the low-temperature regenerator 2, and the latent heat of condensation heats the solution outside the tube. The condensed and liquefied liquid refrigerant is sent to the air-cooled condenser 3 via a pressure reducing means. Additionally, the heated solution generates refrigerant vapor and is concentrated. The generated refrigerant vapor is guided to the condenser 3, cooled by cooling air blown by an air cooling fan 15, and condensed. This liquid refrigerant is the U-shaped liquid seal 13
It is sent to flash evaporator 4 through . On the other hand, the solution concentrated in the high-temperature regenerator 1 passes through the high-temperature heat exchanger 7, passes through the low-temperature heat exchanger 8 together with the solution concentrated in the low-temperature regenerator 2, and is transferred to the air-cooled absorber 5 by the solution spray pump 9. It is dispersed in the pipe, cooled by cooling air, absorbs the refrigerant vapor from the flash evaporator 4, becomes a dilute solution, and passes through the solution circulation pump 8 and the low-temperature heat exchanger 7 again to the low-temperature regenerator 2 and the high-temperature regenerator 1. sent to. In addition, the liquid refrigerant that has become low temperature by evaporating a part of the refrigerant in the flash evaporator 4 is passed through the refrigerant circulation pump 10 to the refrigerant air heat exchanger of the indoor unit 22 via the check valve 22 and the refrigerant pipe 23. Blow fan 1 sent to 17
It exchanges heat with the indoor air sent by 9 and exerts a cooling effect. The refrigerant warmed by the refrigerant air heat exchanger 17 returns to the outdoor unit 16 via the refrigerant control valve 20 and the refrigerant piping 23, and is transferred from the refrigerant distribution device 26 of the flash evaporator 4 to the wire mesh filling 2.
7 and partially evaporated. This wire mesh filling 2
7 is useful for increasing the evaporation efficiency by increasing the gas-liquid contact area of the liquid refrigerant.

蒸発した冷媒蒸気は液滴除去機構28を経由して吸収器
5に導かれる。サイクル内の溶液の濃縮によって分離さ
れた液冷媒はフラッシュ蒸発器4の下部の液冷媒タンク
29に貯溜し、濃縮がある限度以上になった場合は、オ
ーバーフロー管32を介して吸収器5に溢れるようにな
っている。このようにしたのでサイクル内の溶液が過濃
縮されて結晶することが無く、安全に運転できる。
The evaporated refrigerant vapor is guided to the absorber 5 via the droplet removal mechanism 28. The liquid refrigerant separated by concentrating the solution in the cycle is stored in the liquid refrigerant tank 29 at the bottom of the flash evaporator 4, and when the concentration exceeds a certain limit, it overflows into the absorber 5 via the overflow pipe 32. It looks like this. This prevents the solution in the cycle from becoming overconcentrated and crystallizing, allowing safe operation.

次に、暖房時の暖房サイクルについて説明する。Next, the heating cycle during heating will be explained.

暖房時は高温再生器1に希溶液を供給する配管途中に設
けた冷暖房切り替え弁33、及び、濃溶液が高温熱交換
器7を経由して戻る配管途中に設けた冷暖房切り替え弁
34,低温再生器2に冷媒蒸気を供給する配管途中に設
けた冷暖房切り替え弁35を閉止する。高温再生器1の
発生蒸気はジェット凝縮器11に導かれ室内機22から
戻った液冷媒に、直接、凝縮させて加熱し、高温の液冷
媒を温冷媒循環ボンプ12により逆止弁36を経由して
、温冷媒配管24により室内機22の温冷媒熱交換器1
8に送って暖房に供する。ジェット凝縮器11で凝縮し
た冷媒は,ジェット凝縮器11の冷媒液面が所定よりも
高くなるとIU字シール37を介して高温再生器1に戻
されるため、高温再生器1内の溶液が不足したり、過濃
縮によって高温になったりする事が無く安全に運転でき
る。
During heating, there is an air-conditioning/heating switching valve 33 provided in the pipe that supplies the dilute solution to the high-temperature regenerator 1, and an air-conditioning/heating switching valve 34 provided in the pipe where the concentrated solution returns via the high-temperature heat exchanger 7. The heating/cooling switching valve 35 provided in the middle of the pipe that supplies refrigerant vapor to the container 2 is closed. The steam generated by the high temperature regenerator 1 is guided to the jet condenser 11 and directly condenses and heats the liquid refrigerant returned from the indoor unit 22, and the high temperature liquid refrigerant is passed through the check valve 36 by the hot refrigerant circulation pump 12. Then, the hot/refrigerant heat exchanger 1 of the indoor unit 22 is connected to the hot/refrigerant pipe 24.
8 for heating. The refrigerant condensed in the jet condenser 11 is returned to the high-temperature regenerator 1 via the IU seal 37 when the refrigerant liquid level in the jet condenser 11 becomes higher than a predetermined level. It can be operated safely without becoming hot due to over-concentration.

ここに、冷暖房用の液冷媒は密閉循環サイクルでありな
がら、フラッシュ蒸発器4,ジェット凝縮器11の気相
部に開放されているので、この冷媒循環系にシスターン
や温度変動による液圧調整用の冷媒タンク及び補給水は
不要であり、システムは極めて簡単である。
Here, although the liquid refrigerant for air conditioning is in a closed circulation cycle, it is open to the gas phase of the flash evaporator 4 and jet condenser 11, so this refrigerant circulation system has a cistern and a system for adjusting liquid pressure due to temperature fluctuations. The system is extremely simple, with no refrigerant tank or make-up water required.

なお、本実施例ではセパレートエアコンで実施例を説明
したが、室内器は1台に限らず二台あるいは三台以上に
も適用できることはいうまでもない。
Although this embodiment has been described using a separate air conditioner, it goes without saying that the present invention is applicable to not only one indoor unit but also two or three or more indoor units.

第2図は本発明の冷媒配管23及び温冷媒配管24の部
分断面図である。口径が約161I1l1の場合,内側
に0.5m程度の厚さのポリエチレン層41、中間に0
.1wn〜0.3nwn程度の厚さのアルミ層42、外
側に、また、1[III1〜5m程度の厚さのポリエチ
レン層43を配置した構造である。これらはコンジット
管44内に往復配管二本が信号線と一緒に挿入される。
FIG. 2 is a partial sectional view of the refrigerant pipe 23 and hot refrigerant pipe 24 of the present invention. When the diameter is approximately 161I111, there is a polyethylene layer 41 with a thickness of about 0.5m on the inside, and a 0.5m thick layer in the middle.
.. It has a structure in which an aluminum layer 42 with a thickness of about 1wn to 0.3nwn and a polyethylene layer 43 with a thickness of about 1[III1 to 5m are arranged on the outside. Two reciprocating pipes are inserted into the conduit pipe 44 together with a signal line.

外側がポリエチレンであり摩擦抵抗が小さくコンジット
管44内挿入しやすい。
The outer surface is made of polyethylene, which has low frictional resistance and is easy to insert into the conduit pipe 44.

また、冷媒配管23の端部接続金具45は挿入金具46
,○リングパッキン47,本体金具48,袋ナット49
からなる。冷媒配管23、又は,温冷媒配4v24の端
部に挿入金具46を加熱しながら押し当てるポリエチレ
ンが軟化してピタツリと配管内に挿入できる。挿入金具
46の外側には鋸歯状の刻みが設けられており、挿入さ
れた配管は抜けない。また、端面ば平滑になっており、
Oリングパッキン47を漏れなくシールできる様になっ
ている。Oリングパッキン47は本体金具48のOリン
グ溝に接着されており、挿入金具46の端部平滑面を押
し当てるだけで外部とシールされる。なお、袋ナット4
9は挿入金具46を本体金具48にねじで押しつけるよ
うになっている。さらに、袋ナット49の内側は冷媒配
管23.24を挿入金具46の鋸歯状の刻みに押しつけ
るように段差が設けられており、さらにしっかりと冷媒
配管23.24を挿入金具46に固定する役目を果たす
。以上のようにしたので、冷媒配管23,24の着脱は
袋ナット49を緩めて外すだけで良いので極めて作業性
が良いという利点がある。また、○リングパッキン47
が本体金具48のOリング溝に接着されているため、作
業中に○リングパッキン転がって熊<シてしまったり、
落して泥がついてシール性が低下するなどの不具合が起
こらず信頼性が高い。また、アルミ層42があるため、
熱い温冷媒を流してもポリエチレンが軟化してクリープ
を起こす条件でも強度を保持できる。
In addition, the end connection fitting 45 of the refrigerant pipe 23 is connected to an insertion fitting 46.
, ○Ring packing 47, main body fittings 48, cap nut 49
Consisting of The polyethylene that presses the insertion fitting 46 against the end of the refrigerant piping 23 or the hot refrigerant distribution 4v24 while heating it softens and can be inserted snugly into the piping. Serrated notches are provided on the outside of the insertion fitting 46, so that the inserted pipe cannot be pulled out. In addition, the end surface is smooth,
The O-ring packing 47 can be sealed without leaking. The O-ring packing 47 is adhered to the O-ring groove of the main body fitting 48, and is sealed from the outside simply by pressing the smooth end surface of the insertion fitting 46. In addition, cap nut 4
Reference numeral 9 is adapted to press the insertion fitting 46 against the main body fitting 48 with a screw. Furthermore, a step is provided on the inside of the cap nut 49 so as to press the refrigerant pipes 23, 24 against the serrated notches of the insertion fitting 46, which serves to further securely fix the refrigerant pipes 23, 24 to the insertion fitting 46. Fulfill. With the above arrangement, the refrigerant pipes 23 and 24 can be attached and detached by simply loosening and removing the cap nut 49, which has the advantage of extremely good workability. Also, ○ ring packing 47
Because the O-ring gasket is glued to the O-ring groove of the main body fitting 48, the O-ring gasket may roll and damage during work.
It is highly reliable as there are no problems such as a drop in sealing performance due to mud buildup. In addition, since there is an aluminum layer 42,
It maintains its strength even under conditions where polyethylene softens and creeps even when hot refrigerant is passed through it.

特に、吸収冷暖房機運転停止時、温冷媒循環ボンプ12
の吐出圧力が加わらないために真空になる温冷媒配管2
4は、ポリエチレンだけで肉圧が薄いと大気に押されて
つぶれてしまい、そのまま、冷却されて配管が変形し、
流路を十分に確保できなくむる。すなわち、再起動時は
変形配管内を冷媒が十分流れること無く、能力不足にな
る。ところが、アルミ層が有るため、高温度の温冷媒が
流れていて、突然、運転停止となって真空になっても、
つぶれることが無く、再起動時でも配管変形による冷媒
循環量の不足が起こらず、常に,十分な冷媒循環量を確
保できる。
In particular, when the absorption air conditioner stops operating, the hot refrigerant circulation pump 12
Hot refrigerant pipe 2 becomes vacuum because no discharge pressure is applied to it
4. If it is made of polyethylene and the wall pressure is low, it will be crushed by the atmosphere, and as it is, it will be cooled and the piping will be deformed.
This makes it impossible to secure a sufficient flow path. That is, at the time of restart, the refrigerant does not flow sufficiently through the deformed piping, resulting in insufficient capacity. However, because there is an aluminum layer, high temperature refrigerant is flowing, and even if the operation suddenly stops and a vacuum is created,
It does not collapse, and even when restarting, there is no shortage of refrigerant circulation due to piping deformation, and a sufficient amount of refrigerant circulation can always be ensured.

本実施例ではアルミ層42をポリエチレンのクJ−プ強
度補強部材として利用するとともに酸素不透層の役割も
果たした。アルミ層の代わりにステレンス,鉄,銅など
の金属材料を使っても同じ効果が得られるのは明白であ
る。しかし、アルミは銅に比バで1/5程度の密度であ
り軽量化できる。また、これら金属材料は冷媒にさらさ
れ無いため腐食することが無い利点がある。
In this embodiment, the aluminum layer 42 was used as a strength reinforcing member for the polyethylene cup and also served as an oxygen impermeable layer. It is obvious that the same effect can be obtained by using metal materials such as stainless steel, iron, or copper instead of the aluminum layer. However, aluminum has a density that is about 1/5 that of copper and can be made lighter. Furthermore, these metal materials have the advantage of not being corroded because they are not exposed to refrigerants.

第3図を使って本発明の他の実施例を説明する。Another embodiment of the present invention will be described using FIG.

第2図の実施例と異なる点はアルミ層42の外側に発泡
ポリウレタン層50、さらに、最外層にポリエチレン層
43を配置した点である。発泡ポリウレタン層50は冷
媒配管23.24の断熱材層としてたくさんの気相部を
含み、熱の侵入、及び、放熱を防止する効果がある。
The difference from the embodiment shown in FIG. 2 is that a foamed polyurethane layer 50 is disposed outside the aluminum layer 42, and a polyethylene layer 43 is disposed as the outermost layer. The foamed polyurethane layer 50 serves as a heat insulating layer for the refrigerant pipes 23 and 24, and contains a large amount of gas phase, and has the effect of preventing heat from entering and dissipating.

第4図を使って本発明の他の実施例を説明する。Another embodiment of the present invention will be described using FIG.

第2図の実施例と異なる点はアルミ層42が二重になっ
ている点である。アルミ層とアルミ層にはさまれた中間
ポリエチレン層51は断熱材としても働き、さらに、ア
ルミ表面からの輻射による放熱を小さくする効果がある
。なお、中間ポリエチレン層51に発泡ポリエチレンや
、発泡ボリスチレン,発泡ポリウレタンなどの発泡プラ
スチックを用いても同じく断熱効果が得られる。
The difference from the embodiment shown in FIG. 2 is that the aluminum layer 42 is doubled. The intermediate polyethylene layer 51 sandwiched between the aluminum layers also acts as a heat insulating material and has the effect of reducing heat dissipation due to radiation from the aluminum surface. Note that the same heat insulation effect can be obtained by using a foamed plastic such as foamed polyethylene, foamed polystyrene, or foamed polyurethane for the intermediate polyethylene layer 51.

第5図を使って本発明の他の実施例を説明する。Another embodiment of the present invention will be described using FIG.

第2図,第3図,第4図の実施例と異なる点は冷媒配管
23.24がラミネートチューブ52となっている点で
ある。本実施例は,前述の実施例と異なり、配管の軸方
向に対する自立性は無く、コンジット間44内に挿入し
て用いる。ラミネートチューブ52はポリエチレンフイ
ルム54にアルミ蒸着層53及びコーテイン層55から
なり、三枚以上重ねて軸方向に融着したものである。各
フイルム層間には空気や窒素ガス,炭酸ガス等がはさま
れている。冷媒循環ポンプ10.12が運転されている
ときはポンプ吐出圧力により冷媒配管23’,24は膨
らんで冷媒流路を形戊する。これらポンプが停止すると
大気圧力により押しつぶされて偏平化している。従って
、運転停止時は液冷媒が室外機16に自動的に戻るため
に、液冷媒タンク29の容量を増やすこと無く冷媒量を
調整でき、小形にできる利点がある。さらに、非常に軽
量であり、コンジット管44に納めたままの移動も極め
て容易である。また、ラミネートチューブ52の各フイ
ルム間が断熱作用を持っているため、放熱ロスが極めて
小さいという利点がある。内面のポリエチレン層が冷媒
側に接するため流動抵抗が小さく、かつ、全体を扁平に
したり、丸めたりできるので取扱も容易である。アルミ
蒸着膜53部分が空気の不透層になっているのは前述の
実施例と同じである。なお、ラミネートチューブ52外
側にさらに、発砲ポリエチレンや、発泡ボリスチレン,
発泡ポリウレタンなどの発泡プラスチックのカバーを設
けることもできる。また、さらに,ポリエチレン力バー
層56を設けて、軸方向に強度を持たせて単独でも用い
る事ができる。
The difference from the embodiments shown in FIGS. 2, 3, and 4 is that the refrigerant pipes 23, 24 are laminated tubes 52. This embodiment differs from the previous embodiments in that it does not have independence in the axial direction of the piping, and is used by being inserted into the space between conduits 44. The laminate tube 52 is made up of a polyethylene film 54, an aluminum vapor deposited layer 53, and a coating layer 55, and three or more layers are stacked and fused together in the axial direction. Air, nitrogen gas, carbon dioxide gas, etc. are sandwiched between each film layer. When the refrigerant circulation pumps 10, 12 are operated, the refrigerant pipes 23' and 24 are expanded by the pump discharge pressure to form a refrigerant flow path. When these pumps stop, they are crushed and flattened by atmospheric pressure. Therefore, since the liquid refrigerant automatically returns to the outdoor unit 16 when the operation is stopped, the amount of refrigerant can be adjusted without increasing the capacity of the liquid refrigerant tank 29, which has the advantage of being compact. Furthermore, it is extremely lightweight and can be moved extremely easily while stored in the conduit pipe 44. Further, since each film of the laminate tube 52 has a heat insulating effect, there is an advantage that heat radiation loss is extremely small. Since the polyethylene layer on the inner surface is in contact with the refrigerant side, flow resistance is low, and the whole can be flattened or rolled, making it easy to handle. As in the previous embodiment, the aluminum vapor-deposited film 53 is an air-impermeable layer. Furthermore, on the outside of the laminate tube 52, foamed polyethylene, foamed polystyrene, etc.
A cover of foamed plastic, such as foamed polyurethane, can also be provided. Furthermore, a polyethylene force bar layer 56 is provided to provide strength in the axial direction and can be used alone.

〔発明の効果〕〔Effect of the invention〕

本発明によれば室内機と室外機をプラスチック管に酸素
不透層を設けた空気が漏れない軽量の配管として酸素浸
入を防止したので、■機内に空気がもれないため、機器
の腐食劣化を起こすこと無く、■熱伝達低下により溶液
が過濃縮されて結晶が起こってサイクル構成不能になる
事無く、■油気装置を小形にでき、■配管が軽いため施
工性が良いなど、実用的な冷媒直接循環式の吸収冷暖房
機を実現することができる。
According to the present invention, the indoor unit and the outdoor unit are made of plastic pipes with an oxygen-impermeable layer, which prevents oxygen from entering the machine. ■ The solution is not over-concentrated due to reduced heat transfer and crystals occur, making it impossible to configure the cycle. ■ The oil and gas equipment can be made smaller. ■ The piping is light, so it is easy to install. It is possible to realize a direct refrigerant circulation type absorption air conditioner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すシステム系統図、第2
図は本発明の第工図の冷媒配管の部分断面図である。第
3図ないし第5図は本発明の他の実施例の冷媒配管の部
分断面図。 1・・・高温再生器、2・・低温再生器、3・・・空冷
凝縮器、4・・・フラッシュ蒸発器、5・・・空冷吸収
器、6・・低温熱交換器、7・・・高温熱交換器、8・
・・溶液循環ポンプ、9・・溶液スプレポンプ、10・
・・冷媒循環ポンプ、11・・・ジェット凝縮器、12
・・・温冷媒第l口 第2口 第4−図
Fig. 1 is a system diagram showing one embodiment of the present invention;
The figure is a partial sectional view of the refrigerant piping according to the construction drawing of the present invention. 3 to 5 are partial cross-sectional views of refrigerant piping according to other embodiments of the present invention. 1... High temperature regenerator, 2... Low temperature regenerator, 3... Air-cooled condenser, 4... Flash evaporator, 5... Air-cooled absorber, 6... Low-temperature heat exchanger, 7...・High temperature heat exchanger, 8・
・・Solution circulation pump, 9・・Solution spray pump, 10・
... Refrigerant circulation pump, 11 ... Jet condenser, 12
... Warm refrigerant 1st port 2nd port 4-Figure

Claims (1)

【特許請求の範囲】 1、再生器、凝縮器、蒸発器、吸収器、溶液熱交換器、
溶液ポンプ、冷媒ポンプ、およびこれらを作動的に接続
する配管系からなる吸収冷暖房機において、 液冷媒をフラッシュ蒸発させて冷たい液冷媒を生成する
冷媒生成室が前記蒸発器に相当し、前記蒸発器と室内機
とを冷媒循環ポンプを介して可撓性プラスチックに酸素
不透層を複合配置した冷媒配管で接続したことを特徴と
する吸収冷暖房装置。
[Claims] 1. Regenerator, condenser, evaporator, absorber, solution heat exchanger,
In an absorption heating/cooling machine consisting of a solution pump, a refrigerant pump, and a piping system that operatively connects these, a refrigerant generation chamber that flash-evaporates liquid refrigerant to generate cold liquid refrigerant corresponds to the evaporator, and the evaporator and an indoor unit are connected via a refrigerant circulation pump with refrigerant piping made of flexible plastic with a composite oxygen-impermeable layer.
JP30768689A 1989-11-29 1989-11-29 Absorption type space cooling and heating device Pending JPH03168567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30768689A JPH03168567A (en) 1989-11-29 1989-11-29 Absorption type space cooling and heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30768689A JPH03168567A (en) 1989-11-29 1989-11-29 Absorption type space cooling and heating device

Publications (1)

Publication Number Publication Date
JPH03168567A true JPH03168567A (en) 1991-07-22

Family

ID=17972003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30768689A Pending JPH03168567A (en) 1989-11-29 1989-11-29 Absorption type space cooling and heating device

Country Status (1)

Country Link
JP (1) JPH03168567A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252412A (en) * 2010-05-17 2011-11-23 海尔集团公司 Freon-free frequency-conversion air conditioner system
CN108692486A (en) * 2018-07-09 2018-10-23 中国科学院广州能源研究所 The air-source heat-pump air heater of multi-state cooling and warming

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252412A (en) * 2010-05-17 2011-11-23 海尔集团公司 Freon-free frequency-conversion air conditioner system
CN108692486A (en) * 2018-07-09 2018-10-23 中国科学院广州能源研究所 The air-source heat-pump air heater of multi-state cooling and warming

Similar Documents

Publication Publication Date Title
US6050102A (en) Heat pump type air conditioning apparatus
US4437321A (en) Absorption cooling and heating system
CN110454897A (en) A kind of evaporation cooling-solar energy absorption type refrigeration air-conditioning system
JPH03233265A (en) Absorbing type heat pump
CN109579193A (en) Evaporate cold space energy double source multi-connected heat pump unit
JPH03168567A (en) Absorption type space cooling and heating device
JP3063348B2 (en) Indirect refrigerant air conditioner, detachable heat exchanger for indirect refrigerant air conditioner, and indirect refrigerant air conditioning method
US20140165627A1 (en) Method for chilling a building
CN114992851A (en) Air source heat pump water heater system
CN210220280U (en) Single-tube liquid storage tank refrigerating and heating system with air supplementing and enthalpy increasing functions
CN113503672A (en) Ultra-low temperature refrigerating system for refrigerator
CN206269414U (en) A kind of auxiliary hot enthalpy increasing heat pump system
JPH04244565A (en) Condenser
CN216481665U (en) Energy-saving structure and air water generator
JP2517421B2 (en) Absorption refrigerator
RU2758018C1 (en) Absorption car air conditioner
RU2784256C1 (en) Air-conditioning system based on an absorption refrigerator with connecting a heat pump unit and solar collectors
CN108332323A (en) A kind of flat tube plate-fin heat source tower heat pump air-conditioning system and its working method
JP4903743B2 (en) Absorption refrigerator
JP3429906B2 (en) Absorption refrigerator
KR0110360Y1 (en) Heat pump type air-conditioner
JP3429905B2 (en) Absorption refrigerator
JPH0533886Y2 (en)
JPH0445363A (en) Absorption refrigerating and heating hot water supply machine
JP3416289B2 (en) Pressure difference sealing device for absorption refrigerators and water heaters