JPH03167341A - Production of combined polyester filament yarn having different shrinkage - Google Patents
Production of combined polyester filament yarn having different shrinkageInfo
- Publication number
- JPH03167341A JPH03167341A JP30499589A JP30499589A JPH03167341A JP H03167341 A JPH03167341 A JP H03167341A JP 30499589 A JP30499589 A JP 30499589A JP 30499589 A JP30499589 A JP 30499589A JP H03167341 A JPH03167341 A JP H03167341A
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- polyester
- shrinkage
- heat
- copolymerization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000728 polyester Polymers 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 74
- 238000007334 copolymerization reaction Methods 0.000 claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000009835 boiling Methods 0.000 claims abstract description 19
- 238000011282 treatment Methods 0.000 claims abstract description 18
- 239000000835 fiber Substances 0.000 claims description 39
- 239000000203 mixture Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 abstract description 22
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 abstract description 10
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 abstract description 9
- 238000009940 knitting Methods 0.000 abstract description 8
- 238000009941 weaving Methods 0.000 abstract description 7
- 238000001816 cooling Methods 0.000 abstract description 6
- 230000002040 relaxant effect Effects 0.000 abstract description 4
- 238000002074 melt spinning Methods 0.000 abstract description 2
- 239000004744 fabric Substances 0.000 description 26
- 230000035882 stress Effects 0.000 description 22
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 17
- 238000009987 spinning Methods 0.000 description 17
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 14
- -1 aromatic dicarboxylic acids Chemical class 0.000 description 11
- 230000008569 process Effects 0.000 description 9
- 230000000452 restraining effect Effects 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 229930185605 Bisphenol Natural products 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920001634 Copolyester Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical group C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- PDXRQENMIVHKPI-UHFFFAOYSA-N cyclohexane-1,1-diol Chemical compound OC1(O)CCCCC1 PDXRQENMIVHKPI-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000008642 heat stress Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリエステル収縮差混繊糸の製法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing polyester differential shrinkage blend yarn.
ざらに詳しくは、製編織、リラックス熱処理後、高温乾
熱処理下でもソフトな風合いを維持することのできるポ
リエステル収縮差混繊糸の製法に関する。More specifically, the present invention relates to a method for producing a polyester shrinkage blend yarn that can maintain a soft texture even after knitting, weaving, relaxing heat treatment, and high-temperature dry heat treatment.
[従来の技術]
従来からポリエステル収縮差混繊糸は、良好な嵩高性と
ドレープ性をもつソフト風合いの高級シルキー#1編物
用途に使われて、各種の適用製品が市場を賑わしている
。[Prior Art] Polyester differential shrinkage blend yarn has been used for high-grade silky #1 knitting fabrics with a soft texture that has good bulk and drapability, and various applied products are popular on the market.
ポリエステル収縮差混繊糸は、熱収縮率に差のあるポリ
エステル糸条が2種以上混繊された糸である。収縮差を
付与するためには、各糸条間の熱処理差、ポリエステル
の重合度差などとともに共重合率に差をもたせることも
知られている。The differential shrinkage polyester mixed yarn is a yarn in which two or more types of polyester yarns having different heat shrinkage rates are mixed. In order to provide a difference in shrinkage, it is known to provide a difference in copolymerization rate as well as a difference in heat treatment between yarns and a difference in the degree of polymerization of polyester.
共重合率に差をもたせたポリエステル収縮差混繊糸とし
て、たとえば特開昭55−45873号公報が挙げられ
る.一かかる混繊糸は、製編織したのら、精練等の工程
でリラックス下で熱処理することにより、各糸条間に潜
在する熱収縮率差が現われ、織編物の組織の拘束力下で
も充分な嵩高性を発現し、ソフト風合いのシルキー織編
物を43ることかできる。しかしながら、この織編物は
、アルカリ処理、染色、中間セット、プリントなどの各
工程を経てR終製品になるまでの間に、高温の熱処理に
ざらされ、#1編物を構成している糸がざらに収縮して
しまう。このため、当初のリラックス熱処理後の良好な
風合いを維持できず、硬く粗い風合いの織編物となって
しまう。An example of polyester shrinkage mixed fiber yarns having different copolymerization rates is disclosed in JP-A-55-45873. After knitting, knitting and weaving, such blended yarns are heat-treated under relaxed conditions during scouring and other steps, so that latent differences in heat shrinkage between each yarn are revealed, and the result is sufficient even under the constraining force of the woven or knitted structure. It exhibits high bulkiness and can be used to create silky woven and knitted fabrics with a soft texture. However, this woven and knitted fabric undergoes various processes such as alkali treatment, dyeing, intermediate setting, and printing, and is subjected to high-temperature heat treatment during the process of becoming an R finished product, causing the threads that make up the #1 knitted fabric to become rough. It contracts. For this reason, the good texture after the initial relaxing heat treatment cannot be maintained, resulting in a woven or knitted fabric with a hard and rough texture.
一方、特開昭64−20320月公報では、ポリエステ
ル収縮差混繊糸を高速紡糸法によって得ることを試みて
いる。該公報では高収縮或分のボリマの共重合比率と紡
糸速度の関係が論じられている。しかしながら、加熱延
伸、熱処理に対する配慮が欠けており、熱収縮応力の低
いものしか得られない。そのため、ソフトな風合のもの
は得られるとはいうものの!Ia編物の拘束下での嵩発
現に不足し、ふくらみ感に欠けるという欠点を有してい
る。On the other hand, Japanese Unexamined Patent Publication No. 1983-20320 attempts to obtain polyester shrinkage mixed fiber yarn by high-speed spinning method. This publication discusses the relationship between the copolymerization ratio of a high shrinkage polymer and the spinning speed. However, consideration is not given to heating stretching and heat treatment, and only products with low heat shrinkage stress can be obtained. Therefore, although you can get something with a soft texture! The Ia knitted fabric has the disadvantage that it lacks bulk under restraint and lacks a sense of fullness.
[発明が解決しようとする課題]
最近、紡糸速度4000 m/分以上の高速紡糸がポリ
エステルなどの溶融紡糸の生産プロセスとして広まりつ
つある。これは、プロセスそのものが大きなコス1・ダ
ウン効果をもつだけでなく、これにより得られた繊維が
、従来の紡糸延伸の二工程法により得られるIJAHに
比較して、ソフトな風合い、染色性等で優れた特性を示
すからである。[Problems to be Solved by the Invention] Recently, high-speed spinning at a spinning speed of 4000 m/min or more has become widespread as a production process for melt spinning polyester and the like. This is not only because the process itself has a large cost reduction effect, but also because the fibers obtained by this process have a soft texture, dyeability, etc. compared to IJAH obtained by the conventional two-step method of spinning and drawing. This is because it exhibits excellent properties.
高速紡糸繊維からなる織編物は、ソフ1〜で良好な風合
いを示す。これは、特殊な構造形成の過程を経るために
、繊維内の非晶部分子鎖の配向が低くなり基質白休が柔
らかくなることに起因する。したがって、ソフトで,S
べらみ感のある収縮差混繊糸を得るのに好適なプロセス
であろうと考えられるが、必ずしもそうでないことが判
明した。A woven or knitted fabric made of high speed spun fibers exhibits a good texture with a softness of 1 or higher. This is because the orientation of the amorphous molecular chains within the fiber becomes low and the substrate becomes softer due to the special structure formation process. Therefore, in software, S
Although this process is thought to be suitable for obtaining a differentially shrinkage mixed fiber yarn with a loose feel, it has been found that this is not necessarily the case.
それは、高速紡糸で得られる繊維は収縮挙動において、
従来の二工程法で得られる繊維と異なるためである。本
発明者らはこの点に看目し、鋭意検討した結果本発明に
至った。It is because the fibers obtained by high-speed spinning have shrinkage behavior.
This is because the fibers are different from those obtained by the conventional two-step method. The inventors of the present invention took note of this point and conducted extensive studies, resulting in the present invention.
本発明の目的は、前記欠点のないポリエステル収縮差混
繊糸、すなわち製編織、リラックス熱処理により充分な
嵩高性を発現し、また高温乾熱処理下でもソフト風合い
を維持することのできるポリエステル収縮差混繊糸の製
法を提供するものである。The object of the present invention is to provide a polyester shrinkage blend yarn that does not have the above-mentioned drawbacks, that is, a polyester shrinkage blend blend that can exhibit sufficient bulk through knitting and weaving and relaxing heat treatment, and can maintain a soft feel even under high-temperature dry heat treatment. The present invention provides a method for manufacturing yarn.
[課題を解決するための千段1
すなわち前記した本発明の目的は、ポリエステル収縮差
混繊糸の製法において、最も共重合率の高いポリエステ
ルと最も共重合率の低いポリエステルの共重合率の差が
10モル%以上である2種以上のポリエステルをそれぞ
れ溶融紡糸し、各糸条をそれぞれ一旦冷却固化し、次い
で前記各糸条を共通の加熱帯域を通過させて延伸熱処理
した後、引取ることにより、該混繊糸の熱収縮応力を0
.39/d以一ヒ、熱収縮応力のピーク温度を105℃
以上、かつ沸騰水処理後の乾熱収縮率SH2と沸騰水収
縮率S111との差ΔS=SH2−SH1を10%以下
とすることを特徴とするポリエステル収縮差混繊糸の製
法によって達成できる。[1,000 Steps to Solve the Problems] In other words, the purpose of the present invention described above is to solve the difference in copolymerization rate between a polyester with the highest copolymerization rate and a polyester with the lowest copolymerization rate in a method for manufacturing a polyester differential shrinkage mixed fiber yarn. Melt-spun two or more types of polyesters each having a content of 10 mol% or more, cooling and solidifying each yarn, and then passing each yarn through a common heating zone to heat treatment for stretching, and then taking it off. The heat shrinkage stress of the mixed fiber yarn is reduced to 0.
.. From 39/d, the peak temperature of heat shrinkage stress is 105℃
The above can be achieved by a method for producing a polyester differential shrinkage blend yarn characterized in that the difference ΔS=SH2−SH1 between the dry heat shrinkage rate SH2 and the boiling water shrinkage rate S111 after boiling water treatment is 10% or less.
本発明によって1qられるポリエステル収縮差混繊糸は
、大きく二つの特徴を有する。The polyester differential shrinkage mixed fiber yarn produced by the present invention has two major characteristics.
すなわち、まず本発明の方法により得られる収縮差混繊
糸は、織編物組織による拘束力下でも充分な嵩高性を発
現する。この性質は、後述する測定法により求められる
混繊糸の嵩高度〜1によって特徴づけることができ、M
が25 CC/(]以上、好ましくは30 cc/g以
上になることに対応する。That is, first, the differential shrinkage mixed fiber yarn obtained by the method of the present invention exhibits sufficient bulk even under the restraining force of the woven or knitted fabric structure. This property can be characterized by the bulkiness of the mixed yarn ~1 determined by the measurement method described below, and M
This corresponds to 25 cc/() or more, preferably 30 cc/g or more.
この特徴の1qられる理由は、共重合率の10モル%以
上異なるポリエステルをそれぞれ溶融紡糸し各糸条を一
旦冷却固化し、次いで各糸条を共通の7JO熱帯域を通
過させることにより延伸熱処理しているためである。こ
の帯域を通過させ延伸熱処理することにより、0.3
Q/d以上の高い熱収縮応力を引出す4?4造が形成ざ
れる。この性質は、低速紡糸巻取後に延伸する従来の糸
条の性質に類似したものである。特開昭64一2032
0号公報のように、加熱帯域での延伸熱処理に対する配
慮のない高速紡糸工程で得られる糸条は、結晶化度が高
く非晶配向度が低いため、熱収縮応力が0.25 Md
以下となり、拘束力下での充分な嵩発現の能力を有して
いない。それに対し、本発明では熱収縮応力が高いので
織編物組織による拘束力下でも充分な嵩高性を発現する
ことができる。しかも、高速紡糸特有のソフトな風合を
維持することが可能である。The reason for this feature is that polyesters with copolymerization ratios different by 10 mol% or more are melt-spun, each yarn is once cooled and solidified, and then each yarn is passed through a common 7JO thermal zone for drawing heat treatment. This is because By passing through this zone and carrying out stretching heat treatment, 0.3
A 4-4 structure is formed that brings out a high heat shrinkage stress of Q/d or higher. This property is similar to that of conventional yarns that are drawn after slow spinning and winding. Japanese Unexamined Patent Publication No. 64-2032
As in Publication No. 0, the yarn obtained by a high-speed spinning process without consideration for the drawing heat treatment in the heating zone has a high degree of crystallinity and a low degree of amorphous orientation, so the heat shrinkage stress is 0.25 Md.
Therefore, it does not have the ability to develop sufficient bulk under restraining force. In contrast, in the present invention, since the heat shrinkage stress is high, sufficient bulkiness can be exhibited even under the restraining force of the woven or knitted structure. Moreover, it is possible to maintain the soft texture characteristic of high-speed spinning.
本発明のポリエステル収縮差混繊糸の第二の特徴は、嵩
発現の後の高温熱処理に対しても、そのソフト風合いを
維持できることである。その理由は、製編織後の最初の
嵩発現処理により熱収縮応力をすべて解放し、極めて安
定な繊維構造となり、その後の熱処理でさらに収縮する
ことがほとんどなくなるからである。この性質は、後述
する測定法により求められる混繊糸の沸騰水処理後の乾
熱収縮率SH2と沸騰水収縮率SH+との差ΔS=SH
2−SHIによって特徴付けられ、ΔSが10%以下、
好ましくは5%以下となることに対応する。この性質は
加熱帯域のない高速紡糸で得られる糸の性質に類似して
いるが、前述の特開昭55−45873号公報のごとき
低速紡糸巻取後に延伸する従来の収縮差混繊糸とは全く
異なる。従来の製糸工程で得られる収縮差混繊糸では、
製編#1後の嵩発現処理後の高温熱処理で糸がさらに収
縮し、最終製品が粗硬な風合いのものとなり、織物外観
にもヒケ状欠点が充生してしまう。このような特殊な熱
収縮挙動を示すのは、本発明の2秤以上の糸条が共通の
加熱帯域を通過することに起因すると考えられる。加熱
帯域での延伸は、加熱帯域に入ってくる糸楽の繊維の配
向、紡糸張力、ボリマ基質に基づく延伸のしやすさと加
熱帯域内での糸条の界温過稈が影響し合う極めて複雑な
現象である。A second feature of the polyester shrinkage differential blend yarn of the present invention is that it can maintain its soft feel even when subjected to high temperature heat treatment after bulking. The reason for this is that the initial bulking treatment after knitting and weaving releases all heat shrinkage stress, resulting in an extremely stable fiber structure, which hardly causes further shrinkage in subsequent heat treatments. This property is determined by the measurement method described below, which is the difference ΔS between the dry heat shrinkage rate SH2 and the boiling water shrinkage rate SH+ of the mixed yarn after boiling water treatment.
2-Characterized by SHI, ΔS is 10% or less,
This corresponds to preferably 5% or less. This property is similar to that of yarn obtained by high-speed spinning without a heating zone, but it is different from the conventional differential shrinkage mixed fiber yarn that is drawn after being spun and wound at low speed, such as the aforementioned Japanese Patent Application Laid-Open No. 55-45873. Totally different. Differential shrinkage mixed fiber yarn obtained through the conventional spinning process is
The yarn further shrinks due to the high-temperature heat treatment after the bulking treatment in knitting #1, resulting in a final product with a rough and hard texture, and the appearance of the fabric is full of sink-like defects. The reason for exhibiting such special heat shrinkage behavior is considered to be that two or more yarns of the present invention pass through a common heating zone. Stretching in the heating zone is extremely complex, as it is influenced by the orientation of the fibers entering the heating zone, the spinning tension, the ease of stretching based on the volima matrix, and the field temperature excess of the yarn in the heating zone. This is a phenomenon.
しかし、逆に2種以上の糸条を共通の加熱帯域を通過さ
せる利点は、各糸条の延伸が、延伸倍率を含めて最適と
なるように自然に$り御できる特徴をもっていることで
ある。本発明では、2種の糸条を共通の加熱帯域を通過
することで、共重合率に差がある各成分からなる糸条が
最適の延伸ができるために、上記のような特殊な熱収縮
挙動を示すものと考えられる。However, on the contrary, the advantage of passing two or more types of yarn through a common heating zone is that the drawing of each yarn, including the stretching ratio, can be naturally controlled to be optimal. . In the present invention, by passing two types of yarns through a common heating zone, yarns made of components with different copolymerization rates can be stretched optimally. This is considered to be indicative of the behavior.
このように、織編物組織の拘束力下で嵩発現し、かつ嵩
発現後の高温処理でそのソフトな風合いを維持できるの
は、本発明によって得られる混繊糸のみであり、これは
本発明で特定するポリエステルと製糸方法との組合せに
より得られる繊維のもつ特殊なmM構造のためである。As described above, it is only the mixed fiber yarn obtained by the present invention that can develop bulk under the restraining force of the woven or knitted fabric structure and maintain its soft texture through high-temperature treatment after bulk development. This is due to the special mM structure of the fiber obtained by the combination of the polyester specified in and the spinning method.
本発明では、最も共重合率の高いポリエステルと、最も
共重合率の低いポリエステルの共重合率の差を10モル
%以上とする必要がある。ここで共重合率P(モル%)
とは、共重合ポリエステルの仝酸成分に対する共重合酸
或分のモル分率Pa (モル%〉と、共重合ポリエス
テルの全グリコール成分に対する共重合グリコール成分
のモル分率Pb (モル%)の和、すなわちP=Pa
+Pb
で表される1直である。In the present invention, the difference in copolymerization rate between the polyester with the highest copolymerization rate and the polyester with the lowest copolymerization rate must be 10 mol% or more. Here, copolymerization rate P (mol%)
is the sum of a certain molar fraction Pa (mol%) of the copolymerized acid to the acidic component of the copolymerized polyester and a mole fraction Pb (mol%) of the copolymerized glycol component to the total glycol component of the copolymerized polyester. , that is, P=Pa
+Pb is one shift.
これらのポリエステルにおいて、共重合率が10モル%
以上差がない場合は、熱収縮率差が小さく、充分なm高
性を発現しえない。共重合率の高いポリエステルは高収
縮側の糸条の戒分であり、ソフトな風合いを確保するた
め共重合率を30モル%以下とするのが好ましく、特に
25モル%以下がより好ましい。共重合率の低いポリエ
ステルは、本発明の混繊糸の低収縮側の糸条の成分とな
るものであり、実質的に共重合成分を含まないポリエス
テルであってもよい。In these polyesters, the copolymerization rate is 10 mol%
If there is no difference above, the difference in heat shrinkage rate is small and sufficient m-heightness cannot be achieved. Polyester with a high copolymerization rate is a prerequisite for yarns on the high shrinkage side, and in order to ensure a soft feel, the copolymerization rate is preferably 30 mol% or less, and particularly preferably 25 mol% or less. The polyester having a low copolymerization rate is a component of the low-shrinkage yarn of the mixed fiber yarn of the present invention, and may be a polyester containing substantially no copolymerization component.
本発明における共重合成分としては、芳香族ジカルボン
酸類、脂肪族ジカルボン酸類、脂肪族ジオール類、脂環
式ジオール類、芳香族ジオール類あるいはこれらにエチ
レンオギサイドなどを付加したジオール類を用いること
かでぎ、具体的にはイソフタル酸、ナフタレン−2.6
−ジカルボン酸、アジピン酸、セバシン酸、1,4−ブ
タンジオール、ジエチレングリコール、トリメチレング
リコール、分子ffi 600〜6000程度のポリエ
チレングリコール、シクロヘキサンジオール、ビスフェ
ノールAのエチレンオキシド付加物、ビスフェノールス
ルホンのエチレンオキシド付加物などを好ましく用いる
ことができる。収縮挙動は共重合成分により異なるので
、前記した△Sが本発明の範囲になるように共重合比率
を設定する必要がある。As copolymerization components in the present invention, aromatic dicarboxylic acids, aliphatic dicarboxylic acids, aliphatic diols, alicyclic diols, aromatic diols, or diols obtained by adding ethylene oxide or the like to these may be used. Degi, specifically isophthalic acid, naphthalene-2.6
-Dicarboxylic acid, adipic acid, sebacic acid, 1,4-butanediol, diethylene glycol, trimethylene glycol, polyethylene glycol with molecular ffi of about 600 to 6000, cyclohexanediol, ethylene oxide adduct of bisphenol A, ethylene oxide adduct of bisphenol sulfone, etc. can be preferably used. Since the shrinkage behavior differs depending on the copolymerization components, it is necessary to set the copolymerization ratio so that the above-mentioned ΔS falls within the range of the present invention.
なお、特に熱安定性が良好でかつ沸騰水収縮率SH1が
高くなり易い七ノマとしては芳香族系のジオールを用い
るのが好ましく、例えば、イソフタル酸およびビスフェ
ノールAのエチレンオキシド付加物を次式のモル分率で
共重合することがさらに好ましい。In addition, it is preferable to use an aromatic diol as the diol which has particularly good thermal stability and tends to have a high boiling water shrinkage rate SH1. For example, an ethylene oxide adduct of isophthalic acid and bisphenol A is mixed with It is more preferable to copolymerize in fractions.
10.0≦Fa+Fb≦25.0
1.0≦Fb≦4.8
(Faは共重合ポリエステルの仝醸成分に対するイソフ
タル酸のモル分率(%)、Fbは共重合ポリエステルの
全グリコール成分に対するビスフェノールAのエチレン
オキシド付加物のモル分率(%〉である。〉
ソフトな風合いを確保するためには、Fa+Fbを25
モル%以下にすることが好ましい。またイソフタル酸と
、ビスフェノール八のエチレンオキシド付加物を共重合
するメリツ1−である嵩の発現を十分とし、好ましい嵩
高度の範囲30cc/g以上とするためには、「bを1
.0モル%以上とするのが好ましい。逆に、高温熱処理
での収縮を小さくし、最終製品でのソフトな風合いを維
持するためには、「bを4.8モル%以下とするのが好
ましい。10.0≦Fa+Fb≦25.0 1.0≦Fb≦4.8 (Fa is the molar fraction (%) of isophthalic acid to the flavoring components of the copolyester, Fb is the molar fraction (%) of isophthalic acid to the total glycol component of the copolyester The molar fraction (%) of the ethylene oxide adduct of A is
It is preferable to make it less than mol%. In addition, in order to sufficiently express the bulk, which is the advantage of copolymerizing isophthalic acid and the ethylene oxide adduct of bisphenol 8, and to have a preferable bulk level of 30 cc/g or more, it is necessary to set b to 1.
.. The content is preferably 0 mol% or more. On the other hand, in order to reduce shrinkage during high-temperature heat treatment and maintain a soft texture in the final product, it is preferable that b be 4.8 mol% or less.
本発明のポリエステルとしては、エチレンテレフタレー
ドを基本単位とするポリエチレンテレフタレートを好ま
しく用いることができる。As the polyester of the present invention, polyethylene terephthalate whose basic unit is ethylene terephthalate can be preferably used.
ポリエステルの固有粘度は、オルソクロロフェノール2
5℃溶液中で、0.45〜0.75の範囲が好ましく、
0.55〜0.65の範囲がより好ましい。また、巻取
ったパッケージにたるみが発生すると、後工程で糸の引
出しや工程通過が困難となるので、これを防ぐために共
重合率の異なるポリエステルの間で固有粘度を変更する
ことが好ましく採用される。さらに、共重合率の高いポ
リエステルの固有粘度を高くするというように、共重合
率と固有粘度との組合せによって収縮率差をより高くす
ることも好ましい。The intrinsic viscosity of polyester is orthochlorophenol2
In a 5°C solution, the range is preferably from 0.45 to 0.75,
The range of 0.55 to 0.65 is more preferable. In addition, if sagging occurs in the wound package, it will be difficult to pull out the yarn or pass through the process in the subsequent process, so to prevent this, it is preferable to change the intrinsic viscosity between polyesters with different copolymerization rates. Ru. Furthermore, it is also preferable to increase the shrinkage rate difference by combining the copolymerization rate and the intrinsic viscosity, such as increasing the intrinsic viscosity of a polyester with a high copolymerization rate.
本発明では、前記の2成分以上のポリエステルをそれぞ
れ別の吐出孔から吐出して冷却固化し、共通の加熱帯域
を通過させ、延伸熱処理して巻取る。紡糸口金孔形状は
丸、Y,T、その他公知の形状のものを用いることがで
きる。1紡糸口金で2成分以上のポリエステルを吐出し
ても、2以上の紡糸口金から吐出してもよい。In the present invention, the two or more components of polyester are discharged from separate discharge holes, cooled and solidified, passed through a common heating zone, subjected to stretching heat treatment, and wound up. The shape of the spinneret hole may be round, Y, T, or other known shapes. Two or more components of polyester may be discharged from one spinneret, or two or more polyesters may be discharged from two or more spinnerets.
混繊糸の高・低収縮糸条の分散状態、いわゆる「こなれ
」は、1紡糸口金で2或分以上のポリエステルを吐出す
る方法が良好であり、各糸条の吐出孔群は環状や交互に
配置する場合がさらに良好であり、本発明に好ましく用
いられる。The dispersion state of high- and low-shrinkage yarns of mixed fiber yarns, so-called "Konare", is best achieved by discharging two or more portions of polyester from one spinneret, and the discharge hole group of each yarn is circular or alternate. It is even better to arrange it in , and it is preferably used in the present invention.
紡糸口金から吐出したポリエステルは、冷却風により冷
却固化する。冷却はその後の延伸熱処理が安定して行え
るように、ポリエステル糸条が固化する温度、すなわち
ガラス転移点温度以下になるまで冷却する。The polyester discharged from the spinneret is cooled and solidified by cooling air. Cooling is performed until the temperature at which the polyester yarn solidifies, that is, below the glass transition temperature, so that the subsequent drawing heat treatment can be performed stably.
一旦、冷却固化したポリエステル糸条を加熱帯域に導き
、延伸熱処理する。加熱帯域では糸条が自由に延伸でき
るように、入口あるいは出口の糸道規制部以外では糸条
は何物とも接触させないことが好ましい。加熱帯域とし
ては加熱筒を用いるのが好ましい。かかる加熱筒は、周
囲から加熱ざれているもの、加熱導入された乾熱空気、
あるいは飽和蒸気が満たされているもの、あるいはこれ
らを組み合わせることが好ましく用いられる。Once cooled and solidified, the polyester yarn is introduced into a heating zone and subjected to drawing heat treatment. In order to allow the yarn to stretch freely in the heating zone, it is preferable that the yarn does not come into contact with anything other than the yarn path regulating section at the entrance or exit. It is preferable to use a heating tube as the heating zone. Such a heating cylinder is one that is heated from the surroundings, one that is heated by heated dry heated air,
Alternatively, it is preferable to use one filled with saturated steam, or a combination of these.
加熱帯域では、通過する糸条が延伸熱処理されることが
必要である。延伸熱98理した結果として、熱収縮応力
として0.3g/d以上、熱収縮応力のピーク温度とし
て105℃以上の混繊糸が得られる。延伸熱処理とは、
延伸およびそれに引き続く熱処理のことである。延伸が
起こるためには、延伸に必要な充分な張力が糸条に加わ
り、かつ加熱帯域から充分な熱が供給されることが必要
である。In the heating zone, it is necessary that the passing yarn be subjected to drawing heat treatment. As a result of the drawing heat treatment, a mixed fiber yarn having a heat shrinkage stress of 0.3 g/d or more and a peak temperature of heat shrinkage stress of 105° C. or more is obtained. What is stretching heat treatment?
It refers to stretching and subsequent heat treatment. For drawing to occur, it is necessary that sufficient tension be applied to the yarn for drawing and that sufficient heat be supplied from the heating zone.
ここに33いて張力とは、(加熱帯域入口での糸条の実
張力)÷〈巻取糸デニール〉のことであり、巻取糸の単
糸デニール、引取速度、紡糸口金から加熱帯域までの距
離などにより変化する。延伸に必要な張力は通常0.3
Md以上である。延伸張力が0.3Mdに満たない場合
は、糸の熱収縮応力が0.3 Mdに達しないため、織
編物組織の拘束力下で嵩が発現しない。Here, the tension is (actual tension of the yarn at the entrance of the heating zone) ÷ <denier of the wound yarn>, and the tension is calculated by dividing the actual tension of the yarn at the entrance of the heating zone by the denier of the wound yarn, the take-up speed, and the tension from the spinneret to the heating zone. It changes depending on distance etc. The tension required for stretching is usually 0.3
Md or more. When the stretching tension is less than 0.3 Md, the heat shrinkage stress of the yarn does not reach 0.3 Md, and therefore no bulk is developed under the restraining force of the woven or knitted fabric structure.
また、加熱帯域を通過する糸条を延伸熱処理させるため
に必要な加熱帯域温度は、105℃以上が好ましく、1
10℃以上がより好ましい。加熱帯域温度が105℃よ
り低い場合は、延伸が起こったとしても充分な熱処理が
施されないため、沸騰水収縮率が60%を越えて極めて
高くなり、ガサガサの#1編物しか得られない。In addition, the heating zone temperature necessary for drawing and heat-treating the yarn passing through the heating zone is preferably 105°C or higher, and 105°C or higher.
More preferably, the temperature is 10°C or higher. When the heating zone temperature is lower than 105° C., even if stretching occurs, sufficient heat treatment is not performed, so the boiling water shrinkage rate becomes extremely high, exceeding 60%, and only a rough #1 knitted fabric is obtained.
加熱帯域の温度は、混繊糸の熱収縮率を左右する大きな
ファクターであり、充分なふくらみ感をもつ嵩を得るた
めには、熱収縮応力のピーク温度として140℃以下に
相当する熱処理を行うことが好ましく、熱収縮応力のピ
ーク温度として130℃以下に相当する熱処理がより好
ましい。上記熱収縮応力のピーク温度140℃以下およ
び130℃以下に対応する加熱帯域のおよその温度は、
それぞれ150℃以下および140℃以下である。The temperature of the heating zone is a major factor that affects the thermal shrinkage rate of mixed fiber yarns, and in order to obtain bulk with sufficient swelling, heat treatment is performed at a temperature equivalent to the peak temperature of thermal shrinkage stress of 140°C or less. It is preferable that the heat treatment corresponds to a peak temperature of 130° C. or less as the peak temperature of heat shrinkage stress. The approximate temperatures of the heating zone corresponding to the peak temperatures of 140°C or lower and 130°C or lower of the heat shrinkage stress are as follows:
They are 150°C or lower and 140°C or lower, respectively.
紡糸口金から加熱借域入口までの鉗離は、紡糸口金下で
の充分な冷却、作業性および空気抵抗力により生ずる充
分な張力を付与するために、0.5 〜4.0 mが好
ましく、1.0 〜3.0 mがより好ましい。加熱帯
域の長さは、安定した延伸熱処理、省エネルギーの面か
ら、0.5〜3.0 11 序好ましく、1.0〜2.
0mがより好ましい。 引取速度は得られる糸の機械的
性質、紡糸糸切れの面から、4000 〜7000 m
/分が好ましく、5000〜6000 m/分がより好
ましい。The distance from the spinneret to the entrance of the heating zone is preferably 0.5 to 4.0 m in order to provide sufficient cooling under the spinneret, workability, and sufficient tension caused by air resistance. 1.0 to 3.0 m is more preferable. The length of the heating zone is preferably 0.5 to 3.0, preferably 1.0 to 2.0, from the viewpoint of stable stretching heat treatment and energy saving.
0 m is more preferable. The take-up speed is 4000 to 7000 m in terms of the mechanical properties of the yarn obtained and the spun yarn breakage.
/min is preferable, and 5000 to 6000 m/min is more preferable.
本発明では2種以上のポリエステル糸条を、共通の加熱
幣賊を通過させることは前述のとおりであるが、混繊糸
の各糸条の分敗状態、いわゆる「こなれ」を良好とする
ためにも、各糸条が共通の加熱帯域を通過することが適
している。In the present invention, as described above, two or more types of polyester yarns are passed through a common heating process, but in order to improve the splitting state of each yarn of the mixed fiber yarn, so-called "coating". It is also suitable for each thread to pass through a common heating zone.
各糸条を別個の加熱帯域を通過させ、巻取までの間で混
繊し空気交絡処理などで分散性を高めようとしても、「
こなれ」は良好とならず、逆に空気交絡処理時に毛羽が
増加する。Even if you try to improve the dispersibility by passing each yarn through a separate heating zone, mixing the fibers before winding, and performing air entanglement treatment,
The texture is not good, and on the contrary, fluff increases during air entanglement treatment.
本発明のポリエステル中には、製糸工程や製編織■稈で
の糸道ガイド等との摩家抵抗を軽減するため、あるいは
マイルドな光沢やダルなどの特殊な色相を付与するため
に、酸化チタン、炭酸カルシウム、カオリン、メタカオ
リン、シリカなどの微粒子を0.015〜5.0重量%
添加することが好ましい。また、その他の機能性を付与
するために制電剤、難燃剤、耐光剤、吸湿剤、発色剤な
どを0.01〜5.0重最%の範囲で、必要に応じて添
加することができる。In the polyester of the present invention, titanium oxide is added in order to reduce the friction resistance with the thread guide during the spinning process, weaving, weaving, and culm, or to impart a special hue such as mild luster or dullness. , 0.015 to 5.0% by weight of fine particles such as calcium carbonate, kaolin, metakaolin, and silica.
It is preferable to add. In addition, in order to impart other functionality, antistatic agents, flame retardants, light stabilizers, moisture absorbers, coloring agents, etc. may be added as necessary in the range of 0.01 to 5.0% by weight. can.
共重合率の高いポリエステルからなる糸条の巻取後の単
糸デニールを、共重合率の低いポリエステルからなる糸
条の巻取後の単糸デニールより1.2〜5.0倍大きく
することにより、得られる11編物の腰、張りが良好と
なるので、本発明で好ましく採用ざれる。またこの場合
、単糸デニールの小さい糸条の単糸デニールを1.0デ
二−ル以下とすることにより、よりソフトな風合いを#
1編物に付与できるため、本発明に好適である。The single yarn denier after winding of a yarn made of polyester with a high copolymerization rate is 1.2 to 5.0 times larger than the single yarn denier after winding of a yarn made of a polyester with a low copolymerization rate. Since the stiffness and tension of the obtained 11 knitted fabric are improved by this method, it is preferably employed in the present invention. In this case, by setting the single yarn denier of the yarn with a small single yarn denier to 1.0 denier or less, a softer texture can be achieved.
Since it can be applied to one knitted fabric, it is suitable for the present invention.
本発明の混繊糸はその特性を損わない範囲で、各糸条あ
るいは一方の糸条を複合繊維とすることができる。かか
る複合繊維にあっては、本発明で用いる共重合率に差の
あるポリエステル以外に易溶出成分や訓電、導電成分を
含lνでいてもよい。In the mixed fiber yarn of the present invention, each yarn or one yarn can be made into a composite fiber within a range that does not impair its properties. Such a composite fiber may contain an easily eluted component, a conductive component, or a conductive component in addition to the polyester having a different copolymerization rate used in the present invention.
[実施例]
以下の実施例によって本発明をざらに具体的に説明する
。[Example] The present invention will be briefly and concretely explained using the following example.
まず、本発明における熱収縮応力、沸騰水収縮率、沸騰
水処理後の乾熱収縮率、嵩高度の測定法について以下に
述べる。First, methods for measuring heat shrinkage stress, boiling water shrinkage rate, dry heat shrinkage rate after boiling water treatment, and bulkiness in the present invention will be described below.
A.熱収縮応力および熱収縮応力のピーク温度カネボウ
エンジニアリング製熱応力測定器KE−2型を用い、2
0Cfflの試料(混繊糸)をループにして10cmと
し、測定する試Fl(混繊糸)のデニールX 1 /1
5の初荷重をかけて調整した後、昇温速度150℃/分
で昇温し熱収縮応力曲線を求める。この曲線からピーク
位置での応力(+;+/d )および温度(℃)を読み
取る。なお、記録計は横河電気製X−Yレコーダー、タ
イプ3083を用いた。A. Heat shrinkage stress and peak temperature of heat shrinkage stress were measured using a heat stress measuring instrument KE-2 manufactured by Kanebo Engineering.
A sample of 0 Cffl (mixed fiber yarn) is made into a loop of 10 cm, and the denier of the sample Fl (mixed fiber yarn) to be measured is X 1 /1
After adjusting by applying an initial load of 5, the temperature was increased at a temperature increase rate of 150° C./min to obtain a heat shrinkage stress curve. The stress (+; +/d 2 ) and temperature (° C.) at the peak position are read from this curve. The recorder used was an X-Y recorder, type 3083 manufactured by Yokogawa Electric.
B.沸騰水収縮率
試利は周長1mのかせ取り機10回巻きのものを1 ’
)ンプルとし、0.1 Md荷重下で原長し1を求める
。次に無荷重下沸騰水中で15分間処理した後、0.I
Md下で処理後の長さL2を求め、次式より沸騰水収
縮率S日1(%)を算出する〈測定数5回の平均値とす
る)。B. The boiling water shrinkage test yield is 1' for a 10-turn skein with a circumference of 1 m.
) sample and calculate the original length 1 under a 0.1 Md load. Next, after processing for 15 minutes in boiling water under no load, 0. I
The length L2 after treatment is determined under Md, and the boiling water shrinkage rate S day 1 (%) is calculated from the following formula (the average value of 5 measurements is taken).
SH+ =((Ll−12)/L+)XIOOC.沸騰
水処理後の乾熱収縮率
前記}ll!騰水処理後にサンプルを風乾後、2IIl
g/dの荷重下にて、乾熱180℃゜オープン中で5分
間処理した後、0.1 a,,’d荷重下で処理後の長
さL3を求め、次式により沸騰水処理後の乾熱収縮率S
H2(%)を算出する(測定数5回の平均値とする)。SH+ = ((Ll-12)/L+)XIOOC. Dry heat shrinkage rate after boiling water treatment }ll! After air-drying the sample after water treatment, 2IIl
After processing for 5 minutes in a dry heat 180°C open environment under a load of g/d, the length L3 after treatment was determined under a load of 0.1 a,,'d, and the length L3 after treatment with boiling water was calculated using the following formula. Dry heat shrinkage rate S
Calculate H2 (%) (take the average value of 5 measurements).
SH2=((Ll−L3)/Ll)XIOO%D.嵩高
度
第1図は、嵩高度Mを測定する装置の斜視図であり、第
2図(八) 、(B)および(C)は、この装置による
測定方法を説明するための見取図である。SH2=((Ll-L3)/Ll)XIOO%D. Bulk Height Figure 1 is a perspective view of a device for measuring bulk height M, and Figures 2 (8), (B) and (C) are sketches for explaining the measuring method using this device.
試料台1の上面に2本の切込み2を設け、その外側縁部
間隔3を5mmとし、この切込み2に幅25mmの柔軟
なフィルム4を卦け渡し、その下端に指針付き金具5お
よび荷重6を結合する。金具5の指針は、試料を装着し
ない場合に目盛り7のO位を示すようにセットする。Two notches 2 are provided on the upper surface of the sample stage 1, and the outer edge interval 3 is 5 mm. A flexible film 4 with a width of 25 mm is passed through the notches 2, and a metal fitting 5 with a pointer and a load 6 are attached to the lower end of the flexible film 4. combine. The pointer on the metal fitting 5 is set so as to indicate the O position on the scale 7 when no sample is attached.
試料は、80 IIIの糸条を周長11+1のカセにし
たものを、48000デニールになるようにカセを用意
する(例えば、表示繊度30デニールの糸条ならば、3
0x BOX 2 = 4800, 48000÷48
00= 10テ10カセ、表示[!r!175デニール
の糸条ならば、75X 80X 2 = 12000
、48000÷12000=4で4カセ)。このカセを
上記C項の沸騰水処理後の乾熱収縮率の測定と同様の熱
処理を行い、カセを引きそろえる。次いで、この引きそ
ろえたカセを、第2図(A)に示すように4つ折りにし
て試料8を形成し、第2図(8)の正面図および(C)
の断面図に示すように、この試料8をフィルムテープ4
と試料台1との間に静かにざし入れる。荷重6は、指針
付き金具5と合計して509になるようにし、指針の示
す値L(Clll)を読み取る。For the sample, prepare a skein of 80 III yarn with a circumference of 11+1 and a skein of 48,000 denier (for example, if the yarn has a nominal fineness of 30 denier,
0x BOX 2 = 4800, 48000÷48
00 = 10 te 10 kase, display [! r! For 175 denier yarn, 75X 80X 2 = 12000
, 48000 ÷ 12000 = 4 = 4 cassettes). This skein is subjected to heat treatment similar to the measurement of the dry heat shrinkage rate after boiling water treatment in Section C above, and the skeins are aligned. Next, the aligned skeins are folded into four as shown in FIG. 2(A) to form sample 8, and the front view of FIG. 2(8) and the front view of FIG. 2(C)
As shown in the cross-sectional view of
and sample stage 1. The load 6 is added to the metal fitting 5 with a pointer so that it becomes 509, and the value L (Clll) indicated by the pointer is read.
嵩高度Mは、次式から算出する。The bulk height M is calculated from the following formula.
M (cc/g>=V/W
V= (L2/l x2.5
W=DX (100 / (100−SH2))XPx
(0.025 /9000)
(ここで、■はテープ中の体積(CC)、Wはテープ中
の糸重1 (o)、Dは熱処理前の試料糸の繊度(デニ
ール)、Pはテープ中に平行に入っている糸本数、SH
2は上記C項で測定した乾熱収縮率である。)実施例1
テレフタルM/エヂレングリコールおよびイソフタル酸
/エヂレングリコールスラリーを用いてエステル化反応
を行った後、ビスフェノールA・2エチνンオキシド付
加物のエチレングリコ一ル溶液を添加し、通常の方法に
より重合を行い、共重合ポリエステルの全酸成分に対す
るインフタル酸のモル分率Faが11.0%、共重合ポ
リエステルの仝グリコール成分に対するビスフェノール
へ・2エチレンオキシド付加物のモル分率Fbが4.0
%、25℃オルンク口口フェノール中の固有粘度が0.
67の共重合ポリエステルのチップを得た。M (cc/g>=V/W V= (L2/l x2.5 W=DX (100 / (100-SH2))XPx
(0.025/9000) (where ■ is the volume in the tape (CC), W is the yarn weight in the tape 1 (o), D is the fineness (denier) of the sample yarn before heat treatment, and P is the volume in the tape The number of threads parallel to SH
2 is the dry heat shrinkage rate measured in Section C above. ) Example 1 After carrying out an esterification reaction using terephthal M/ethylene glycol and isophthalic acid/ethylene glycol slurries, an ethylene glycol solution of bisphenol A/2-ethylene oxide adduct was added, and the reaction was carried out as usual. Polymerization was carried out according to the method, and the mole fraction Fa of inphthalic acid with respect to the total acid components of the copolymerized polyester was 11.0%, and the mole fraction Fb of the adduct of bisphenol and 2 ethylene oxide with respect to the glycol component of the copolymerized polyester was 4.0%. 0
%, the intrinsic viscosity in Orunc mouth phenol at 25°C is 0.
67 copolymerized polyester chips were obtained.
また、共重合していない25℃オルソクロ1二】ノエノ
ール巾の固4j粘度が0,65のポリエチレンテレフタ
レートのチップを得た。In addition, chips of uncopolymerized polyethylene terephthalate having a solid 4j viscosity of 0.65 and having a width of 25°C orthochloro12]noenol were obtained.
共重合率の差は、15.0モル%である。The difference in copolymerization rate is 15.0 mol%.
また、上記共重合ポリエステルには炭酸カルシウム粒子
を添加し、共重合していないポリエチレンテレフタレー
トには、触媒に起因する粒子を生成させて、製糸及び高
次工程の通過性を改善した。In addition, calcium carbonate particles were added to the copolymerized polyester, and particles caused by the catalyst were generated in the non-copolymerized polyethylene terephthalate to improve the passability of the yarn in spinning and higher steps.
紡糸口金のP C 0 70市に位置した12個のY孔
から共重合していないポリエチレンテレフタレートを、
p Q [) 40mmに位置した12個のY孔から共
重合ポリエステルを同一吐出量で、紡糸温度290℃で
紡糸した。紡糸口金下20cmの保温賊を通過後、風速
20 m/分、風温30℃、長さ50cmのユニフロー
チムニーで冷却後、紡糸口金から1.5mの距離に入口
のある長さ1.5m、内径30mm、内壁温度130℃
の加熱筒により延伸熱処理を行い、油剤、交絡を順次付
与して、周速5200m/分の第1、第2引取ロールを
経て張力0.25Mdで、50デニール24フィラメン
トの混繊糸を巻取った。このとぎの加熱帯域入口の張力
は0.46 Mdであった。Non-copolymerized polyethylene terephthalate was extracted from the 12 Y holes located at P C 0 70 of the spinneret.
p Q [) Copolymerized polyester was spun at a spinning temperature of 290°C at the same discharge rate from 12 Y holes located at 40 mm. After passing through a heat insulator 20 cm below the spinneret, it was cooled in a 50 cm long uniflow chimney at a wind speed of 20 m/min and an air temperature of 30°C. Inner diameter 30mm, inner wall temperature 130℃
Stretching heat treatment is carried out using a heating cylinder, and an oil agent and entanglement are sequentially applied. After passing through the first and second take-up rolls at a circumferential speed of 5200 m/min, a 50 denier 24 filament mixed yarn is wound up at a tension of 0.25 Md. Ta. The tension at the inlet of the heating zone at this point was 0.46 Md.
得られた糸を鷹1とし、その糸特性を表1に示す。The obtained yarn was designated as Taka 1, and its yarn properties are shown in Table 1.
この糸を、タテ、ヨコ使いで羽二重に製織し、沸騰水中
5分間リラックス精練、弛緩状態で200℃、5分乾燥
処理、130℃染色仕上げを行い、プリント■稈を経た
後、180℃、30分熱固定を施した。得られた織物の
風合い、外観を表1に示す。This yarn is woven vertically and horizontally into habutae, scoured in boiling water for 5 minutes, dried at 200℃ for 5 minutes in a relaxed state, dyed at 130℃, and printed.After passing through the culm, 180℃ , heat fixation was performed for 30 minutes. Table 1 shows the texture and appearance of the obtained fabric.
表1から明らかなように、N.1は、本発明で及求して
いる熱収縮応力が0.3 Md以上、熱収縮応力ピーク
温度が105℃以上、ΔSが10%以下、嵩高度25
CC/Q以上の各特性をすべて満足する。したがって、
良好な織物風合い、外観を示す。As is clear from Table 1, N. 1 has a heat shrinkage stress of 0.3 Md or more, a heat shrinkage stress peak temperature of 105°C or more, ΔS of 10% or less, and a bulk height of 25 as required by the present invention.
Satisfies all of the characteristics of CC/Q or higher. therefore,
Shows good texture and appearance.
比較実施例1
実施例1と同様に冷却まで行い、加熱帯域での延伸熱処
理を行わずに、紡糸口金下2.2mで給油後、集束、交
絡を付与し5600 m/分の各日−ルで引取り、張力
0. 25g/dで巻取った50デニール24フィラメ
ン1〜の糸を心2とする。Comparative Example 1 The process was carried out in the same manner as in Example 1 until cooling, but without drawing heat treatment in the heating zone, after oiling at 2.2 m below the spinneret, convergence and entanglement were applied, and the spinning rate was 5600 m/min each day. Take it off with 0 tension. Core 2 is a yarn of 50 denier 24 filament 1 wound at 25 g/d.
実施例1と同様に紡糸、冷却し、1800 m/分で巻
取り、巻取った糸を87℃で2.7{Qに延伸し、12
5℃の加熱ロールで熱処理して巻取った50デニール2
4フィラメントの糸をN.3とする。The yarn was spun, cooled, and wound at 1800 m/min in the same manner as in Example 1, and the wound yarn was drawn at 87°C to 2.7
50 denier 2 heat-treated and rolled up with a heated roll at 5°C
4 filament thread N. Set it to 3.
N.2、3の混繊糸の特性を表1に示す。N. Table 1 shows the properties of the mixed fiber yarns Nos. 2 and 3.
得られた混繊糸を用いて、実施例1と同様の織物を得た
。得られた織物の風合い、外観を表1に示す。A woven fabric similar to that of Example 1 was obtained using the obtained mixed fiber yarn. Table 1 shows the texture and appearance of the obtained fabric.
表1から明らかなように、胤2は加熱帯域での延伸熱処
理を行っていないので、熱収縮応力が低く、織物中での
嵩発現が充分でなく、フラットな風合いの織物となって
しまう。As is clear from Table 1, since Seed 2 was not subjected to the stretching heat treatment in the heating zone, the heat shrinkage stress was low, and the bulk in the fabric was not sufficiently developed, resulting in a fabric with a flat texture.
N.3も本発明と混繊糸の製法が異なっているため、Δ
S、すなわち31−12−31−1+が10を越えてし
まい、織物の風合いが粗硬なものとなり、外硯も横戊糸
にひけ状の欠点が発生し、粗悪なも0となっている。N. 3 is also different from the present invention in the manufacturing method of the mixed fiber yarn, so Δ
S, that is, 31-12-31-1+ exceeds 10, the texture of the fabric becomes rough and hard, and the outer inkstone also has sink-like defects on the weft yarn, and the poor quality is 0. .
(以下余白)
実施例2
共重合ポリエステルのイソフタル酸のモル分率「aとビ
スフェノールへ・2エチレンオキシド付加物のモル分率
Fbを変更した以外は実施例1と同様にしてポリエステ
ル収縮差混繊糸を得た。「a、「bとその糸特性、およ
び実施例1と同様にして得た織物の風合い、外観を表2
に示す。(Leaving space below) Example 2 Polyester differential shrinkage mixed fiber yarn was produced in the same manner as in Example 1 except that the mole fraction of isophthalic acid in the copolymerized polyester "a" and the mole fraction Fb of the bisphenol-2 ethylene oxide adduct were changed. "a", "b", their yarn properties, and the texture and appearance of the fabric obtained in the same manner as in Example 1 are shown in Table 2.
Shown below.
表2から明らかなように、N.7は比較例で、共重合率
の差が10モル%に満たず、織物の嵩高度が小さく、ふ
くらみ感のないものとなってしまう。As is clear from Table 2, N. Sample No. 7 is a comparative example, in which the difference in copolymerization rate was less than 10 mol %, and the bulk of the fabric was small and did not have a fluffy feel.
叱4、6はFbが1.0〜4.8モル%の範囲に入って
いないため、織物風合においてふくらみ感がやや乏しか
ったり、やや粗硬であるが、従来の糸である比較実施例
1の叱2、3と比較して良好であり、本発明の範囲内で
ある。心8は共重合率の差が25モル%を越えるため、
収縮率が高くなり、風合がやや粗硬となり染色斑もやや
見られるが、その度合は小さく本発明の目的を達してい
る。Comparative Examples 4 and 6 are conventional yarns, because the Fb content is not within the range of 1.0 to 4.8 mol%, so the texture of the fabrics is slightly lacking in fullness and is somewhat rough and hard. 1 is better than 2 and 3, and is within the scope of the present invention. Core 8 has a difference in copolymerization rate of more than 25 mol%, so
Although the shrinkage rate is high, the texture is a little rough and hard, and some staining spots are observed, the degree of these is small and the purpose of the present invention is achieved.
実施例3
加熱筒の内壁温度Tを変更した以外は実施例1と同様に
して50デニール24フィラメントの混繊糸胤9〜11
を得た。糸特性を表3に示す。Example 3 Mixed fiber yarns 9 to 11 of 50 denier 24 filaments were prepared in the same manner as in Example 1 except that the inner wall temperature T of the heating cylinder was changed.
I got it. The yarn properties are shown in Table 3.
得られた混繊糸を用いて、実施例1と同様の織物を1ク
た。得られた織物の風合い、外観を表3に示す。One woven fabric similar to that of Example 1 was made using the obtained mixed fiber yarn. Table 3 shows the texture and appearance of the obtained fabric.
表3から明らかなように、比較例である加熱筒温度が1
00℃のN.9は、加熱筒内部で熱処理が起こらず、収
縮率が極めて高く全く使用に耐えない糸であった。As is clear from Table 3, the heating cylinder temperature in the comparative example was 1.
00℃N. No. 9 was a yarn that was not heat treated inside the heating cylinder, had an extremely high shrinkage rate, and was completely unusable.
本允明で得られたN.10、11の水準のものは、ほぼ
良好な織物風合い、外観を示す。ただし、熱収縮応力ピ
ーク温度が150℃を越える叱11は、収縮率がやや低
く、織物風合いのふくらみ感にやや乏しい。N. obtained by Masaaki Moto. Those with a level of 10 or 11 exhibit almost good texture and appearance. However, the material No. 11 in which the heat shrinkage stress peak temperature exceeds 150° C. has a rather low shrinkage rate, and the texture of the fabric is somewhat lacking in fullness.
(以下余白)
[発明の効果]
本発明で得られるポリエステル収縮差混繊糸は、f11
i編物内の拘束力下で充分な嵩高性を発現し、かつ嵩允
現後の高温処理でそのソフト風合いを維持できる。この
ため、最終製品の風合いが、従来品に対して極めてソフ
トでふくらみ感のある、シルキー織編物とすることがで
きる。(The following is a blank space) [Effect of the invention] The polyester differential shrinkage mixed fiber yarn obtained by the present invention has f11
It exhibits sufficient bulk under the constraining force within the knitted fabric, and maintains its soft feel through high temperature treatment after bulking. Therefore, the final product can be made into a silky woven or knitted fabric that has an extremely soft and fluffy feel compared to conventional products.
また、本発明で1qられるポリエステル収縮差混繊糸は
、収縮率の異なる各成分が相互に良好に分散しており、
高収縮成分の糸がひきつれないために、最終製品の外観
も極めて良好なものとなる。さらに本発明の製法により
、従来の製法より低コストで、良好な製糸性のもとにポ
リエステル収縮差混繊糸を得ることができる。In addition, in the polyester differential shrinkage mixed fiber yarn of 1q in the present invention, components with different shrinkage rates are well dispersed among each other,
The final product also has a very good appearance because the high shrinkage component yarns do not twitch. Further, by the manufacturing method of the present invention, it is possible to obtain a polyester shrinkage mixed fiber yarn at a lower cost than conventional manufacturing methods and with good spinnability.
第1図は、嵩高度Mを測定する装置の斜視図であり、第
2図(^) 、(B)および(C)は、この装置による
測定方法を説明するための見取図である。FIG. 1 is a perspective view of a device for measuring bulk height M, and FIGS. 2(^), (B) and (C) are sketches for explaining the measuring method using this device.
Claims (1)
率の高いポリエステルと最も共重合率の低いポリエステ
ルの共重合率の差が10モル%以上である2種以上のポ
リエステルをそれぞれ溶融紡糸し、各糸条をそれぞれ一
旦冷却固化し、次いで前記各糸条を共通の加熱帯域を通
過させて延伸熱処理した後、引取ることにより、該混繊
糸の熱収縮応力を0.3g/d以上、熱収縮応力のピー
ク温度を105℃以上、かつ沸騰水処理後の乾熱収縮率
SH_2と沸騰水収縮率SH_1との差ΔS=SH_2
−SH_1を10%以下とすることを特徴とするポリエ
ステル収縮差混繊糸の製法。In the method for producing polyester differential shrinkage blend yarn, two or more types of polyesters having a difference in copolymerization rate of 10 mol% or more between the polyester with the highest copolymerization rate and the polyester with the lowest copolymerization rate are melt-spun, and each Each yarn is once cooled and solidified, and then each yarn is passed through a common heating zone to be subjected to a drawing heat treatment, and then taken off, so that the heat shrinkage stress of the mixed fiber yarn is reduced to 0.3 g/d or more. The peak temperature of shrinkage stress is 105°C or higher, and the difference ΔS between the dry heat shrinkage rate SH_2 after boiling water treatment and the boiling water shrinkage rate SH_1 = SH_2
- A method for producing a polyester differential shrinkage blend yarn, characterized in that SH_1 is 10% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1304995A JP2541322B2 (en) | 1989-11-24 | 1989-11-24 | Manufacturing method of polyester shrinkage difference mixed yarn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1304995A JP2541322B2 (en) | 1989-11-24 | 1989-11-24 | Manufacturing method of polyester shrinkage difference mixed yarn |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03167341A true JPH03167341A (en) | 1991-07-19 |
JP2541322B2 JP2541322B2 (en) | 1996-10-09 |
Family
ID=17939811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1304995A Expired - Fee Related JP2541322B2 (en) | 1989-11-24 | 1989-11-24 | Manufacturing method of polyester shrinkage difference mixed yarn |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2541322B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7504348B1 (en) * | 2001-08-17 | 2009-03-17 | Hills, Inc. | Production of nonwoven fibrous webs including fibers with varying degrees of shrinkage |
-
1989
- 1989-11-24 JP JP1304995A patent/JP2541322B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7504348B1 (en) * | 2001-08-17 | 2009-03-17 | Hills, Inc. | Production of nonwoven fibrous webs including fibers with varying degrees of shrinkage |
Also Published As
Publication number | Publication date |
---|---|
JP2541322B2 (en) | 1996-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120114940A1 (en) | Antistatic ultrafine fiber and method for producing the same | |
JPH11172526A (en) | Polyester fiber having low thermal stress and spinning thereof | |
US6982118B2 (en) | Polyester type conjugate fiber package | |
WO2002086211A1 (en) | False twist yarn of polyester composite fiber and method for production thereof | |
WO1995004846A1 (en) | Polyester fiber | |
JP3885468B2 (en) | Bulky polyester composite yarn, production method thereof and fabric | |
JPH10204721A (en) | Highly shrinkable polyester staple and its production | |
JP3463597B2 (en) | Aliphatic polyester false twist yarn with excellent gloss | |
JP3167677B2 (en) | Polyester irregular cross section fiber | |
JPH03167341A (en) | Production of combined polyester filament yarn having different shrinkage | |
JP2844680B2 (en) | Different fineness / different shrinkage mixed fiber and method for producing the same | |
JP4111751B2 (en) | False twisted yarn and manufacturing method thereof | |
JP4036617B2 (en) | High speed false twisted drawn yarn and method for producing the same | |
JP3874529B2 (en) | Pre-oriented polyester fiber and processed yarn therefrom | |
JP3752445B2 (en) | Polyester multi fiber | |
WO2024214591A1 (en) | Polytrimethylene terephthalate fiber, method for producing same, air-mixed filament yarn containing said polytrimethylene terephthalate fiber, and fabric composed thereof | |
JP3523433B2 (en) | Polyester hetero-shrinkage mixed yarn and method for producing the same | |
JP2003342843A5 (en) | ||
JP4021794B2 (en) | Composite fiber for textile and its manufacturing method | |
JPH02293411A (en) | Production of ultrasoft special combined filament yarn assuming brightness | |
JP3960510B2 (en) | Polyester multifilament yarn, production method thereof and woven / knitted fabric thereof | |
JP2804075B2 (en) | Manufacturing method of super soft special mixed fiber yarn with dry feeling and drapability | |
JP2004003042A (en) | Covered yarn and knitted or woven fabric thereof | |
JPS61275434A (en) | Polyester composite yarn | |
JPS60259616A (en) | Polyester fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |