JPH0316731B2 - - Google Patents

Info

Publication number
JPH0316731B2
JPH0316731B2 JP7226581A JP7226581A JPH0316731B2 JP H0316731 B2 JPH0316731 B2 JP H0316731B2 JP 7226581 A JP7226581 A JP 7226581A JP 7226581 A JP7226581 A JP 7226581A JP H0316731 B2 JPH0316731 B2 JP H0316731B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
permanent magnet
focusing
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7226581A
Other languages
Japanese (ja)
Other versions
JPS57187842A (en
Inventor
Taketoshi Shimoma
Kumio Fukuda
Toshio Shimaogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7226581A priority Critical patent/JPS57187842A/en
Publication of JPS57187842A publication Critical patent/JPS57187842A/en
Publication of JPH0316731B2 publication Critical patent/JPH0316731B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • H01J29/64Magnetic lenses
    • H01J29/68Magnetic lenses using permanent magnets only

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁界発生装置を管内に内蔵する電磁集
束型陰極線管に係り、特にその集束状態のバラツ
キの補正に関する。 電磁集束型陰極線管では、電子ビーム集束手段
として管軸(電子ビーム進行方向)とほぼ平行な
主磁界(集束磁界)により電磁集束レンズを形成
している。 上記集束磁界を発生する装置としては、陰極線
管のネツク部外周に電磁コイルを装着したものが
一般的であるが、ネツク部に永久磁石又は永久磁
石と磁性体からなる磁気ヨークを組合せた磁界発
生装置を内蔵するものも提案されている。 しかしながら上記磁界発生装置をネツク部に外
装したもの、内蔵したものについては夫々以下の
如き欠点を有する。 即ち電磁コイルを管外ネツク部に装着したもの
については、電磁コイル内径、即ちネツク外径に
限度があるため、必要な集束磁界を得るためには
大電力を必要とし、且つそれに見合う電流源が必
要である。更にコマ収差を防止するために電子ビ
ームと集束磁界の軸を正確に一致させる必要があ
り、電磁コイルの位置調整装置が必要である。こ
れらは消費電力の増大や陰極線管及びこれを動作
させるに必要な装置の大型化、高級化を招き好ま
しくない。 一方、永久磁石或は磁性体ヨークとの組合せを
内蔵する場合には、永久磁石は電子ビームの極め
て近傍に配置可能であるため、小型且つ軽量のも
ので電子ビームの集束に必要な磁界を充分供給可
能である。 又、電子ビームを発生・制御するカソード、第
1及び第2グリツド等の電子銃プリフオーカス部
と主集束レンズ部を形成する永久磁石部分とは、
あらかじめ一体に精度良く組立て可能である。そ
のため前述の電磁コイルを外装する場合に必要で
あつた磁界発生装置の位置調整をする装置が不要
となる。 永久磁石を内蔵する場合には上述せる如き長所
があるが、一方磁界発生装置が管内にあるため永
久磁石の寸法、着磁量、組立て精度等の種々の製
造ばらつきに起因する電子ビーム集束状態のばら
つきや劣化を補償することが難しい欠点がある。
管外に補助集束電磁コイルを併用した場合には、
補助集束コイル自身の位置調整や電力の問題を生
じ永久磁石を内蔵する長所を損う。又上記補助集
束コイルを内蔵することも可能であるが、補助集
束コイルに電力を供給するため端子を管外に引出
す必要がある。これは陰極線管の真空保持、外囲
器強度、及び陰極線管に印加される10KV〜
30KVの高圧に対する信頼性等に問題を生ずる。 本発明は以上の点に鑑み、管内に内蔵された永
久磁石より励起する電子ビーム集束磁界を管外よ
り制御する簡単な装置を提供し、小型、軽量且つ
安価で解像度の良い磁界発生装置を内蔵した電磁
集束型陰極線管を提供することを目的としてい
る。 以下本発明について詳細に説明する。 永久磁石の近傍に磁性体を配置すると、磁束は
磁性体内部に集中し、磁性体及び永久磁石近傍の
磁束は減少する。即ち永久磁石自身が恰も減磁さ
れたが如き現象を呈する。当然の事ながら、上記
見掛上の減磁効果は永久磁石と磁性体との距離、
磁性体材料(透磁率)や形状等により異なる。 本発明はこの磁性体による永久磁石の見掛上の
減磁効果を利用し電子ビーム集束磁界を制御しよ
うとするものである。 第1図に磁界発生装置を内蔵した電磁集束型陰
極線管を示す。 第1図に於いて、1は内部を高真空に保つため
の硝子製外囲器、2は蛍光面でその内部には蛍光
体3が塗布されている。14は内部導電膜で管内
を蛍光面2の内部と等電位に保つ。4はネツク部
であり、その内部にヒーター6及びカソード7と
カソード7より射出される電子ビームを制御、加
速する第1グリツド8、第2グリツド9、陽極1
0、永久磁石サポーター11及び円筒状永久磁石
12を主構成要素として形成される電磁集束型電
子銃5が封入されている。陽極10及び永久磁石
サポーター11はコンタクトスプリング15を介
して蛍光面内面と同電位に保たれている。カソー
ド7より射出される電子ビームは第1及び第2グ
リツド8及び9により制御され、一度第1グリツ
ド8附近にクロスオーバを形成し、その後第2グ
リツド9及び陽極10により加速され、円筒状永
久磁石12により励起される集束磁界により形成
される電磁集束レンズにより蛍光面2上に上記ク
ロスオーバーの像を結ぶ。 ここで円筒状永久磁石12は管軸方向に着磁さ
れており、その着磁量、即ち管軸上の磁界強度は
円筒状永久磁石12の内径、外形及び長さ、更に
蛍光面2やクロスオーバー点との距離、管内電位
等により蛍光面2上での電子ビームスポツトサイ
ズが最小となる様に選択される。 しかしながら前述せる如く、着磁量や円筒状永
久磁石12の寸法、蛍光面2との距離等製造上の
ばらつきは不可避であり、蛍光面2上での電子ビ
ームスポツトサイズは最良の状態からずれること
になり蛍光面上での画面品位を低化させる。 13は本発明に適用される電子ビームの集束磁
界を管外より制御する電子ビーム補助集束装置で
あり、第2図にこれを拡大して示す。第1図と共
通な部品については同一番号で示す。 第2図に於いては補助集束装置20はその一端
にネツク4に外装して固定するための締付け具2
7を有したプラスチツク製ホルダー26、このホ
ルダー上を管軸方向に移動可能で且つホルダー2
6との外装面に円筒状磁性体22,23を保持し
ている2つのプラスチツク製磁性体ホルダー2
8、及びこの磁性体ホルダー28の突出部25に
取りつけられ、それを回動することにより2つの
磁性体ホルダー28を互いに逆方向に等量づつ移
動せしめるねじ24からなつている。 また円筒状磁性体22,23は全く同一材料、
寸法よりなつている。補助集束装置は円筒状磁性
体23,22の距離lが零の時、その境界面が円
筒状永久磁石中心A−A′線に一致する様に配置
される。 円筒状永久磁石12として内径15.5φmm、外径
21.3φmm、長さ5.4mmのもの、又円筒状磁性体2
2,23として内径29.2φmm、外径31.2φmm、長さ
6.0φmmで初透磁率2×104のものを用いた場合に
つき、円筒状磁性体間距離lと円筒状永久磁石1
2の中心点に於ける集束磁界強度の相対変化の関
係を第1表に示す。
The present invention relates to an electromagnetic focusing cathode ray tube having a magnetic field generating device built into the tube, and particularly to correction of variations in the focusing state thereof. In an electromagnetic focusing cathode ray tube, an electromagnetic focusing lens is formed by a main magnetic field (focusing magnetic field) substantially parallel to the tube axis (electron beam traveling direction) as an electron beam focusing means. The device that generates the above-mentioned focusing magnetic field is generally equipped with an electromagnetic coil attached to the outer periphery of the neck of a cathode ray tube, but a device that generates a magnetic field by combining a permanent magnet or a magnetic yoke made of a permanent magnet and a magnetic material in the neck is used. A device with a built-in device has also been proposed. However, those in which the above-mentioned magnetic field generating device is externally packaged in the neck portion and those in which it is incorporated have the following drawbacks. In other words, in the case where the electromagnetic coil is attached to the external neck part, there is a limit to the inner diameter of the electromagnetic coil, that is, the outer diameter of the neck, so a large amount of electric power is required to obtain the necessary focused magnetic field, and there is no suitable current source. is necessary. Furthermore, in order to prevent coma aberration, it is necessary to precisely align the axes of the electron beam and the focused magnetic field, and a position adjustment device for the electromagnetic coil is required. These are undesirable because they lead to increased power consumption and to larger and more sophisticated cathode ray tubes and the equipment necessary to operate them. On the other hand, if a permanent magnet or a combination with a magnetic yoke is built-in, the permanent magnet can be placed very close to the electron beam, so a small and lightweight magnet can provide enough magnetic field to focus the electron beam. Available. Furthermore, the cathode that generates and controls the electron beam, the permanent magnet part that forms the electron gun prefocus part such as the first and second grids, and the main focusing lens part are as follows:
It can be assembled in advance with high accuracy. Therefore, there is no need for a device for adjusting the position of the magnetic field generating device, which was necessary when the electromagnetic coil was externally packaged. Having a built-in permanent magnet has the above-mentioned advantages, but on the other hand, since the magnetic field generator is inside the tube, there are problems with the electron beam focusing state due to various manufacturing variations in the permanent magnet's dimensions, amount of magnetization, assembly accuracy, etc. It has the disadvantage that it is difficult to compensate for variations and deterioration.
When using an auxiliary focusing electromagnetic coil outside the tube,
This creates problems with the positioning and power of the auxiliary focusing coil itself, which negates the advantage of having a built-in permanent magnet. It is also possible to incorporate the auxiliary focusing coil, but it is necessary to draw out the terminal outside the tube in order to supply power to the auxiliary focusing coil. This is the vacuum maintenance of the cathode ray tube, the strength of the envelope, and the 10KV~ applied to the cathode ray tube.
This causes reliability problems with high voltage of 30KV. In view of the above points, the present invention provides a simple device for controlling the electron beam focusing magnetic field excited by a permanent magnet built into the tube from outside the tube, and incorporates a small, lightweight, inexpensive magnetic field generator with good resolution. The purpose of the present invention is to provide an electromagnetic focusing cathode ray tube. The present invention will be explained in detail below. When a magnetic body is placed near a permanent magnet, magnetic flux is concentrated inside the magnetic body, and the magnetic flux near the magnetic body and permanent magnet is reduced. In other words, the phenomenon appears as if the permanent magnet itself had been demagnetized. Naturally, the above apparent demagnetization effect depends on the distance between the permanent magnet and the magnetic material,
It varies depending on the magnetic material (magnetic permeability), shape, etc. The present invention attempts to control the electron beam focusing magnetic field by utilizing the apparent demagnetizing effect of the permanent magnet caused by this magnetic material. Figure 1 shows an electromagnetic focusing cathode ray tube with a built-in magnetic field generator. In FIG. 1, numeral 1 is a glass envelope for maintaining the interior at a high vacuum, and 2 is a phosphor screen, the interior of which is coated with phosphor 3. 14 is an internal conductive film that keeps the inside of the tube at the same potential as the inside of the phosphor screen 2. Reference numeral 4 denotes a network part, inside which are provided a heater 6, a cathode 7, a first grid 8 for controlling and accelerating the electron beam emitted from the cathode 7, a second grid 9, and an anode 1.
0, an electromagnetic focusing type electron gun 5 formed of a permanent magnet supporter 11 and a cylindrical permanent magnet 12 as main components is enclosed. The anode 10 and the permanent magnet supporter 11 are maintained at the same potential as the inner surface of the phosphor screen via a contact spring 15. The electron beam emitted from the cathode 7 is controlled by the first and second grids 8 and 9, once forms a crossover near the first grid 8, and is then accelerated by the second grid 9 and the anode 10, forming a permanent cylindrical beam. An image of the crossover is focused on the phosphor screen 2 by an electromagnetic focusing lens formed by a focusing magnetic field excited by the magnet 12. Here, the cylindrical permanent magnet 12 is magnetized in the direction of the tube axis, and the amount of magnetization, that is, the magnetic field strength on the tube axis, depends on the inner diameter, outer shape, and length of the cylindrical permanent magnet 12, as well as the phosphor screen 2 and the cross section. It is selected so that the electron beam spot size on the phosphor screen 2 is minimized depending on the distance to the over point, the potential inside the tube, etc. However, as mentioned above, manufacturing variations in the amount of magnetization, dimensions of the cylindrical permanent magnet 12, distance from the phosphor screen 2, etc. are unavoidable, and the electron beam spot size on the phosphor screen 2 may deviate from the optimal state. This reduces the quality of the screen on the fluorescent screen. Reference numeral 13 denotes an electron beam auxiliary focusing device for controlling the focusing magnetic field of the electron beam from outside the tube, which is applied to the present invention, and is shown enlarged in FIG. Parts common to those in FIG. 1 are indicated by the same numbers. In FIG. 2, the auxiliary focusing device 20 has a fastening tool 2 at one end thereof for externally fixing it to the neck 4.
7, a plastic holder 26 movable on this holder in the tube axis direction and
Two plastic magnetic body holders 2 holding cylindrical magnetic bodies 22 and 23 on the exterior surface of 6
8, and a screw 24 which is attached to the protrusion 25 of the magnetic holder 28 and rotates to move the two magnetic holders 28 by equal amounts in opposite directions. Moreover, the cylindrical magnetic bodies 22 and 23 are made of exactly the same material,
The dimensions are better. The auxiliary focusing device is arranged so that when the distance l between the cylindrical magnetic bodies 23 and 22 is zero, the boundary surface thereof coincides with the line AA' of the center of the cylindrical permanent magnet. The cylindrical permanent magnet 12 has an inner diameter of 15.5φmm and an outer diameter of
21.3φmm, length 5.4mm, and cylindrical magnetic body 2
2 and 23 have an inner diameter of 29.2φmm, an outer diameter of 31.2φmm, and a length of
When using a cylindrical permanent magnet with a diameter of 6.0 mm and an initial permeability of 2 × 10 4 , the distance l between cylindrical magnetic bodies and the cylindrical permanent magnet 1
Table 1 shows the relationship between the relative changes in the focused magnetic field strength at the center points of 2.

【表】 第1表に示す様に、l=5m/mの場合を中心
値とすると、ねじ24を回動しlを5±5m/m
変化させることにより電子ビーム集束磁界強度は
約±5%変化させることが可能である。更にこの
集束磁界の変化量は、lの可動範囲、磁性体の材
質、寸法等により更に調整拡大しうることは明ら
かである。電磁レンズの焦点距離は磁束密度の平
方に比例するため、上記±5%の磁束密度変化は
±10%の焦点距離調整を可能にすることを意味し
ている。 従つて着磁精度±1〜4%程度の着磁技術や永
久磁石の製作、取付精度等を考慮しても、之等の
製造ばらつきに起因する蛍光面上の電子ビームス
ポツトサイズの増大や劣化を軽減防止することが
できる。 本発明の電磁集束型陰極線管に於ける円筒状磁
性体は単に1個用いても円筒状永久磁石12との
管軸方向に沿う位置関係を可変することにより、
同様に円筒状永久磁石12の中心に於ける磁束密
度は変化し得るが、この場合は円筒状永久磁石1
2により励起される磁界分布全体が、磁性体の動
く方向に移動するため、換言すれば電磁レンズ位
置が移動し、磁束密度変化に伴なう効果を相殺す
るため磁性体は2個以上用いるほうが好ましい。 又、上記実施例での磁性体は円筒状としたが、
円筒状磁性体22又は23夫々が複数の円筒状磁
性体の集合体であつてもよいし、或は電子ビーム
集束磁界の対称性を損なわない程度に円周方向に
多分割されていてもよい。又、永久磁石と磁性体
ヨークを組合せたものをネツク部に内蔵するもの
でも本発明の効果が変わらないことは言うまでも
ない。 以上のように本発明によれば、小型、安価且つ
消費電力の少ない磁界発生装置を有する電磁集束
型陰極線管を提供することができる。
[Table] As shown in Table 1, if l = 5 m/m is taken as the central value, then by rotating the screw 24, l will be 5 ± 5 m/m.
By changing the electron beam focusing magnetic field strength, it is possible to change the electron beam focusing magnetic field strength by about ±5%. Furthermore, it is clear that the amount of change in this focusing magnetic field can be further adjusted and expanded depending on the movable range of l, the material and dimensions of the magnetic body, etc. Since the focal length of an electromagnetic lens is proportional to the square of the magnetic flux density, the above ±5% change in magnetic flux density means that the focal length can be adjusted by ±10%. Therefore, even if we consider magnetization technology with a magnetization accuracy of about ±1 to 4%, permanent magnet manufacturing, mounting accuracy, etc., the electron beam spot size on the phosphor screen will increase or deteriorate due to manufacturing variations such as these. can be reduced and prevented. Even if only one cylindrical magnetic body is used in the electromagnetic focusing cathode ray tube of the present invention, by varying the positional relationship along the tube axis direction with the cylindrical permanent magnet 12,
Similarly, the magnetic flux density at the center of the cylindrical permanent magnet 12 can vary;
Since the entire magnetic field distribution excited by 2 moves in the direction in which the magnetic body moves, in other words, the position of the electromagnetic lens moves, and it is better to use two or more magnetic bodies to cancel out the effects caused by changes in magnetic flux density. preferable. Furthermore, although the magnetic body in the above embodiment was cylindrical,
Each of the cylindrical magnetic bodies 22 or 23 may be an aggregate of a plurality of cylindrical magnetic bodies, or may be divided into multiple parts in the circumferential direction to the extent that the symmetry of the electron beam focusing magnetic field is not impaired. . Further, it goes without saying that the effects of the present invention will not change even if a combination of a permanent magnet and a magnetic yoke is built into the neck portion. As described above, according to the present invention, it is possible to provide an electromagnetic focusing cathode ray tube having a magnetic field generating device that is small, inexpensive, and consumes little power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電磁集束型陰極線管の概略断面図、第
2図aは本発明の一実施例を示す補助集束装置の
拡大概略断面図、第2図bはa図のA−A′線の
概略断面図である。 12……円筒状永久磁石、13,20……補助
集束装置、22,23……円筒状磁性体、24…
…ねじ、25……突出部、26,28……ホルダ
ー、27……締付け具。
FIG. 1 is a schematic sectional view of an electromagnetic focusing cathode ray tube, FIG. 2a is an enlarged schematic sectional view of an auxiliary focusing device showing an embodiment of the present invention, and FIG. It is a schematic sectional view. 12... Cylindrical permanent magnet, 13, 20... Auxiliary focusing device, 22, 23... Cylindrical magnetic body, 24...
...Screw, 25...Protrusion, 26, 28...Holder, 27...Tightening tool.

Claims (1)

【特許請求の範囲】 1 少なくとも永久磁石を含む電子ビーム集束用
磁界発生装置を管内ネツク部に内蔵し、この磁界
発生装置の外側で且つネツク外部に互いに逆方向
に管軸方向に沿つて連動する少くとも2つの磁性
体円筒を装着したことを特徴とする電磁集束型陰
極線管。 2 2つの磁性体円筒の夫々が管軸方向又は円周
方向に多分割された磁性体又はその集合体により
構成したことを特徴とする特許請求の範囲第1項
記載の電磁集束型陰極線管。
[Scope of Claims] 1. A magnetic field generating device for electron beam focusing including at least a permanent magnet is built into the tube neck portion, and the magnetic field generating device is interlocked with the outside of the magnetic field generating device and outside the neck in mutually opposite directions along the tube axis direction. An electromagnetic focusing cathode ray tube characterized by being equipped with at least two magnetic cylinders. 2. The electromagnetic focusing cathode ray tube according to claim 1, wherein each of the two magnetic cylinders is made of a magnetic material or an aggregate thereof that is multi-divided in the tube axis direction or circumferential direction.
JP7226581A 1981-05-15 1981-05-15 Electromagnetic focusing crt Granted JPS57187842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7226581A JPS57187842A (en) 1981-05-15 1981-05-15 Electromagnetic focusing crt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7226581A JPS57187842A (en) 1981-05-15 1981-05-15 Electromagnetic focusing crt

Publications (2)

Publication Number Publication Date
JPS57187842A JPS57187842A (en) 1982-11-18
JPH0316731B2 true JPH0316731B2 (en) 1991-03-06

Family

ID=13484276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7226581A Granted JPS57187842A (en) 1981-05-15 1981-05-15 Electromagnetic focusing crt

Country Status (1)

Country Link
JP (1) JPS57187842A (en)

Also Published As

Publication number Publication date
JPS57187842A (en) 1982-11-18

Similar Documents

Publication Publication Date Title
US2727182A (en) Image transformer with electronoptical image projection
JPH0316731B2 (en)
JP3490469B2 (en) Electron beam focusing magnetic field generator
JPH03192636A (en) Picture tube device
US5347366A (en) Fixation structure of deflection yoke and focus magnet for projection cathode ray tube
JPH0785811A (en) Color cathode-ray tube
US4376272A (en) Magnetic field generators for use in electromagnetic focusing type cathode ray tubes
JPS6347110B2 (en)
JPH0319664B2 (en)
JPH0316732B2 (en)
US3731094A (en) Electron beam apparatus with means for generating a rotation-symmetrical magnetic field
JPH0128459B2 (en)
JPS6161218B2 (en)
JPH0316730B2 (en)
JP2556242Y2 (en) Focus magnet
JPH0215982B2 (en)
JPS6048858B2 (en) cathode ray tube electron gun
JPH0312421B2 (en)
JP3490896B2 (en) Cathode ray tube
JPH0560212B2 (en)
JPS5824373Y2 (en) Denshiji Yukoutai
JPS5942945B2 (en) cathode ray tube device
JPS56103853A (en) Beam index tube
JPS58121535A (en) Flat cathode ray tube
JPH0131257B2 (en)