JPH0316730B2 - - Google Patents

Info

Publication number
JPH0316730B2
JPH0316730B2 JP7226481A JP7226481A JPH0316730B2 JP H0316730 B2 JPH0316730 B2 JP H0316730B2 JP 7226481 A JP7226481 A JP 7226481A JP 7226481 A JP7226481 A JP 7226481A JP H0316730 B2 JPH0316730 B2 JP H0316730B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
focusing
cathode ray
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7226481A
Other languages
Japanese (ja)
Other versions
JPS57187841A (en
Inventor
Taketoshi Shimoma
Kumio Fukuda
Masachika Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7226481A priority Critical patent/JPS57187841A/en
Publication of JPS57187841A publication Critical patent/JPS57187841A/en
Publication of JPH0316730B2 publication Critical patent/JPH0316730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • H01J29/64Magnetic lenses
    • H01J29/68Magnetic lenses using permanent magnets only

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁界発生装置を内蔵した電磁集束型陰
極線管に係り、特にこの磁界発生装置により励起
される電子ビーム集束用磁界の強度を調整する装
置に関するものである。 電磁集束型陰極線管は、電子ビームを集束する
手段として電子ビーム進行方向に、ほぼ平行な主
磁界により形成される電磁レンズを使用するが、
この磁界発生装置を管外に配置するのが一般的で
ある。しかしながら上記磁界発生装置を管外に有
する電磁集束型陰極線管は、管内に有するものと
比較して管内に必要な磁界強度を供給するために
磁界発生装置の大型化、もしくは磁界を発生させ
るため大電力を必要とする。さらに、電子ビーム
と集束磁界の軸を一致させるための装置が不可欠
である。換言すれば、磁界発生装置を含めたコス
ト、消費電力は増加し、且つ大型化を招くことは
明らかである。 一方磁界発生装置を内蔵した場合、一般には、
磁界発生装置として永久磁石が用いられるが、こ
の磁界発生装置は集束すべき電子ビームの近傍に
配置できるため、極めて小型で、また電力を使用
しないで集束に必要な磁界を発生できる。また管
内に配置する場合は、電子銃のカソード、第1、
第2グリツド等による電子ビームの発生、制御加
速各電極と磁界発生装置をあらかじめ組立てるこ
とができるため、集束磁界の軸を電子ビームに充
分良い精度で一致させられる。以上のように一般
に磁界発生装置を内蔵した陰極線管の方が、管外
に設置したものより、コスト、消費電力、形状な
どについて有利である。 磁界発生装置を内蔵した電磁集束型陰極線管の
一例を第1図に示す。第1図において外囲器1内
の一端には蛍光面4が設けられており、他端のネ
ツク部7にはカソード5、第1グリツド6及び第
2グリツド7が順次配設される。またネツク部7
内には永久磁石からなる電子ビーム集束用の磁界
発生装置3が設けられている。この磁界発生装置
としてコイルを内蔵することができるが、この場
合、コイルに電流を供給する端子を外囲器1の外
に引きだす必要があり、外囲器1の機密性の保
持、強度の弱体化を招き、さらに、一般には外囲
器内部は高電圧(10〜30KV程度)であるため、
耐電圧信頼性を低下させるし、更にコイルに電流
を供給する電流回路にも高圧に対する配慮(防
御)が必要となり高価なものになる。即ち磁界発
生装置を内蔵する場合には、永久磁石を用いる方
が有利である。 第1図の陰極線管の動作は次の通りである。カ
ソード4から放出された電子ビーム8は、カソー
ド4、第1グリツド5、第2グリツド6によるレ
ンズでクロスオーバ点9を生じ、陽極電圧によつ
て加速されながら、永久磁石3の磁界によつて集
束作用を受け、蛍光面2上で最小のビームスポツ
ト径を得る。 しかしこのような陰極線管では、永久磁石の着
磁の際の磁化のばらつき、寸法のばらつき等があ
り、これらによつて集束磁界は5〜6%のばらつ
きを生じる。この集束磁界のばらつきにより、電
磁レンズの焦点距離などにずれが生じ、蛍光面上
でビームスポツト径の増大が起こる。従つてこの
焦点距離のずれを補正して、蛍光面上のビームス
ポツト径を最小にする必要がある。しかし、永久
磁石をネツク部に内蔵した陰極線管では、集束磁
界を調整することは、容易ではない。コイルを内
蔵して磁界を調整することは、前述のように真空
度等の問題があり、困難である。一方管外にコイ
ルを設けて磁界を調整することは、永久磁石をネ
ツク部に内蔵した利点をなくし、コストを大幅に
あげることになる。 本発明の目的は、上記の集束磁界の調整を、ネ
ツク部外側に設けた磁性体によつて簡単に行な
い、電磁レンズの焦点距離を変化させ、蛍光面上
で最小のビームスポツト径を得ようとするもので
ある。以下本発明について詳細に説明する。 永久磁石の近傍に磁性体を配置すると、磁束は
磁性体内部に集中し、磁性体及び永久磁石の近傍
の磁束は減少する。即ち、永久磁石自身があたか
も減磁されたが如き状況を呈する。また、当然の
ことながら、磁性体及び永久磁石の近傍の磁束の
減少の程度は、永久磁石と磁性体の距離、磁性体
の材料(透磁率)や形状等により変化する。本発
明は上述の如き磁性体による永久磁石の見掛け上
の減磁作用を利用し、電子ビーム集束磁界を制御
しようとするものである。 実施例を用い更に詳細に説明する。 第2図及び第3図に本発明の一実施例を示す。
図中第1図と共通の要素については同一番号で示
してある。第2図は本発明による磁界制御装置1
7を陰極線管のネツク部7に装着した横断面図で
あり、第3図は上記磁界制御装置17の管軸に直
角な平面B−B′による断面図である。第2図及
び第3図に於いて、ネツク部7外周にはプラスチ
ツク等により成形されたホルダー11がバンド1
6及びねじ15により固定されており、このホル
ダー11にはプラスチツク等により成形された磁
性体ホルダー14に保持された磁性体10がボル
ト12を介して配設されている。この磁性体10
はネツク部7及び磁界発生装置を構成する円筒状
永久磁石3に対し、同心軸的に配置されており、
ボルト12の頭部13を回転することにより磁性
体ホルダー14に保持された磁性体10をネツク
部の図示で示す矢印方向、即ちネツクの半径方向
に移動可能で且つ固定できるように配設されてい
る。このボルト12は調整用であり、ネツクが円
形である場合は3個用いると良い。また磁性体1
0及び磁性体ホルダー14は1個でも良いが、第
3図に示すように円筒状で且つ3等分割されたも
のの方が、磁界の調整機能としては有用である。 次に円筒状永久磁石3として外径24.0mm、内径
18.0mm、長さ6.0mmであり、且つ、管軸方向に磁
化されているものを用い、磁性体10として外径
32.0mm、厚さ1.0mm、長さ5.0mm、初透磁率2×104
の円筒を円周方向に3等分割したものを用いた場
合について述べる。 第1表に3等分割された磁性体10とボルト1
2を用いてそれぞれ、等量づつ径方向に移動し、
管軸中心と磁性体10との距離lを可変した場合
の永久磁石3の管軸上の中心に於ける磁束密度の
変化を示す。
The present invention relates to an electromagnetic focusing cathode ray tube incorporating a magnetic field generator, and more particularly to a device for adjusting the intensity of an electron beam focusing magnetic field excited by the magnetic field generator. An electromagnetic focusing cathode ray tube uses an electromagnetic lens formed by a main magnetic field approximately parallel to the electron beam traveling direction as a means for focusing the electron beam.
This magnetic field generator is generally placed outside the tube. However, electromagnetic focusing cathode ray tubes that have the above-mentioned magnetic field generating device outside the tube require a larger magnetic field generating device to supply the necessary magnetic field strength inside the tube, or a larger size to generate the magnetic field, compared to those that have the magnetic field generating device inside the tube. Requires electricity. Furthermore, a device for aligning the axes of the electron beam and the focusing magnetic field is essential. In other words, it is clear that the cost and power consumption including the magnetic field generator will increase, and the size will also increase. On the other hand, if a magnetic field generator is built-in, generally,
A permanent magnet is used as the magnetic field generator, and since this magnetic field generator can be placed near the electron beam to be focused, it is extremely compact and can generate the magnetic field necessary for focusing without using electricity. In addition, when placed inside the tube, the cathode of the electron gun, the first
Electron beam generation and controlled acceleration by the second grid etc. Since each electrode and the magnetic field generator can be assembled in advance, the axis of the focusing magnetic field can be aligned with the electron beam with sufficient accuracy. As described above, a cathode ray tube with a built-in magnetic field generator is generally more advantageous than one installed outside the tube in terms of cost, power consumption, shape, etc. An example of an electromagnetic focusing cathode ray tube with a built-in magnetic field generator is shown in FIG. In FIG. 1, a phosphor screen 4 is provided at one end of the envelope 1, and a cathode 5, a first grid 6, and a second grid 7 are sequentially arranged in a neck portion 7 at the other end. Also network part 7
A magnetic field generating device 3 for focusing an electron beam, which is made of a permanent magnet, is provided inside. A coil can be built in as this magnetic field generator, but in this case, the terminal that supplies current to the coil needs to be drawn out of the envelope 1, which makes it difficult to maintain the confidentiality of the envelope 1 and weaken its strength. In addition, since the inside of the envelope is generally high voltage (about 10 to 30 KV),
This lowers the withstand voltage reliability, and also requires consideration (protection) against high voltage in the current circuit that supplies current to the coil, making it expensive. That is, when a magnetic field generating device is built in, it is more advantageous to use a permanent magnet. The operation of the cathode ray tube shown in FIG. 1 is as follows. The electron beam 8 emitted from the cathode 4 forms a crossover point 9 at the lens formed by the cathode 4, the first grid 5, and the second grid 6, and is accelerated by the anode voltage while being accelerated by the magnetic field of the permanent magnet 3. By receiving a focusing effect, a minimum beam spot diameter is obtained on the phosphor screen 2. However, in such a cathode ray tube, there are variations in magnetization during magnetization of the permanent magnets, variations in dimensions, etc., and due to these, the focusing magnetic field varies by 5 to 6%. This variation in the focusing magnetic field causes a shift in the focal length of the electromagnetic lens, causing an increase in the beam spot diameter on the phosphor screen. Therefore, it is necessary to correct this focal length deviation to minimize the beam spot diameter on the phosphor screen. However, in a cathode ray tube with a permanent magnet built into the neck, it is not easy to adjust the focusing magnetic field. Adjusting the magnetic field by incorporating a coil is difficult due to problems such as the degree of vacuum as described above. On the other hand, installing a coil outside the tube to adjust the magnetic field eliminates the advantage of having a permanent magnet built into the neck and significantly increases costs. The purpose of the present invention is to easily adjust the above-mentioned focusing magnetic field using a magnetic material provided outside the neck portion, change the focal length of the electromagnetic lens, and obtain the smallest beam spot diameter on the phosphor screen. That is. The present invention will be explained in detail below. When a magnetic body is placed near a permanent magnet, magnetic flux concentrates inside the magnetic body, and the magnetic flux near the magnetic body and permanent magnet decreases. In other words, the situation appears as if the permanent magnet itself had been demagnetized. Further, as a matter of course, the degree of decrease in the magnetic flux near the magnetic body and the permanent magnet varies depending on the distance between the permanent magnet and the magnetic body, the material (magnetic permeability) and shape of the magnetic body, and the like. The present invention attempts to control the electron beam focusing magnetic field by utilizing the apparent demagnetizing effect of the permanent magnet caused by the above-mentioned magnetic material. This will be explained in more detail using examples. An embodiment of the present invention is shown in FIGS. 2 and 3.
Elements in the figure that are common to those in FIG. 1 are designated by the same numbers. FIG. 2 shows a magnetic field control device 1 according to the present invention.
FIG. 3 is a cross-sectional view of the magnetic field control device 17 taken along a plane B-B' perpendicular to the tube axis. In FIGS. 2 and 3, a holder 11 made of plastic or the like is placed on the outer periphery of the neck portion 7 of the band 1.
6 and screws 15, and a magnetic body 10 held in a magnetic body holder 14 made of plastic or the like is disposed on this holder 11 via bolts 12. This magnetic material 10
is arranged concentrically with respect to the neck part 7 and the cylindrical permanent magnet 3 constituting the magnetic field generator,
By rotating the head 13 of the bolt 12, the magnetic body 10 held by the magnetic body holder 14 can be moved in the direction of the arrow shown in the diagram of the neck portion, that is, in the radial direction of the neck, and can be fixed. There is. These bolts 12 are for adjustment, and if the neck is circular, it is better to use three. Also, magnetic material 1
0 and the magnetic material holder 14 may be one, but one having a cylindrical shape and divided into three equal parts as shown in FIG. 3 is more useful for the magnetic field adjustment function. Next, a cylindrical permanent magnet 3 with an outer diameter of 24.0 mm and an inner diameter of
18.0 mm, length 6.0 mm, and magnetized in the tube axis direction, the outer diameter of the magnetic body 10 is
32.0mm, thickness 1.0mm, length 5.0mm, initial permeability 2×10 4
A case will be described in which a cylinder divided into three equal parts in the circumferential direction is used. Table 1 shows magnetic material 10 divided into three equal parts and bolt 1
2, each moves in the radial direction by an equal amount,
It shows the change in magnetic flux density at the center of the permanent magnet 3 on the tube axis when the distance l between the tube axis center and the magnetic body 10 is varied.

【表】 但し表1ではl=15.0mmの時の中心磁束密度を
100%として相対的に示してある。第1表によれ
ば、距離lを15.0mmから23.0mmに移動させること
により、磁束密度は100%から112%まで変化させ
ることが可能である。この磁束密度変化は約12%
程度であるが、この変化量は、距離l等により更
に増加させることも可能である。前述の如く、永
久磁石の着磁量のばらつきにより、電磁レンズ焦
点距離が最適値(設計値)よりずれ、蛍光面上に
於けるビームスポツト径の増大が生ずるが本発明
による磁界制御装置を用いることにより、電磁レ
ンズ焦点距離を常に最適値に一致させるように磁
束密度を調整することができ、常に最良のビーム
スポツトを得ることができることができる。即ち
着磁のばらつきにより磁界強度が最適値に対し不
足の場合には磁性体と管軸との距離lを設定値に
対し、増加せしめ、磁界強度が過大の場合にはl
を減少させれば良い。また永久磁石寸法のばらつ
き、永久磁石位置のばらつき等により、結果的に
焦点距離を微調する必要がある場合にも本発明の
磁界制御装置は有効であることは言うまでもな
い。第2図及び第3図に於いて磁性体10は円筒
状のものを多分割して用いたが、必ずしもその必
要はない。即ち、磁性体10の数量、形状、配
置、可動距離、可動方向等は、永久磁石3により
励起される磁束分布の対称性を損う等、実質的に
ビームの集束状態を劣化させる変化を引起こすこ
とがない範囲で自由に選択しうることができる。 以上のように、本発明によれば、磁界発生装置
を内蔵する電磁集束型陰極線管の製造ばらつきに
よるビームスポツト径の増大、換言すれば解像度
の劣化を防止することが可能となり、その工業的
価値は大きい。
[Table] However, in Table 1, the center magnetic flux density when l = 15.0 mm is
It is shown relatively as 100%. According to Table 1, by moving the distance l from 15.0 mm to 23.0 mm, the magnetic flux density can be changed from 100% to 112%. This magnetic flux density change is approximately 12%
However, this amount of change can be further increased by changing the distance l or the like. As mentioned above, due to variations in the amount of magnetization of the permanent magnets, the electromagnetic lens focal length deviates from the optimum value (design value), causing an increase in the beam spot diameter on the phosphor screen, but using the magnetic field control device according to the present invention By doing this, the magnetic flux density can be adjusted so that the electromagnetic lens focal length always matches the optimum value, and the best beam spot can always be obtained. In other words, if the magnetic field strength is insufficient compared to the optimum value due to variations in magnetization, the distance l between the magnetic body and the tube axis is increased relative to the set value, and if the magnetic field strength is excessive, the distance l is increased.
All you have to do is decrease it. It goes without saying that the magnetic field control device of the present invention is also effective when it is necessary to finely adjust the focal length due to variations in the dimensions of the permanent magnets, variations in the positions of the permanent magnets, etc. In FIGS. 2 and 3, the magnetic body 10 has a cylindrical shape and is divided into multiple parts, but this is not necessarily necessary. That is, the quantity, shape, arrangement, movable distance, movable direction, etc. of the magnetic bodies 10 may cause changes that substantially deteriorate the beam focusing state, such as impairing the symmetry of the magnetic flux distribution excited by the permanent magnet 3. You can freely choose as long as it does not cause any problems. As described above, according to the present invention, it is possible to prevent an increase in the beam spot diameter, or in other words, a deterioration in resolution, due to manufacturing variations in electromagnetic focusing cathode ray tubes with built-in magnetic field generators. is big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁界発生装置を内蔵した電磁集
束型陰極線管の一例を示す概略断面図、第2図は
本発明の電磁集束型陰極線管の磁界制御装置を陰
極線管のネツク部に装着した一実施例を示す概略
横断面図、第3図は、第2図のB−B′断面図で
ある。 1……外囲器、2……蛍光面、3……永久磁
石、4……カソード、5……第1グリツド、6…
…第2グリツド、7……ネツク部、8……電子ビ
ーム、9……クロスオーバ点、10……磁性体、
11……ホルダー、12……ボルト、13……ボ
ルト頭部、14……磁性体ホルダー、15……ね
じ、16……バンド、17……磁界制御装置。
Fig. 1 is a schematic cross-sectional view showing an example of an electromagnetic focusing cathode ray tube incorporating a conventional magnetic field generating device, and Fig. 2 shows an example of an electromagnetic focusing cathode ray tube magnetic field control device of the present invention attached to the neck portion of the cathode ray tube. A schematic cross-sectional view showing one embodiment, FIG. 3 is a sectional view taken along line BB' in FIG. 2. DESCRIPTION OF SYMBOLS 1... Envelope, 2... Fluorescent screen, 3... Permanent magnet, 4... Cathode, 5... First grid, 6...
...Second grid, 7...Network part, 8...Electron beam, 9...Crossover point, 10...Magnetic material,
DESCRIPTION OF SYMBOLS 11... Holder, 12... Bolt, 13... Bolt head, 14... Magnetic material holder, 15... Screw, 16... Band, 17... Magnetic field control device.

Claims (1)

【特許請求の範囲】 1 電子ビームを集束するための少なくとも永久
磁石を含む磁界発生装置をネツク部に内蔵する電
磁集束型陰極線管において、前記磁界発生装置に
対応する前記ネツクの外側にネツク管軸に対する
半径方向に移動且つ固定可能な磁性体を少くとも
1個以上配置したことを特徴とする電磁集束型陰
極線管。 2 磁性体が円筒状で3等分割されていることを
特徴とする特許請求の範囲第1項記載の電磁集束
型陰極線管。
[Scope of Claims] 1. In an electromagnetic focusing cathode ray tube in which a magnetic field generating device including at least a permanent magnet for focusing an electron beam is built into the neck portion, a neck tube shaft is provided outside the neck corresponding to the magnetic field generating device. 1. An electromagnetic focusing cathode ray tube characterized in that at least one magnetic body is arranged that can be moved and fixed in a radial direction. 2. The electromagnetic focusing cathode ray tube according to claim 1, wherein the magnetic body has a cylindrical shape and is divided into three equal parts.
JP7226481A 1981-05-15 1981-05-15 Electromagnetic focusing crt Granted JPS57187841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7226481A JPS57187841A (en) 1981-05-15 1981-05-15 Electromagnetic focusing crt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7226481A JPS57187841A (en) 1981-05-15 1981-05-15 Electromagnetic focusing crt

Publications (2)

Publication Number Publication Date
JPS57187841A JPS57187841A (en) 1982-11-18
JPH0316730B2 true JPH0316730B2 (en) 1991-03-06

Family

ID=13484247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7226481A Granted JPS57187841A (en) 1981-05-15 1981-05-15 Electromagnetic focusing crt

Country Status (1)

Country Link
JP (1) JPS57187841A (en)

Also Published As

Publication number Publication date
JPS57187841A (en) 1982-11-18

Similar Documents

Publication Publication Date Title
KR970005769B1 (en) Magnetic immersion field emission electron gun
US5215703A (en) High-flux neutron generator tube
JPH10106462A (en) X-ray tube
GB2192092A (en) Magnetic lens system
US4187444A (en) Open-circuit magnet structure for cross-field tubes and the like
US4339694A (en) Flat cathode ray tube
US2718606A (en) Combination electromagnet-permanent magnet focusing devices
JPH0316730B2 (en)
US2806164A (en) Beam convergence apparatus for tri-color kinescopes
US3646379A (en) X-ray tube having controllable focal spot size
JP3490469B2 (en) Electron beam focusing magnetic field generator
ES8306305A1 (en) Neutron accelerator tube having improved ionization section
US3731094A (en) Electron beam apparatus with means for generating a rotation-symmetrical magnetic field
JPH0316731B2 (en)
JPS6310605Y2 (en)
FI70096C (en) ANORDNING FOER MAGNETISERING AV PERMANENT MAGNETIC CONVERGENCE ANORDNINGEN AV ETT IN-LINE-FAERGBILDROER
US3562516A (en) Image pickup tube with screen and field grids
US2915662A (en) Centering arrangement and method for beams of cathode ray tubes
US3437867A (en) Television image pickup tube device
RU2074448C1 (en) Magnetic focusing system of o-type microwave device
JPH0128459B2 (en)
JPS6048858B2 (en) cathode ray tube electron gun
KR0137112Y1 (en) Focus magnet for controlling electronic beam
JPH0316732B2 (en)
JPH065209A (en) Periodic magnetic field focusing type electron beam tube