JPS6347110B2 - - Google Patents

Info

Publication number
JPS6347110B2
JPS6347110B2 JP305681A JP305681A JPS6347110B2 JP S6347110 B2 JPS6347110 B2 JP S6347110B2 JP 305681 A JP305681 A JP 305681A JP 305681 A JP305681 A JP 305681A JP S6347110 B2 JPS6347110 B2 JP S6347110B2
Authority
JP
Japan
Prior art keywords
cathode ray
ray tube
shape
yoke
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP305681A
Other languages
Japanese (ja)
Other versions
JPS57118352A (en
Inventor
Soichi Sakurai
Kyohei Fukuda
Kuniharu Osakabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP305681A priority Critical patent/JPS57118352A/en
Publication of JPS57118352A publication Critical patent/JPS57118352A/en
Publication of JPS6347110B2 publication Critical patent/JPS6347110B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/56Arrangements for controlling cross-section of ray or beam; Arrangements for correcting aberration of beam, e.g. due to lenses

Description

【発明の詳細な説明】 本発明は、電子銃組立を容易にし、かつビーム
スポツト形状をほぼ真円形にした電磁集束陰極線
管に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic focusing cathode ray tube that facilitates assembly of an electron gun and has a beam spot having a substantially perfect circular shape.

第1図は従来の、3電子銃が1水平面上になら
び、環状永久磁石がネツク管を囲んで配置され、
かつこの磁石の磁束を効率良く吸収して対向間隙
に磁気レンズを形成する1対のヨークを設けた、
いわゆるインライン配列外磁形電磁集束陰極線管
の電子銃部のインライン配列面による断面図、第
2図は同じ管の管軸を含みインライン配列面に直
交する平面による断面図、さらに第3図は第1,
2図のA―A′線断面図である。これらの図にお
いて、1はバルブ(のネツク管)、2はカソード、
3は第1グリツド、4は第2グリツド、5は磁性
体ヨーク、6は弾性導電条、7は内装導電膜、8
は環状永久磁石、9は電極支持棒、10は偏向ヨ
ーク、11はステムピン、12Cはセンタビー
ム、12S1,12S2はサイドビーム、13は磁気
主レンズ、14は非磁性体よりなるギヤツプ電
極、15は第3グリツドボトムである。カソード
2から放出されたセンタビーム12C、サイドビ
ーム12S1,12S2は、それぞれ第1グリツド
3、第2グリツド4を通り一旦集束されていわゆ
るクロスオーバを形成し、その後、内装導電膜
7、弾性導電条6を介して陽極電圧が印加されて
いる第3グリツドボトム15、磁性体ヨーク5、
ギヤツプ電極14によつて加速され、センタビー
ム通過孔5C、サイドビーム通過孔5S1,5S2
通つて磁気主レンズ13に入射し、蛍光面(図示
せず)上にクロスオーバの像を結ぶ。磁性体ヨー
ク5は高透磁率性体製で永久磁石8により生ずる
磁束を効率良く吸収し、対向して配列された一対
のヨーク5の対向間隙に、電子ビーム進路に沿つ
て強い集束磁界を生じ、ここに磁気主レンズ13
を形成する。したがつてビーム12C,12S1
12S2のビームスポツト形状を真円とする事と、
3本の電子ビーム12C,12S1,12S2をシヤ
ドウマスク(図示せず)上で集中させる事とを考
慮すると磁性体ヨーク5は第1,2,3図に示す
様な円筒形状とせざるを得なかつた。このためヨ
ーク5には、他電極の場合の如き電極支持棒9に
よる支持法の適用が不能となり、電子銃組立精度
の低下、原価上昇の大きな原因となるという問題
があつた。
Figure 1 shows a conventional structure in which three electron guns are arranged on one horizontal plane, and an annular permanent magnet is arranged surrounding a network tube.
A pair of yokes are provided to efficiently absorb the magnetic flux of this magnet and form a magnetic lens in the opposing gap.
FIG. 2 is a cross-sectional view of the electron gun section of a magnetic electromagnetic focusing cathode ray tube outside the in-line array taken along the in-line array surface, FIG. 1,
FIG. 2 is a cross-sectional view taken along line A-A' in FIG. 2; In these figures, 1 is the valve (connection pipe), 2 is the cathode,
3 is a first grid, 4 is a second grid, 5 is a magnetic yoke, 6 is an elastic conductive strip, 7 is an internal conductive film, 8
is an annular permanent magnet, 9 is an electrode support rod, 10 is a deflection yoke, 11 is a stem pin, 12C is a center beam, 12S 1 and 12S 2 are side beams, 13 is a magnetic main lens, 14 is a gap electrode made of a non-magnetic material, 15 is the third grid bottom. The center beam 12C and side beams 12S 1 and 12S 2 emitted from the cathode 2 pass through the first grid 3 and the second grid 4, respectively, and are once focused to form a so-called crossover. a third grid bottom 15 to which an anode voltage is applied via the conductive strip 6; a magnetic yoke 5;
It is accelerated by the gap electrode 14, enters the magnetic main lens 13 through the center beam passage hole 5C, side beam passage holes 5S 1 and 5S 2 , and forms a crossover image on a phosphor screen (not shown). . The magnetic yokes 5 are made of a highly permeable material and efficiently absorb the magnetic flux generated by the permanent magnets 8, creating a strong focusing magnetic field along the path of the electron beam in the opposing gap between the pair of yokes 5 arranged opposite to each other. , here is the magnetic main lens 13
form. Therefore, the beams 12C, 12S 1 ,
Make the beam spot shape of 12S 2 a perfect circle,
Considering that the three electron beams 12C, 12S 1 and 12S 2 are concentrated on a shadow mask (not shown), the magnetic yoke 5 must have a cylindrical shape as shown in FIGS. 1, 2 and 3. Nakatsuta. For this reason, the yoke 5 has a problem in that it is impossible to apply the support method using the electrode support rod 9 as in the case of other electrodes, and this becomes a major cause of a decrease in electron gun assembly accuracy and an increase in cost.

本発明の目的は、上記の様な問題のない、量産
性良好でしかも画質も良い電磁集束陰極線管を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electromagnetic focusing cathode ray tube that is free from the above-mentioned problems, has good mass productivity, and has good image quality.

上記目的を達成するために本発明においては、
ヨークの周辺形状を非円形にし、電極支持棒で他
電極と共に支持可能として、電子銃組立精度向上
と組立作業の容易化をはかり、他方ヨーク周辺形
状を非円形にした影響によりビームスポツト形状
が非円形となるのを補正するために、電子ビーム
通過孔形状も非円形にし、ビーム全周にわたりほ
ぼ一様な磁束分布が得られ、ビームスポツト形状
がほぼ円形となるようにした。
In order to achieve the above object, in the present invention,
The shape of the yoke's periphery is made non-circular so that it can be supported together with other electrodes by an electrode support rod, thereby improving the accuracy of electron gun assembly and making assembly work easier.On the other hand, the non-circular shape of the yoke's periphery also reduces the shape of the beam spot. In order to correct the circular shape, the shape of the electron beam passage hole was also made non-circular, so that a substantially uniform magnetic flux distribution was obtained over the entire circumference of the beam, and the beam spot shape was made substantially circular.

第4〜6図は本発明に係る非円形ヨークを用い
たインライン配列外磁形電磁集束陰極線管の電子
銃部を示し、第4図はインライン配列面による断
面図、第5図は管軸を通りインライン配列面に直
交する平面による断面図、第6図は第4,5図中
のB―B′線断面図である。これらの図に示した
ものが第1〜3図に示したものと異なる点は、非
円形(偏平)周辺形状の磁性体ヨーク50が長い
電極支持棒90によつて他電極と共に支持され、
電子銃組立が容易となり、組立精度向上が計られ
ていることである。しかし、第6図に示す様な円
形の電子ビーム通過孔50S1,50C,50S2
用いた場合、3本のビーム12S1,12C,12
S2をシヤドウマスク上で一点に集中させ、いわゆ
るスタテイツクコンバーゼンス(STC)を零に
するためには、第4,5図に示す様に、永久磁石
8の装着位置を第1,2図に示した場合より多少
蛍光面側にずらさなければならず、また、こうし
てSTCを零にした時のビームスポツト形状は第
7図に示す様に、非円形となる。これが磁性体ヨ
ーク周辺形状および永久磁石装着位置を変更した
事に起因することは明かである。
4 to 6 show the electron gun section of an in-line array external magnetic type electromagnetic focusing cathode ray tube using a non-circular yoke according to the present invention, FIG. 4 is a cross-sectional view of the in-line array surface, and FIG. FIG. 6 is a sectional view taken along the line BB' in FIGS. 4 and 5. The difference between what is shown in these figures and what is shown in FIGS. 1 to 3 is that a magnetic yoke 50 having a non-circular (flat) peripheral shape is supported together with other electrodes by a long electrode support rod 90;
The electron gun assembly has become easier and assembly accuracy has been improved. However, when circular electron beam passing holes 50S 1 , 50C, 50S 2 as shown in FIG. 6 are used, three beams 12S 1 , 12C, 12
In order to concentrate S 2 on one point on the shadow mask and make the so-called static convergence (STC) zero, as shown in Figs. 4 and 5, the mounting position of the permanent magnet 8 is shown in Figs. 1 and 2. In addition, when the STC is reduced to zero, the beam spot shape becomes non-circular as shown in FIG. 7. It is clear that this is due to the change in the shape of the magnetic yoke periphery and the permanent magnet mounting position.

本発明者はビームスポツト形状を改善するため
に、まず、第8図に示す非円形ヨーク50′のセ
ンタビーム通過孔50C′を長円形とし、その垂直
径φyと水平径φxとの比すなわちその偏平率
(φy/φx)を種々変えた多数の試作管を作り、
そのビームスポツト径を測定した。その結果を、
第9図に、ビーム通過孔の偏平率φy/φxを横軸
に、ビームスポツト形状(Spy/Spx)を縦軸に
とつて、実線で示した。ただし、Spyはビームス
ポツトの垂直径、Spxは水平径とする。なお試料
は、永久磁石外径45φmm、内径26φmm、厚さ10mm、
磁界450ガウス、磁性体ヨーク50′の外径15.4φ
mm、高さ10mm、対向間隙長7mmで、永久磁石8は
STCが零になるように装着した。第9図から、
前記測定条件では、センタビーム通過孔の偏平率
を0.89とした時、センタビームスポツト形状が真
円となることがわかる。同様にサイドビームスポ
ツトに関する試作実験結果を第9図中に破線で示
してある。サイドビームに対しても、ビーム通過
孔の垂直径φyが水平径φxより小さい時に、Spy
=Spxのビームスポツトが得られたが、このサイ
ドビームの場合の偏平率φy/φxはセンタビーム
の同じ場合の偏平率0.89よりは1.0に近い。また
サイドビームの場合は、ビーム通過孔の偏平率を
前述のような最適値にしても、通過孔が直交二軸
に対して対称性のある通常の長円形では、どうし
てもビームスポツト形状が完全な円にならないこ
とがわかつた。この原因は、サイドビームの集束
磁界にネツク管外の永久磁石から直接漏れ込む磁
束が重畳されるからである。この問題に対して
は、第10図に示すヨーク51のように、サイド
ビーム通過孔51S1,51S2の形状を水平方向に
長径を有し、その小径端がネツク管内壁側に伸び
た卵形とすることによつてほぼ真円形のサイドビ
ームスポツトとすることができた。なお永久磁石
の寸法を変えればビーム通過孔形状の最適条件も
変わり、同様に磁性体ヨークの外形寸法を変えた
場合にもビーム通過孔形状の最適条件は異なる。
第11図に示すようなセンタビーム通過孔51
C′、サイドビーム通過孔51S1′,51S2′を有す
るヨーク51′を用いてもそれぞれほぼ真円形の
ビームスポツトが得られた。
In order to improve the beam spot shape, the inventor first made the center beam passage hole 50C' of the non-circular yoke 50' shown in FIG. We made a number of prototype tubes with various oblateness ratios (φy/φx),
The beam spot diameter was measured. The result is
In FIG. 9, the oblateness ratio φy/φx of the beam passage hole is plotted on the horizontal axis, and the beam spot shape (Spy/Spx) is plotted on the vertical axis, which is indicated by a solid line. However, Spy is the vertical diameter of the beam spot, and Spx is the horizontal diameter. The sample is a permanent magnet with an outer diameter of 45φmm, an inner diameter of 26φmm, and a thickness of 10mm.
Magnetic field 450 Gauss, outer diameter of magnetic yoke 50' 15.4φ
mm, height 10 mm, opposing gap length 7 mm, permanent magnet 8 is
It was installed so that the STC would be zero. From Figure 9,
It can be seen that under the above measurement conditions, when the oblateness of the center beam passage hole is 0.89, the center beam spot shape becomes a perfect circle. Similarly, the results of a prototype experiment regarding the side beam spot are shown in broken lines in FIG. Also for side beams, when the vertical diameter φy of the beam passage hole is smaller than the horizontal diameter φx, Spy
A beam spot of =Spx was obtained, but the flattening ratio φy/φx in the case of this side beam is closer to 1.0 than the flattening ratio 0.89 in the same case of the center beam. In addition, in the case of side beams, even if the oblateness of the beam passage hole is set to the optimal value as described above, the beam spot shape is inevitably not perfect if the passage hole is an ordinary oval shape that is symmetrical about two orthogonal axes. I found out that it is not a circle. This is because the magnetic flux directly leaking from the permanent magnet outside the neck tube is superimposed on the focused magnetic field of the side beam. To solve this problem, as in the yoke 51 shown in FIG. 10, the side beam passage holes 51S 1 and 51S 2 have a long diameter in the horizontal direction, and the small diameter end extends toward the inner wall of the neck canal. By changing the shape, we were able to create an almost perfectly circular side beam spot. Note that if the dimensions of the permanent magnet are changed, the optimum conditions for the shape of the beam passage hole will also change, and similarly, if the external dimensions of the magnetic yoke are changed, the optimum conditions for the shape of the beam passage hole will also be different.
Center beam passage hole 51 as shown in FIG.
Even when using a yoke 51' having side beam passage holes 51S 1 ' and 51S 2 ', almost perfect circular beam spots were obtained.

以上説明したように本発明によれば、電子銃組
立が容易かつ高精度で行えるようになり、しかも
ほぼ真円のビームスポツト形状が得られ、電磁集
束管特有の良好な画質が保持される。
As described above, according to the present invention, the electron gun can be assembled easily and with high precision, and a nearly perfect circular beam spot shape can be obtained, and the good image quality characteristic of an electromagnetic focusing tube can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は従来のインライン配列外磁形
電磁集束陰極線管の電子銃部を示す断面図、第4
図〜第6図は本発明に係る外形が非円形なヨーク
を用いたインライン配列外磁形電磁集束陰極線管
電子銃を示す断面図、第7図はこの非円形ヨーク
に真円形ビーム通過孔を設けた場合のビームスポ
ツト形状図、第8図はビームスポツト形状改良実
験管の断面図、第9図は非円形ヨークを用いた場
合のビーム通過孔偏平率とビームスポツト形状の
関係を示す特性図、第10図、第11図はほぼ真
円のビームスポツト形状が得られる相異なる2種
の非円形ビーム通過孔を有する外形が非円形なヨ
ークを示す断面図である。 8…永久磁石、12S1,12C,12S2…電子
ビーム、13…磁気主レンズ、51…非円形ヨー
ク、51C,51S1,51S2…非円形ビーム通過
孔、90…電極支持棒、φx…ビーム通過孔の水
平径、φy…ビーム通過孔の垂直径、Spx…ビー
ムスポツトの水平径、Spy…ビームスポツトの垂
直径。
Figures 1 to 3 are cross-sectional views showing the electron gun section of a conventional in-line external magnetic type electromagnetic focusing cathode ray tube;
6 are cross-sectional views showing an in-line magnetic type electromagnetic focusing cathode ray tube electron gun using a yoke with a non-circular outer shape according to the present invention, and FIG. Figure 8 is a cross-sectional view of an experimental tube with improved beam spot shape, and Figure 9 is a characteristic diagram showing the relationship between beam passage hole oblateness and beam spot shape when a non-circular yoke is used. , FIG. 10, and FIG. 11 are cross-sectional views showing a yoke having a non-circular outer shape and having two different types of non-circular beam passage holes that provide a substantially perfect circular beam spot shape. 8... Permanent magnet, 12S 1 , 12C, 12S 2 ... Electron beam, 13... Magnetic main lens, 51... Non-circular yoke, 51C, 51S 1 , 51S 2 ... Non-circular beam passage hole, 90... Electrode support rod, φx... Horizontal diameter of the beam passing hole, φy...Vertical diameter of the beam passing hole, Spx...Horizontal diameter of the beam spot, Spy...Vertical diameter of the beam spot.

Claims (1)

【特許請求の範囲】 1 ネツク管外または管内にビーム集束磁界発生
装置を設け、また電子ビーム通過孔を有し、この
孔を通るビーム進路に沿つてネツク管内に対向し
て配置され、前記磁界発生装置による磁束を効率
良く吸収してその対向間隙にビーム集束用磁気レ
ンズを形成する1対以上の高透磁率性体製ヨーク
を設けた電磁集束陰極線管において、前記ヨーク
の管軸に直角な断面周辺形状を非円形とし、かつ
ヨークの電子ビーム通過孔形状を、前記ヨーク周
辺形状にもかかわらずビーム全周にわたつてほぼ
一様な磁束分布とするような、非円形にしたこと
を特徴とする電磁集束陰極線管。 2 ヨークの一水平線上に配列された3個の電子
ビーム通過孔の、水平径が垂直径よりも大きい特
許請求の範囲第1項記載の電磁集束陰極線管。 3 電子ビーム通過孔形状を、センタビーム用と
サイドビーム用とで異ならせた特許請求の範囲第
2項記載の電磁集束陰極線管。 4 サイドビーム通過孔が水平方向に長径を有
し、その小径端が管壁側に伸びた卵形をなす特許
請求の範囲第2項記載の電磁集束陰極線管。 5 電子ビーム通過孔の、垂直径の水平径に対す
る比率が、センタビーム用の方がサイドビーム用
よりも小さくなつている特許請求の範囲第2項記
載の電磁集束陰極線管。
[Scope of Claims] 1. A beam focusing magnetic field generating device is provided outside or inside the neck tube, and has an electron beam passage hole, and is disposed opposite to each other in the neck tube along the beam path passing through the hole, and the magnetic field is In an electromagnetic focusing cathode ray tube that is provided with one or more pairs of yokes made of a highly magnetically permeable material that efficiently absorb the magnetic flux generated by the generator and form a beam focusing magnetic lens in the opposing gap, The cross-sectional peripheral shape is non-circular, and the electron beam passing hole shape of the yoke is non-circular so that magnetic flux distribution is almost uniform over the entire circumference of the beam despite the yoke peripheral shape. An electromagnetic focusing cathode ray tube. 2. The electromagnetic focusing cathode ray tube according to claim 1, wherein the horizontal diameter of the three electron beam passing holes arranged on one horizontal line of the yoke is larger than the vertical diameter. 3. The electromagnetic focusing cathode ray tube according to claim 2, wherein the shape of the electron beam passing hole is different for the center beam and for the side beam. 4. The electromagnetic focusing cathode ray tube according to claim 2, wherein the side beam passage hole has an oval shape with a long diameter in the horizontal direction and a small diameter end thereof extending toward the tube wall side. 5. The electromagnetic focusing cathode ray tube according to claim 2, wherein the ratio of the vertical diameter to the horizontal diameter of the electron beam passage hole is smaller for the center beam than for the side beams.
JP305681A 1981-01-14 1981-01-14 Electromagnetic focusing cathode-ray tube Granted JPS57118352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP305681A JPS57118352A (en) 1981-01-14 1981-01-14 Electromagnetic focusing cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP305681A JPS57118352A (en) 1981-01-14 1981-01-14 Electromagnetic focusing cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS57118352A JPS57118352A (en) 1982-07-23
JPS6347110B2 true JPS6347110B2 (en) 1988-09-20

Family

ID=11546661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP305681A Granted JPS57118352A (en) 1981-01-14 1981-01-14 Electromagnetic focusing cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS57118352A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8302773A (en) * 1983-08-05 1985-03-01 Philips Nv COLOR IMAGE TUBE.
US4583024A (en) * 1984-02-21 1986-04-15 Rca Corporation Color picture tube having an inline electron gun with built-in stigmator
US4833364A (en) * 1984-04-04 1989-05-23 Hitachi, Ltd. Electron gun for color picture tubes having uniquely formed lens apertures
JPH0675378B2 (en) * 1989-11-08 1994-09-21 松下電子工業株式会社 Electron gun for color picture tube
KR20000051932A (en) * 1999-01-28 2000-08-16 구자홍 electron gun of CRT
JP2002367532A (en) 2001-06-11 2002-12-20 Mitsubishi Electric Corp Electron gun for cathode-ray tube

Also Published As

Publication number Publication date
JPS57118352A (en) 1982-07-23

Similar Documents

Publication Publication Date Title
JPH0427656B2 (en)
JPH0470730B2 (en)
JP2650939B2 (en) Convergence device and convergence yoke used therefor
JPS6347110B2 (en)
EP0489432B1 (en) Electron gun for color cathode-ray tube
US4439710A (en) Electromagnetic focusing cathode-ray tube
US2847598A (en) Electron gun structure for plural beam tubes
US2681421A (en) Magnetic focusing structure for electron beams
US2727182A (en) Image transformer with electronoptical image projection
US4310780A (en) Magnetic focusing structure for three in-line gun type color picture tubes
KR100242924B1 (en) Method of correcting deflection defocusing in a crt, a crt employing same, and an image display system including same crt
EP0073472B1 (en) Magnetic focusing type cathode ray tube
JPS6117095B2 (en)
US4460844A (en) Magnetic focusing, three in-line gun type color picture tube
JP3034906B2 (en) Color picture tube and deflection device
KR950003512B1 (en) Color television display tube with coma correction
US4473773A (en) In-line type electromagnetic focusing cathode-ray tube
JPS5927012Y2 (en) deflection yoke
GB2164490A (en) An electron gun assembly for colour CRT
JPS6048858B2 (en) cathode ray tube electron gun
JPS6161218B2 (en)
JPH0212740A (en) Electron gun for color cathode-ray tube
JPH0353735B2 (en)
JPS6023936A (en) Cathode ray tube
JPS6241373B2 (en)