JPH0353735B2 - - Google Patents

Info

Publication number
JPH0353735B2
JPH0353735B2 JP8693781A JP8693781A JPH0353735B2 JP H0353735 B2 JPH0353735 B2 JP H0353735B2 JP 8693781 A JP8693781 A JP 8693781A JP 8693781 A JP8693781 A JP 8693781A JP H0353735 B2 JPH0353735 B2 JP H0353735B2
Authority
JP
Japan
Prior art keywords
yoke
tube
permanent magnet
yokes
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8693781A
Other languages
Japanese (ja)
Other versions
JPS57202044A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8693781A priority Critical patent/JPS57202044A/en
Priority to US06/329,045 priority patent/US4460844A/en
Priority to DE19813149437 priority patent/DE3149437A1/en
Publication of JPS57202044A publication Critical patent/JPS57202044A/en
Publication of JPH0353735B2 publication Critical patent/JPH0353735B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • H01J29/64Magnetic lenses
    • H01J29/68Magnetic lenses using permanent magnets only

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ビームスポツト形状が良く、ビーム
のスタテイツクコンバーゼンスも良好な、外磁形
電磁集束陰極線管に関する。 従来カラー陰極線管などには主として電界集束
電子銃が用いられていた。その主たる理由は、製
作が容易で、体積重量も小さく、低原価となるな
どの利点があつたからである。近年、カラー陰極
線管に対しては高解像度化の要求がますます強く
なり、この要求に沿つて多種類の電界集束電子銃
が開発されているが、その高解像度特性は現在既
にほぼ飽和限界に達している。 これに対し電磁集束電子銃は球面収差の小さい
レンズが得られ、電子電荷の反撥力によるビーム
のひろがりを避けやすいなど、高解像度化に対し
ては有利である。又、電磁集束電子銃は電界形の
様な電極間放電の恐れが少なくなるメリツトも有
している。この様な背景から、第1〜3図に示す
様な、集束磁界発生手段としてバルブのネツク管
外周に環状永久磁石を装着し、この磁石の発生す
る磁束を効果的に吸収する有底筒状の高透磁率磁
性体よりなり底面に電子ビーム通過孔を有する複
数個のヨークを、電子ビーム通路に沿つて対向さ
せてネツク管内に配設し、これら対向するヨーク
の間隙部に磁気主レンズを形成させるようにし
た、インライン配列外磁形電磁集束陰極線管が提
案されている。 第1図は上記従来の管の電子銃部のインライン
配列面による断面図、第2図は同じ管の管軸を含
みインライン配列面に直交する平面による断面図
である。また第3図は、第1,2図中に示すA−
A線断面図である。これらの図において、1はバ
ルブのネツク管、2はカソード、3は第1グリツ
ド、4は第2グリツド、5は1対の高透磁率磁性
体よりなるヨーク、6は弾性導電条、7は内装導
電膜、8は環状永久磁石、9はガラス製電極支持
棒、10は偏向ヨーク、11はステムピン、12
Cはセンタビーム、12S1,12S2はサイドビー
ム、13は光学レンズに模して示した磁気主レン
ズ、14は非磁性体よりなるギヤツプ電極、15
は第3グリツドボトムである。カソード2から放
出されたセンタビーム12C、サイドビーム12
S1,12S2は、それぞれ第1グリツド3、第2グ
リツド4を通過していつたん集束されていわゆる
クロスオーバを形成し、その後、内装導電膜7、
弾性導電条6を介して陽極電圧が印加されている
第3グリツドボトム15、ヨーク5、ギヤツプ電
極14等によつて加速され、電子ビーム通過孔5
aを通過して磁気主レンズ13に入射し、螢光面
(図示せず)上にクロスオーバの像を結ぶ。ヨー
ク5は有底筒状の高透磁率磁性体製で永久磁石8
により生ずる磁束を吸収し、1対のヨーク底面と
対向する間隙部5gに、電子ビーム通路に沿つて
強い集束磁界を生じ、ここに磁気主レンズ13を
形成するのである。そして電子ビーム12C,1
2S1,12S2の螢光面上のスポツト形状を真円と
する事と、これら3色螢光体用の3本のビームを
シヤドウマスク(図示せず)上の1点で集中、交
会させる事とを考慮して、第3図に示すように、
ヨーク5の管軸に直角な断面外形を円形にしてい
た。その結果、電子銃組立に際しては、まず最初
にカソード2から第3グリツドボトム15までの
電極だけを電極支持棒9に支持させ、その後、カ
ソード側のヨーク、ギヤツプ電極、螢光面側のヨ
ークを順次その上に積み重ね。重ね合せ部を溶接
して行くようにせざるを得なかつた。この様な組
立工程は多くの工数を要し、原価上昇の要因とな
り、しかも製品の組立精度を十分高くできないと
いう問題があつた。 本発明は上記の如き従来技術の問題点を除去
し、十分高い組立精度が容易に得られ、性能良好
でしかも低原価な電子銃を有する電磁集束陰極線
管を提供することを目的とする。 上記目的を達成するために本発明においては、
ヨークの管軸と直角な断面外形を対向する円弧と
対向する直線とから形成される形状にしてヨーク
も他電極と共通な電極支持棒で支持させ、永久磁
石材料には性能価格比の良好なフエライト系を用
いることとし、更にヨーク外形を非円形にしたこ
とによつてビームスポツト形状やスタテイツクコ
ンバーゼンス(以後STCと略称)が悪影響を受
けないようになる条件を求めて研究した結果、永
久磁石形状、ヨークの間隙長、ヨークの管軸方向
の長さを、特定の相関関係を満たすような範囲内
の値とすることによつて十分良好な性能が得られ
るようにした。 以下本発明を図面を用いて更に詳細に説明す
る。 第4,5,6図は本発明一実施例の電子銃部を
示し、第4図はインライン配列面による断面図、
第5図は管軸を含みインライン配列面に直交する
平面による断面図、第6図は第4,5図中に示す
A−A′線断面図である。第1,2,3図に示し
た例と大きく異なる点は、ヨーク51a,51b
およびギヤツプ電極の外形が偏平になり、その偏
平部分とネツク管内壁面との間のすきまを利用し
てヨークやギヤツプ電極14aを、他電極と同時
に共通の電極支持棒9aで支持していることであ
る。しかしヨーク外形を非円形にすると、色ずれ
が生じないように、3原色用電子ビームがシヤド
ウマスク上で集中、交会(スタテイツクコンバー
ゼンスSTC)するように、永久磁石8位置を管
軸方向に移動、調整して最適位置に固定した際、
一般にビームスポツト形状は著しく円形から逸脱
した歪んだものとなつてしまう。また逆にビーム
スポツト形状が真円となるように永久磁石位置を
調整すると、STCがとれなくなつてしまう。こ
の対策として容易に考えられることは、第7図に
示す様に、ヨーク51aの螢光面側ネツク管外周
に4極磁界発生装置16を設置し、4極磁界をビ
ームに作用させSTCをとる(小さくする)こと
である。しかしこの方法は一般にビームスポツト
形状を歪ませ、原価を上昇させることにもなつて
好ましくない。本発明者は、研究の結果、この問
題を、永久磁石やヨークの形状、寸法、それらの
配置等を特定範囲内に限定することによつて、4
極磁界発生装置なしに解決した。 永久磁石8の大きさは、ほぼ2つの要因によつ
て定まる。1つは電磁集束陰極線管の使用条件、
すなわちネツク管1の外径、動作陽極電圧等であ
る。また他の1つは永久磁石から効率良く集束用
磁束を発生させるための条件で、永久磁石の材質
で定まるB−H曲線に基いてB・H積の大きい動
作点(パーミアンス)となるように永久磁石の寸
法比を選定することである。ここで永久磁石材料
としては、この陰極線管が家庭用テレビジヨン受
像機に用いるものであることを考慮すると、現状
においては性能価格比の点からフエライト系が最
適となる。よつて本発明者は日立金属製フエライ
ト系磁石YBM−2Bを用いて研究した。表に以上
の点を考慮して決定した環状磁石を示し、例えば
表中の仕様は14形、90度偏向、動作陽極電圧
21kVの管に対するものである。第4,
The present invention relates to an external magnetic type electromagnetic focusing cathode ray tube which has a good beam spot shape and good beam static convergence. Conventionally, electric field focusing electron guns have been mainly used in color cathode ray tubes and the like. The main reason for this is that it has advantages such as easy manufacture, small volumetric weight, and low cost. In recent years, there has been an increasing demand for higher resolution for color cathode ray tubes, and many types of electric field focusing electron guns have been developed to meet this demand, but their high resolution characteristics have already reached their saturation limit. has reached. On the other hand, an electromagnetic focusing electron gun is advantageous for achieving high resolution, as it can provide a lens with small spherical aberration, and it is easy to avoid spreading of the beam due to the repulsive force of electron charges. The electromagnetic focusing electron gun also has the advantage of reducing the risk of inter-electrode discharge unlike the electric field type. Against this background, as shown in Figures 1 to 3, an annular permanent magnet is attached to the outer periphery of the neck tube of the valve as a focusing magnetic field generating means, and a bottomed cylindrical magnet is installed to effectively absorb the magnetic flux generated by this magnet. A plurality of yokes made of a highly permeable magnetic material and having electron beam passage holes on the bottom surface are arranged in the neck tube so as to face each other along the electron beam path, and a magnetic main lens is installed in the gap between these opposing yokes. An in-line out-of-magnetic electromagnetic focusing cathode ray tube has been proposed. FIG. 1 is a cross-sectional view of the electron gun section of the conventional tube taken along an in-line array plane, and FIG. 2 is a cross-sectional view of the same tube taken along a plane that includes the tube axis and is orthogonal to the in-line array plane. In addition, FIG. 3 shows the A-
It is an A-line sectional view. In these figures, 1 is a valve neck tube, 2 is a cathode, 3 is a first grid, 4 is a second grid, 5 is a yoke made of a pair of high permeability magnetic materials, 6 is an elastic conductive strip, and 7 is a Internal conductive film, 8 is an annular permanent magnet, 9 is a glass electrode support rod, 10 is a deflection yoke, 11 is a stem pin, 12
C is a center beam, 12S 1 and 12S 2 are side beams, 13 is a magnetic main lens modeled on an optical lens, 14 is a gap electrode made of non-magnetic material, 15
is the third grid bottom. Center beam 12C and side beam 12 emitted from cathode 2
S 1 and 12S 2 pass through the first grid 3 and the second grid 4, respectively, and are once converged to form a so-called crossover, and then the internal conductive film 7,
The electron beam is accelerated by the third grid bottom 15 to which an anode voltage is applied via the elastic conductive strip 6, the yoke 5, the gap electrode 14, etc., and the electron beam passes through the electron beam passage hole 5.
a and enters the magnetic main lens 13, forming a crossover image on a fluorescent surface (not shown). The yoke 5 is a bottomed cylinder made of high permeability magnetic material and has a permanent magnet 8.
The magnetic flux generated by the electron beam is absorbed, and a strong focusing magnetic field is generated along the electron beam path in the gap 5g facing the bottom surfaces of the pair of yokes, thereby forming the magnetic main lens 13 here. and electron beam 12C,1
The spot shapes on the phosphor surfaces of 2S 1 and 12S 2 are made perfect circles, and the three beams for these three color phosphors are concentrated and intersected at one point on the shadow mask (not shown). Considering this, as shown in Figure 3,
The outer shape of the cross section perpendicular to the tube axis of the yoke 5 is circular. As a result, when assembling the electron gun, first, only the electrodes from the cathode 2 to the third grid bottom 15 are supported by the electrode support rod 9, and then the yoke on the cathode side, the gap electrode, and the yoke on the fluorescent surface side are sequentially supported. Stack it on top. I had no choice but to weld the overlapping parts. Such an assembly process requires a large number of man-hours, causes an increase in cost, and has the problem that the assembly accuracy of the product cannot be sufficiently high. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the problems of the prior art as described above, to provide an electromagnetic focusing cathode ray tube having an electron gun that can easily achieve a sufficiently high assembly accuracy, has good performance, and is low in cost. In order to achieve the above object, in the present invention,
The cross section of the yoke perpendicular to the tube axis is formed into a shape formed by an opposing circular arc and an opposing straight line, and the yoke is also supported by an electrode support rod that is common to other electrodes. We decided to use a ferrite type magnet, and as a result of our research to find the conditions under which the beam spot shape and static convergence (hereinafter abbreviated as STC) would not be adversely affected by making the outside shape of the yoke non-circular, we found that permanent magnet By setting the shape, the gap length of the yoke, and the length of the yoke in the tube axis direction within a range that satisfies a specific correlation, sufficiently good performance can be obtained. The present invention will be explained in more detail below using the drawings. 4, 5, and 6 show an electron gun section according to an embodiment of the present invention, and FIG. 4 is a cross-sectional view of an in-line array plane.
FIG. 5 is a sectional view taken along a plane including the tube axis and perpendicular to the in-line arrangement plane, and FIG. 6 is a sectional view taken along the line A-A' shown in FIGS. The major difference from the examples shown in FIGS. 1, 2, and 3 is that the yokes 51a, 51b
Also, the outer shape of the gap electrode is flat, and the gap between the flat part and the inner wall of the neck tube is used to support the yoke and the gap electrode 14a together with other electrodes by the common electrode support rod 9a. be. However, when the outer shape of the yoke is made non-circular, the 8 positions of the permanent magnets are moved in the tube axis direction so that the electron beams for the three primary colors are concentrated and converged on the shadow mask (static convergence STC) to prevent color shift. When adjusted and fixed at the optimal position,
Generally, the beam spot shape becomes distorted and significantly deviates from a circular shape. On the other hand, if the permanent magnet position is adjusted so that the beam spot shape becomes a perfect circle, the STC cannot be obtained. As shown in FIG. 7, one possible solution to this problem is to install a quadrupole magnetic field generator 16 on the outer periphery of the neck tube on the fluorescent surface side of the yoke 51a, and apply a quadrupole magnetic field to the beam to take the STC. (make it smaller). However, this method is generally undesirable because it distorts the shape of the beam spot and increases the cost. As a result of research, the present inventor has solved this problem by limiting the shape, dimensions, and arrangement of permanent magnets and yokes within specific ranges.
The problem was solved without a polar magnetic field generator. The size of the permanent magnet 8 is determined by approximately two factors. One is the usage conditions of the electromagnetic focusing cathode ray tube.
That is, the outer diameter of the network tube 1, the operating anode voltage, etc. The other condition is to efficiently generate the focusing magnetic flux from the permanent magnet, which is based on the B-H curve determined by the material of the permanent magnet, so that the operating point (permeance) has a large B・H product. The key is to select the dimensional ratio of the permanent magnet. Considering that this cathode ray tube is used in home television receivers, ferrite is currently the most suitable permanent magnet material in terms of performance and cost ratio. Therefore, the present inventor conducted research using Hitachi Metals' ferrite magnet YBM-2B. The table shows the annular magnets determined by taking the above points into consideration. For example, the specifications in the table are 14 type, 90 degree deflection, operating anode voltage.
This is for a 21kV tube. Fourth,

【表】 5図に示す様に永久磁石8の近くに偏向ヨーク1
0が存在するので、永久磁石の漏れ磁界が偏向磁
界に干渉しないようにする必要がある。そのため
にネツク管1を長くし、永久磁石と偏向ヨークの
間隔を広げることも考えられるが、受信機奥行を
長くするので限度がある。そこでtやφpの値を表
1に示した値よりも小さくしなければならないこ
ともある。またヨーク51a,51bの間隙長lg
が前記パーミアンスの決定に大きく影響すること
は勿論であるが、lgを小さくしすぎると小さく強
いレンズになつて球面収差が増大し、lgを大きく
しすぎるとSTCがとれなくなつてしまう。lgの許
容範囲は磁石の厚さtに対し、0.3t≦lg≦1.0tで
あるが、実験は主にlg=0.5tで行なつた。以上の
如き要因により永久磁石の形状、寸法はほぼ決定
され、第4〜6図に示した陰極線管に適用可能な
範囲は、1.7≦φp/φi≦2.3、0.35≦t/φi≦0.65で
あることが、計算機シミユレーシヨンと実験結果
から明らかになつた。 第8図は表1に示した種々の仕様の永久磁石に
対して、本発明に係る螢光面側のヨーク51aの
管軸方向長さhuとカソード側のヨーク51bのそ
れhbの比hb/huと、スタテイツクコンバーゼンス
量すなわち螢光面上におけるセンタビーム12C
とサイドビーム12S1の距離を示し、サイドビー
ム12S1がセンタビーム12Cよりもy方向上側
に存在する時を正としている。曲線に対した番号
は表1中に示す磁石仕様番号に対応する。なお前
述の如く永久磁石8と偏向ヨーク10との距離は
大きくない。高透磁率磁性体ヨークは元来永久磁
石の近くに位置しているからヨーク特に螢光面側
のヨーク51aと偏向ヨーク10との距離は大き
くない。従つてヨーク51aの管軸方向の長さhu
は、ヨーク51aが偏向ヨーク10の磁界から電
子ビームをしやへいしないようにするために制限
を受ける。一般に永久磁石の発生する磁束をなる
べく多く集束磁界に利用するにはhuが大きい方が
よいが、上記理由で実際には余り大きくできな
い。さて第8図からわかるように、種々の大きさ
の永久磁石に対してビームスポツト形状が真円
で、かつSTC量をゼロにするhb/huの値が存在
し、その値は永久磁石の形状、大きさに依存す
る。例えばの形状ではhb/hu=2.1、の形状
ではhb/hu=1.13、の形状ではhb/hu=1.45又
は1.52とすればよい。 第9図はこれらの結果をもとにSTC量をゼロ
にするような、永久磁石8の外径φp、内径φiと、
ヨークの長さhb,huの関係を示したもので、横軸
にhb/huを、縦軸にφp/φiをとり、この両者の関
係をt/φi(tは永久磁石の厚さ)をパラメータ
にして示してある。すなわち第9図に示す曲線上
の点に相当する形状、大きさの磁石8、磁性体ヨ
ーク51a,51bを用いれば、ビームスポツト
が真円で、かつSTC量をゼロとする電磁集束陰
極線管が得られる。第9図中に斜線を引いて示し
た領域が、既述の本発明で使用可能な永久磁石の
大きさ、形状から定まるhb/huの許容範囲であ
る。 以上説明したように本発明によれば、ビームス
ポツト形状が真円で、スタテイツクコンバーゼン
スも良好で、容易に高精度に組立てられる安価な
電磁集束陰極線管が得られる。
[Table] As shown in Figure 5, the deflection yoke 1 is placed near the permanent magnet 8.
0 exists, it is necessary to prevent the leakage magnetic field of the permanent magnet from interfering with the deflection magnetic field. For this purpose, it is conceivable to lengthen the neck tube 1 and widen the distance between the permanent magnet and the deflection yoke, but there is a limit as this increases the depth of the receiver. Therefore, the values of t and φ p may have to be made smaller than the values shown in Table 1. Also, the gap length lg between the yokes 51a and 51b
Of course, this greatly influences the determination of the permeance, but if lg is made too small, the lens becomes small and strong, resulting in increased spherical aberration, and if lg is made too large, it becomes impossible to obtain STC. The allowable range of lg is 0.3t≦lg≦1.0t for the magnet thickness t, but experiments were mainly conducted with lg=0.5t. The shape and dimensions of the permanent magnet are almost determined by the above factors, and the applicable ranges for the cathode ray tubes shown in Figures 4 to 6 are: 1.7≦φ pi ≦2.3, 0.35≦t/φ i ≦ It has been revealed from computer simulation and experimental results that it is 0.65. FIG. 8 shows the ratio of the length h u of the yoke 51a on the fluorescent surface side in the tube axis direction and the length h b of the yoke 51b on the cathode side according to the present invention for permanent magnets with various specifications shown in Table 1 . h b /h u and the amount of static convergence, that is, the center beam 12C on the fluorescent surface.
indicates the distance of the side beam 12S 1 , and is positive when the side beam 12S 1 is located above the center beam 12C in the y direction. The numbers for the curves correspond to the magnet specification numbers shown in Table 1. Note that, as described above, the distance between the permanent magnet 8 and the deflection yoke 10 is not large. Since the high magnetic permeability magnetic yoke is originally located near the permanent magnet, the distance between the yoke, especially the yoke 51a on the fluorescent surface side, and the deflection yoke 10 is not large. Therefore, the length h u of the yoke 51a in the tube axis direction
is limited in order to prevent the yoke 51a from shielding the electron beam from the magnetic field of the deflection yoke 10. In general, in order to utilize as much of the magnetic flux generated by the permanent magnet as possible for the focusing magnetic field, it is better for h u to be large, but for the reasons mentioned above, it cannot actually be made very large. Now, as can be seen from Figure 8, there is a value of h b /h u that makes the beam spot shape a perfect circle and the STC amount zero for permanent magnets of various sizes, and that value is depends on the shape and size of. For example, h b /h u =2.1 for the shape, h b /h u =1.13 for the shape, and h b /h u =1.45 or 1.52 for the shape. Based on these results, FIG. 9 shows the outer diameter φ p and inner diameter φ i of the permanent magnet 8 that will make the STC amount zero,
It shows the relationship between the lengths h b and h u of the yoke. The horizontal axis shows h b /h u and the vertical axis shows φ pi , and the relationship between the two is t / φ i (t is The thickness of the permanent magnet is used as a parameter. In other words, by using the magnet 8 and the magnetic yokes 51a and 51b whose shape and size correspond to the points on the curve shown in FIG. 9, an electromagnetic focusing cathode ray tube with a perfect circular beam spot and zero STC amount can be obtained can get. The shaded area in FIG. 9 is the allowable range of h b / hu determined from the size and shape of the permanent magnet that can be used in the present invention described above. As described above, according to the present invention, it is possible to obtain an inexpensive electromagnetic focusing cathode ray tube that has a perfect circular beam spot shape, good static convergence, and can be easily assembled with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は従来の電磁集束陰極線管の電
子銃部を示す図、第4図〜第6図は本発明一実施
例の電子銃部を示す図、第7図は4極磁界発生装
置設置図、第8図は1対の高透磁率磁性体ヨーク
の管軸方向長さの比とスタテイツクコンバーゼン
ス量の関係を示す図、第9図はSTC量をゼロと
するための前記1対のヨークの長さの比と、永久
磁石の内外径比の関係を、磁石の厚さと内径の比
をパラメータにして示す図である。 8……環状永久磁石、9a……磁性体ヨークも
支持する電極支持棒、13……磁気主レンズ、5
1a……断面形状を偏平にした螢光面側の磁性体
ヨーク、51b……断面形状を偏平にしたカソー
ド側の磁性体ヨーク、φi……環状永久磁石8の内
径、φp……磁石8の外径、t……磁石の厚さ、lg
……磁性体ヨーク対向間隙長、hu……磁性体ヨー
ク51aの管軸方向長さ、hb……磁性体ヨーク5
1bの長さ。
1 to 3 are diagrams showing an electron gun section of a conventional electromagnetic focusing cathode ray tube, FIGS. 4 to 6 are diagrams showing an electron gun section according to an embodiment of the present invention, and FIG. Figure 8 shows the relationship between the ratio of the lengths of a pair of high permeability magnetic yokes in the tube axis direction and the amount of static convergence, and Figure 9 shows the above-mentioned diagram for setting the STC amount to zero. FIG. 7 is a diagram showing the relationship between the length ratio of a pair of yokes and the inner/outer diameter ratio of a permanent magnet, using the ratio of the magnet's thickness to inner diameter as a parameter. 8... Annular permanent magnet, 9a... Electrode support rod that also supports the magnetic yoke, 13... Magnetic main lens, 5
1a...Magnetic yoke on the fluorescent surface side with a flat cross-sectional shape, 51b...Magnetic yoke on the cathode side with a flat cross-sectional shape, φi ...Inner diameter of the annular permanent magnet 8, φp ...Magnet 8 outer diameter, t...Thickness of magnet, lg
...Magnetic yoke opposing gap length, h u ...Length of the magnetic yoke 51a in the tube axis direction, h b ...Magnetic yoke 5
1b length.

Claims (1)

【特許請求の範囲】[Claims] 1 バルブのネツク管外周に円環状フエライト系
永久磁石を装着し、この磁石の発生する磁束を効
果的に吸収する高透磁率磁性体よりなるヨークを
管軸方向に少なくとも1対以上対向させてネツク
管内に配設し、対向するヨークの間〓部に磁気主
レンズを形成させた電磁集束形陰極線管におい
て、前記ヨークの管軸と直角な断面を、対向する
円弧と対向する直線とから形成される形状とし、
外径φp、内径φi、厚さtのフエライト系永久磁石
の形状を、1.7≦φp/φi≦2.3、0.35≦t/φi≦0.65
とし、更に対応するヨークの間〓長1gを、0.3t
≦1g≦1.0t、螢光面側のヨークの管軸方向長さ
hu、カソード側のヨークの管軸方向長さをhbとし
たとき、0.15hu≦hb≦2.04huとしたことを特徴と
する電磁集束形陰極線管。
1 An annular ferrite permanent magnet is attached to the outer circumference of the neck tube of the valve, and at least one pair of yokes made of a high permeability magnetic material that effectively absorbs the magnetic flux generated by this magnet are placed facing each other in the tube axis direction. In an electromagnetic focusing cathode ray tube that is disposed inside the tube and has a magnetic main lens formed between opposing yokes, a cross section of the yokes perpendicular to the tube axis is formed by opposing circular arcs and opposing straight lines. The shape is
The shape of a ferrite permanent magnet with outer diameter φ p , inner diameter φ i and thickness t is 1.7≦φ pi ≦2.3, 0.35≦t/φ i ≦0.65
Furthermore, the length between the corresponding yokes is 1g, and 0.3t.
≦1g≦1.0t, length of yoke on fluorescent surface side in tube axis direction
An electromagnetic focusing cathode ray tube characterized in that, where h u is the length of the yoke on the cathode side in the tube axis direction, h b is 0.15h u ≦h b ≦2.04h u .
JP8693781A 1980-12-15 1981-06-08 Electromagnetic focusing type cathode-ray tube Granted JPS57202044A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8693781A JPS57202044A (en) 1981-06-08 1981-06-08 Electromagnetic focusing type cathode-ray tube
US06/329,045 US4460844A (en) 1980-12-15 1981-12-09 Magnetic focusing, three in-line gun type color picture tube
DE19813149437 DE3149437A1 (en) 1980-12-15 1981-12-14 THREE-RAY INLINE COLOR TV TELEVISION WITH MAGNETIC FOCUSING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8693781A JPS57202044A (en) 1981-06-08 1981-06-08 Electromagnetic focusing type cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS57202044A JPS57202044A (en) 1982-12-10
JPH0353735B2 true JPH0353735B2 (en) 1991-08-16

Family

ID=13900778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8693781A Granted JPS57202044A (en) 1980-12-15 1981-06-08 Electromagnetic focusing type cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS57202044A (en)

Also Published As

Publication number Publication date
JPS57202044A (en) 1982-12-10

Similar Documents

Publication Publication Date Title
JP2605202B2 (en) Electron gun for color cathode ray tube
KR920005903B1 (en) Cathode-ray tube
EP0049490A2 (en) Electron gun for color picture tubes
EP0489432B1 (en) Electron gun for color cathode-ray tube
US4310776A (en) Cathode-ray tube
US4439710A (en) Electromagnetic focusing cathode-ray tube
US5621286A (en) Color cathode ray tube having improved focus
JPH07226170A (en) Electron gun for color cathode-ray tube
JPS6347110B2 (en)
US5177399A (en) Color cathode ray tube apparatus
EP0073472B1 (en) Magnetic focusing type cathode ray tube
JPH0353735B2 (en)
US4460844A (en) Magnetic focusing, three in-line gun type color picture tube
KR20010037658A (en) Electron gun for cathode ray tube
US4473773A (en) In-line type electromagnetic focusing cathode-ray tube
JP3742122B2 (en) In-line electron gun for color picture tubes
JP2636217B2 (en) Color television display tube
Nakanishi et al. A high-resolution color CRT for CAD/CAM use
JPS5813577Y2 (en) color ink color ink
JPS6353664B2 (en)
JPS6048858B2 (en) cathode ray tube electron gun
JPH0312421B2 (en)
JP3396503B2 (en) Color picture tube equipment
JP3348869B2 (en) Color cathode ray tube
US6894430B2 (en) Color cathode-ray tube