JPH03166813A - Clock duty correcting circuit - Google Patents
Clock duty correcting circuitInfo
- Publication number
- JPH03166813A JPH03166813A JP1306946A JP30694689A JPH03166813A JP H03166813 A JPH03166813 A JP H03166813A JP 1306946 A JP1306946 A JP 1306946A JP 30694689 A JP30694689 A JP 30694689A JP H03166813 A JPH03166813 A JP H03166813A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- delay
- clock
- duty
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009499 grossing Methods 0.000 claims abstract description 17
- 239000004065 semiconductor Substances 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 abstract 1
- 239000003990 capacitor Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Dram (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、半導体集積回路に関し、特に、クロック信号
のデューティを自動的に調整するデューテイ補正回路に
関する.
従来の技術
従来、この種のクロックデューティ補正回路では、第2
図に示すように、クロック信号1を入力とするクロック
ドライバ8.14の信号を一部出力パッド9,10を介
して半導体集積回路の外部に出力し外部負荷容量11.
12を変化させることで調整を行っていた.
発明が解決しようとする課題
上述した従来のクロックデューティ補正回路は、外付の
負荷容量が必要となり、しかもプロセス変動、外部から
入力されるクロック信号のデューティ変動等に合わせて
外付負荷容量を変えなければならなく、またその調整す
る工数が必要となるという欠点があった.
本発明は従来の上記実情に鑑みてなされたものであり、
従って本発明の目的は、従来の技術に内在する上記欠点
を解消し、外部に設けた外付コンデンサ等による調整な
しにクロックデューティ変動を自動的に調整することを
可能とした新規なクロックデューティ補正回路を提供す
る事にある.課題を解決するための手段
上記目的を達成する為に、本発明に係るクロックデュー
ティ補正回路は、S−Rフリップフロップと、第1、第
2の2つの平滑回路と、入力電圧により低電圧を印加す
ると遅延量が増大する第1、第2の2つの遅延回路とを
有し、S−Rフリップフロツプの正転出力が第1の平滑
回路を通して第1の遅延回路の遅延量制御端子に接続さ
れ、クロック信号がインバータ回路を通して第1の遅延
回路に入力され、第1の遅延回路の出力がS−Rフリッ
プフロップのリセット端子に接続され、S−Rフリップ
フロップの反転出力が第2の平滑回路を通して第2の遅
延回路の遅延量制御端子に接続され、クロック信号が第
2の遅延回路に入力され、第2の遅延回路の出力がS−
Rフリップフロップのセット端子に接続されて構成され
ている.
実施例
次に、本発明をその好ましい一実施例について図面を参
照して具体的に説明する.
第1図は本発明の一実施例を示すブロック構成図である
.
第1図を参照するに、クロック信号1及びそのインバー
タ7を通して得られた反転信号は電圧によって遅延量が
変化する遅延回路2.3にそれぞれ入力され、それらの
出力はS−Rフリップフロップ4の入力に、それぞれ遅
延回路2の出力はセット端子Sへ遅延回路3の出力はリ
セット端子Rへ接続される.
遅延回路2,3の回路を実現する回路としては,例えば
第3図に示すように構戒され、遅延させる入力信号15
はインバータ16へ入力され、その出力はPチャネルト
ランジスタl7と2つのNチャネルトランジスタ18.
19からなる電圧制御型の遅延素子20を通してバッフ
ァ2lへ入力される.更にバッファ2lの出力は、Pチ
ャネルトランジスタ22と2つのNチャネルトランジス
タ23.24からなる電圧制御型遅延素子25を通して
インバータ27へ入力される.ここで電圧制御型遅延素
子20と25の特性として、電圧制御用信号26の電位
が低い場合にはNチャネルトランジスタ19及び24に
流れる電流が抑制され、電圧制御型遅延素子20、25
の出力のfall timeが長くなる.その結果、
第3図の遅延回路全体として電圧制御用信号26の電位
が下がった分だけ入力信号15が遅延し出力信号28と
して出力される.
第1図でこれらの遅延回路2.3の電圧制御用信号の信
号源としては、S−Rフリップ7ロツア4の出力を平滑
して用いる.遅延回路2の電圧制御用信号はS−Rフリ
ップフロップ4の反転出力を平滑回路5を通して作られ
、遅延回路3の電圧制御用信号はS−Rフリップフロッ
プ4の正転出力を平滑回路6を通して作られる.
平滑回路5,6の具体的回路は例えば、゛第4図のよう
にバッファ29の出力に大容量のコンデンサ30を負荷
させて実現する.
次に第1図に示された本発明の動作について説明する.
第5図、第6図は第1図の動を説明するためのタイムチ
ャートである.
第5図はデューティ50%のクロックが出力されている
状態を示したタイムチャートであり、この時には平滑回
路5、6の出力電圧は同電位を示しているために遅延回
路2、3の遅延時間t1、t2は等しい.第6図はクロ
ック出力のデューティが狭くなったときのタイムチャー
トであり、この時には平滑回路6の電位は第5図の状一
態に比べ低くなり、遅延回路3の遅延量t2゛は第5図
の状態の遅延量t2よりも長くなる.逆に平滑回路5の
電位は第5図の状態に比べ高くなるために、遅延回路2
の遅延量t1は第5図の状態の遅延量L1よりも短くな
る.このために、クロック出力のデューティは広がる方
向へ自動的に変化する.
一方、クロック出力のデューティが更に広がる方向へ変
化した場合には、遅延回路2の遅延量が大きくなり、遅
延回路3の遅延量は小さくなるためにクロツク出力のデ
ューティは狭くなる方向へ自動的に調整される。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor integrated circuits, and more particularly to a duty correction circuit that automatically adjusts the duty of a clock signal. Conventional technology Conventionally, in this type of clock duty correction circuit, the second
As shown in the figure, a portion of the signals of the clock driver 8.14 which receives the clock signal 1 as input is outputted to the outside of the semiconductor integrated circuit via the output pads 9, 10, and the external load capacitor 11.
Adjustments were made by changing 12. Problems to be Solved by the Invention The conventional clock duty correction circuit described above requires an external load capacitance, and the external load capacitance must be changed in accordance with process fluctuations, duty fluctuations of externally input clock signals, etc. The drawback was that it required a lot of man-hours to make the adjustments. The present invention has been made in view of the above-mentioned conventional situation,
Therefore, an object of the present invention is to provide a novel clock duty correction that eliminates the above-mentioned drawbacks inherent in the conventional technology and makes it possible to automatically adjust clock duty fluctuations without adjusting using an external capacitor or the like. The purpose is to provide circuits. Means for Solving the Problems In order to achieve the above object, the clock duty correction circuit according to the present invention includes an S-R flip-flop, two smoothing circuits, a first and a second smoothing circuit, and a low voltage input voltage. It has two delay circuits, a first and a second delay circuit, which increase the delay amount when the voltage is applied, and the non-inverting output of the S-R flip-flop is connected to the delay amount control terminal of the first delay circuit through the first smoothing circuit. , the clock signal is input to the first delay circuit through the inverter circuit, the output of the first delay circuit is connected to the reset terminal of the S-R flip-flop, and the inverted output of the S-R flip-flop is input to the second smoothing circuit. is connected to the delay amount control terminal of the second delay circuit through S-, the clock signal is input to the second delay circuit, and the output of the second delay circuit is connected to S-
It is connected to the set terminal of the R flip-flop. Embodiment Next, a preferred embodiment of the present invention will be specifically explained with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention. Referring to FIG. 1, the clock signal 1 and its inverted signal obtained through the inverter 7 are respectively input to delay circuits 2.3 whose delay amount changes depending on the voltage, and their outputs are sent to the S-R flip-flop 4. The output of the delay circuit 2 is connected to the set terminal S, and the output of the delay circuit 3 is connected to the reset terminal R. As a circuit for realizing the delay circuits 2 and 3, for example, as shown in FIG.
is input to an inverter 16, the output of which is connected to a P-channel transistor l7 and two N-channel transistors 18.
The signal is input to the buffer 2l through a voltage-controlled delay element 20 consisting of 19 elements. Further, the output of the buffer 2l is input to an inverter 27 through a voltage-controlled delay element 25 consisting of a P-channel transistor 22 and two N-channel transistors 23 and 24. Here, as a characteristic of the voltage-controlled delay elements 20 and 25, when the potential of the voltage-controlled signal 26 is low, the current flowing through the N-channel transistors 19 and 24 is suppressed;
The fall time of the output becomes longer. the result,
As a whole of the delay circuit shown in FIG. 3, the input signal 15 is delayed by the amount that the potential of the voltage control signal 26 is lowered and is output as an output signal 28. In FIG. 1, the output of the S-R flip 7 rotor 4 is smoothed and used as a signal source for voltage control signals for these delay circuits 2.3. The voltage control signal for the delay circuit 2 is generated by passing the inverted output of the S-R flip-flop 4 through the smoothing circuit 5, and the voltage control signal for the delay circuit 3 is generated by passing the normal output of the S-R flip-flop 4 through the smoothing circuit 6. Made. A specific circuit for the smoothing circuits 5 and 6 is realized, for example, by loading a large capacity capacitor 30 onto the output of a buffer 29, as shown in FIG. Next, the operation of the present invention shown in FIG. 1 will be explained.
Figures 5 and 6 are time charts for explaining the movements in Figure 1. FIG. 5 is a time chart showing a state in which a clock with a duty of 50% is output. At this time, since the output voltages of smoothing circuits 5 and 6 are at the same potential, the delay time of delay circuits 2 and 3 is t1 and t2 are equal. FIG. 6 is a time chart when the duty of the clock output becomes narrow. At this time, the potential of the smoothing circuit 6 becomes lower than that in the state shown in FIG. This is longer than the delay amount t2 in the state shown in the figure. Conversely, since the potential of the smoothing circuit 5 is higher than the state shown in FIG.
The delay amount t1 in the state shown in FIG. 5 is shorter than the delay amount L1 in the state shown in FIG. For this reason, the duty of the clock output automatically changes in the direction of expansion. On the other hand, when the duty of the clock output changes in the direction of further widening, the delay amount of delay circuit 2 increases, and the delay amount of delay circuit 3 decreases, so that the duty of the clock output automatically decreases. be adjusted.
つまり、クロック出力のデューティは常に等しくなるよ
うに自動的に調整されることとなる.発明の効果
以上説明したように、本発明によれば、クロック出力の
デューティを電圧レベルに変換してモニタし、その電位
に応じてS−Rフリップフロップに入力されるクロック
入力信号の遅延量を変化させることにより、外部の外付
コンデンサ等による調整なしに自動的にクロックデュー
ティ変動を調整できる効果が得られる.In other words, the duty of the clock output is automatically adjusted so that it is always equal. Effects of the Invention As explained above, according to the present invention, the duty of the clock output is converted into a voltage level and monitored, and the amount of delay of the clock input signal input to the S-R flip-flop is determined according to the voltage level. By changing this, it is possible to automatically adjust clock duty fluctuations without adjusting using external capacitors, etc.
第1図は本発明に係るクロックデューティ補正回路の一
実施例を示すブロックi戒図、第2図は従来のクロック
デューティ補正回路のブロック図、第3図は本発明に係
るクロックデューティ補正回路に用いた電圧制御型遅延
回路の一実施例を示す回路構成図、第4図は本発明に係
るクロックデューティ補正回路に用いた平滑回路の一実
施例を示す回路構成図、第5図と第6図は本発明の動作
を説明するタイミングチャートである.1・・・クロッ
ク信号、2,3・・・電圧制御型遅延回路、4・・・S
−Rフリップフロップ、5.6・・・平滑回路、7,
8, 14. 16. 27・・・インバータ、9.1
0・・・出力パッド、11. 12・・・外付コンデン
サ、13・・・クロック出力信号、15・・・入力信号
、17. 22・・・Pチャネルトランジスタ、1g,
19. 23. 24・・・Nチャネルトランジスタ
、21. 29・・・バッファ、20. 25・・・電
圧制御遅延素子、26・・・電圧制御信号、28・・・
遅延出力信号、30・・・コンデンサFIG. 1 is a block diagram showing an embodiment of the clock duty correction circuit according to the present invention, FIG. 2 is a block diagram of a conventional clock duty correction circuit, and FIG. 3 is a block diagram showing an embodiment of the clock duty correction circuit according to the present invention. FIG. 4 is a circuit diagram showing an embodiment of the voltage-controlled delay circuit used; FIG. 4 is a circuit diagram showing an embodiment of the smoothing circuit used in the clock duty correction circuit according to the present invention; FIGS. The figure is a timing chart explaining the operation of the present invention. 1... Clock signal, 2, 3... Voltage controlled delay circuit, 4... S
-R flip-flop, 5.6... smoothing circuit, 7,
8, 14. 16. 27...Inverter, 9.1
0...Output pad, 11. 12... External capacitor, 13... Clock output signal, 15... Input signal, 17. 22...P channel transistor, 1g,
19. 23. 24...N channel transistor, 21. 29...buffer, 20. 25... Voltage control delay element, 26... Voltage control signal, 28...
Delayed output signal, 30... capacitor
Claims (1)
第1、第2の2つの平滑回路と、入力電圧により低電圧
を印加すると遅延量が増大する第1、第2の2つの遅延
回路と、インバータ回路とを有し、前記S−Rフリップ
フロップの正転出力が前記第1の平滑回路を通して前記
第1の遅延回路の遅延量制御端子に接続され、クロック
信号が前記インバータ回路を通して前記第1の遅延回路
に入力され、該第1の遅延回路の出力を前記S−Rフリ
ップフロップのリセット端子に接続させ、該S−Rフリ
ップフロップの反転出力が前記第2の平滑回路を通して
前記第2の遅延回路の遅延量制御端子に接続され、クロ
ック信号が該第2の遅延回路に入力され、該第2の遅延
回路の出力を前記S−Rフリップフロップのセット端子
に接続し、該S−Rフリップフロップの正転出力をクロ
ック出力信号としたことを特徴とするクロックデューテ
ィ補正回路。In a semiconductor integrated circuit, an S-R flip-flop, two first and second smoothing circuits, two first and second delay circuits whose delay increases when a lower voltage is applied to the input voltage, and an inverter circuit. The non-inverting output of the S-R flip-flop is connected to the delay amount control terminal of the first delay circuit through the first smoothing circuit, and the clock signal is connected to the delay amount control terminal of the first delay circuit through the inverter circuit. the output of the first delay circuit is connected to the reset terminal of the S-R flip-flop, and the inverted output of the S-R flip-flop passes through the second smoothing circuit to the second delay circuit. A clock signal is input to the second delay circuit, and the output of the second delay circuit is connected to the set terminal of the S-R flip-flop. A clock duty correction circuit characterized in that a normal rotation output of the clock output signal is used as a clock output signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1306946A JPH03166813A (en) | 1989-11-27 | 1989-11-27 | Clock duty correcting circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1306946A JPH03166813A (en) | 1989-11-27 | 1989-11-27 | Clock duty correcting circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03166813A true JPH03166813A (en) | 1991-07-18 |
Family
ID=17963179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1306946A Pending JPH03166813A (en) | 1989-11-27 | 1989-11-27 | Clock duty correcting circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03166813A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100520658B1 (en) * | 1998-06-30 | 2005-11-30 | 주식회사 하이닉스반도체 | Digital duty ratio correction circuit |
JP2007259150A (en) * | 2006-03-23 | 2007-10-04 | Fujitsu Ltd | Delay control circuit |
US9369118B2 (en) | 2014-07-11 | 2016-06-14 | Kabushiki Kaisha Toshiba | Duty cycle correction circuit and semiconductor device |
-
1989
- 1989-11-27 JP JP1306946A patent/JPH03166813A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100520658B1 (en) * | 1998-06-30 | 2005-11-30 | 주식회사 하이닉스반도체 | Digital duty ratio correction circuit |
JP2007259150A (en) * | 2006-03-23 | 2007-10-04 | Fujitsu Ltd | Delay control circuit |
US9369118B2 (en) | 2014-07-11 | 2016-06-14 | Kabushiki Kaisha Toshiba | Duty cycle correction circuit and semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5428310A (en) | Voltage compensating delay element | |
US4618788A (en) | Integrated delay circuit for digital signals | |
JP3109560B2 (en) | Semiconductor integrated circuit using variation compensation technology | |
US5914631A (en) | Voltage generating circuit | |
SG188739A1 (en) | Low power high resolution sensor interface | |
US20080186068A1 (en) | Circuit and technique for adjusting and accurately controlling clock duty cycles in integrated circuit devices | |
JPH0693613B2 (en) | MIS transistor circuit | |
JPH0514167A (en) | Output driver circuit | |
JPH03166813A (en) | Clock duty correcting circuit | |
US6297688B1 (en) | Current generating circuit | |
JPH0413305A (en) | Delay circuit | |
JPS61248614A (en) | Pulse delay circuit | |
KR0144900B1 (en) | Semiconductor input buffer for low voltage | |
US20060109146A1 (en) | Digital circuit having a delay circuit for adjustment of clock signal timing | |
JPH08288830A (en) | Integrated buffer circuit | |
JPH04219025A (en) | Current generator and d/a converter | |
JPH0546113A (en) | Semiconductor integrated circuit | |
JPH04154314A (en) | Output circuit | |
JP3093254B2 (en) | Clock driver | |
JPH0360207B2 (en) | ||
JPS63139425A (en) | Inverter circuit | |
JPH0197010A (en) | Clock duty correction circuit | |
JPH0537321A (en) | Output circuit | |
JPS6139651A (en) | Clock phase fine adjusting circuit | |
KR910008455B1 (en) | Periodic interval integration circuit for digital signal |