JPH03165871A - Coating method - Google Patents

Coating method

Info

Publication number
JPH03165871A
JPH03165871A JP18772590A JP18772590A JPH03165871A JP H03165871 A JPH03165871 A JP H03165871A JP 18772590 A JP18772590 A JP 18772590A JP 18772590 A JP18772590 A JP 18772590A JP H03165871 A JPH03165871 A JP H03165871A
Authority
JP
Japan
Prior art keywords
paint
spraying
rotation
painting
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18772590A
Other languages
Japanese (ja)
Inventor
Takakazu Yamane
貴和 山根
Yoshio Tanimoto
谷本 義雄
Tadamitsu Nakahama
中浜 忠光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP18772590A priority Critical patent/JPH03165871A/en
Priority to EP19900114712 priority patent/EP0411585B1/en
Priority to DE1990609336 priority patent/DE69009336T2/en
Publication of JPH03165871A publication Critical patent/JPH03165871A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0221Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0272After-treatment with ovens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • B05D3/0426Cooling with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0447Installation or apparatus for applying liquid or other fluent material to conveyed separate articles
    • B05B13/0452Installation or apparatus for applying liquid or other fluent material to conveyed separate articles the conveyed articles being vehicle bodies

Abstract

PURPOSE:To inhibit the dripping of paint between spraying and drying stages by setting the thickness of paint in the spraying stage and the speed of rotation of a body to be coated in the drying stage so that the dripping of paint is prevented and interposing a cooling stage between the spraying and drying stages. CONSTITUTION:In a spraying stage P1, paint is sprayed on an automobile body as a body to be coated in such a thickness that the paint begins to drip from at least the perpendicular surface of the body. In a drying (rotary baking) stage P3, the body is rotated around a nearly horizontal axis before the paint begins to drip from at least the vertical surface of the body and until the paint does not drip any more. The speed of rotation is made higher than the speed at which the body shifts from the vertical state to the horizontal state before the paint begins to drip and lower than the speed at which the paint is allowed to drip by centrifual force due to rotation. A cooling stage P2 is interposed between the spraying and drying stages P1, P3 so that cooling is carried out immediately after spraying.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、塗装方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a coating method.

(従來技術) 被塗物例え・ば自動車ボディの外表面を吹付けにより塗
装する場合、被塗物に付着しているゴミを除去する準備
工程と、被塗物に塗料を吹付け塗布する工程と、塗布さ
れた塗料を乾燥させる乾燥工程とを有する。この乾燥工
程は、一般に、セッティング工程と焼付工程との2段階
で行なわれ,セッティング工程は、焼付工程の前におい
て、この焼付工程よりも低い温度、例えば常温あるいは
仮焼付けとも呼ばれるように40”〜60’ Cの温度
雰囲気で行われる(焼付工程での焼付温度は通常140
℃前後)。
(Prior technology) When spray painting the outer surface of an object to be painted, for example an automobile body, there is a preparation process to remove dust adhering to the object, and a process of spraying and applying the paint to the object. and a drying step of drying the applied paint. This drying process is generally carried out in two stages: a setting process and a baking process. It is carried out in a temperature atmosphere of 60'C (the baking temperature in the baking process is usually 140'C).
(around ℃).

そして、被塗物は、通常、台車等の搬送手段により搬送
されつつ上記準備工程、塗装工程および乾燥工程を経る
ことになるが、被塗物の姿勢は,各工程において所定の
姿勢を保持したまま行われている。
The object to be coated is usually transported by means of transportation such as a trolley through the preparation process, painting process, and drying process, but the posture of the object to be coated is maintained at a predetermined position in each process. It is still being done.

ところで、塗装面の品質を評価する1つの基準として、
平滑度(平坦度)があり、この平滑度が入きい稈倹父面
のl”I +’+の度合が小さくて、良好な塗装而とな
る。この倹装而のf滑度を向Lさせるには、塗膜の厚さ
、すなわち塗布された室料の膜厚を大きくすればよいこ
とが既に知られている。
By the way, one of the criteria for evaluating the quality of painted surfaces is:
There is smoothness (flatness), and this smoothness reduces the degree of l"I +'+ of the culm surface, resulting in a good coating. It is already known that this can be achieved by increasing the thickness of the coating film, that is, the thickness of the coated room material.

一方、塗装面の品質を阻害するものとして、塗料の゜″
たれ”がある。このたれは、】E力を受けることによっ
て塗市された塗料が下方に大きく流動することにより生
じ、1回に倹布する塗料の膜厚が大きい程゜゜たれーを
生じ易くなる、この゜゛ダレーの原因は、つまるところ
重力の影響であるため、被塗物のうち上下方向に伸びる
面すなわちいわゆる縦面において生じ易いものとなる。
On the other hand, paint ゜″
This sagging is caused by the large downward flow of the applied paint due to the application of the E force, and the thicker the film of paint applied at one time, the more likely it is that sagging will occur. Since the cause of this sag is ultimately the effect of gravity, it is more likely to occur on surfaces of the object to be coated that extend in the vertical direction, that is, so-called vertical surfaces.

例えば、被塗物として自動車のボディを考えた場合,横
向となるボンネットやトランクリッドにおいてはたれが
生じにくい反面、立面となるフェンダについてはたれが
生じ易くなる。
For example, when considering the body of a car as the object to be coated, sagging is less likely to occur on the horizontal hood or trunk lid, but it is more likely to sag on the fender, which is on the vertical side.

したがって、塗料の”たれ゜゜がさ程問題とならない被
塗物の水平方向に伸びる面すなわちいわゆる横面ば,塗
布する塗料の厚さを縦面よりも大きくすることが可能で
ある。また、横面に対する塗膜の厚さと縦面に対する塗
膜の厚さをたとえ同じにしても、横面ではたれには至ら
ない程度の塗料の若干の流動によって凹凸が小さくなり
、縦面における平滑度よりも良好な平滑度が得られるこ
とになる。
Therefore, on the horizontally extending surfaces of the object to be coated, where dripping of the paint is not so much of a problem, that is, the so-called horizontal surfaces, it is possible to apply a larger thickness of paint than on the vertical surfaces. Even if the thickness of the paint film on the surface and the thickness of the paint film on the vertical surface are the same, the unevenness on the horizontal surface will be smaller due to slight flow of the paint that does not cause dripping, and the smoothness on the vertical surface will be smaller. Good smoothness can be obtained.

−1述のような観点から、従来は、の塗料の゛゜たれ゜
゜を防止しつつ極力弔滑度の大きい塗装面を得るため、
極力流動性の小さい(粘性の小さい)塗料を用いて塗装
を行なうようにしていた。そして、縦面において塗料の
゛たれ゜゜が生じるいわゆいる゛゜たれ限界”は、従来
の熱硬化型塗料では塗膜の厚さで40am程度が最大で
あった。より具体的には、熱硬化型塗料の゜゜たれーは
、セッディング工程初期と焼付工程初期、特に焼付工程
初期に生じ易く、この時期に゛たれーが生じないように
、塗装工程で塗布される塗料の厚さが決定され、この決
定された厚さの最大値すなわちたれ限界値が40μm程
度となる。したがって、絶対的により一層平滑度の大き
い塗装面を得ようとすれば、従来の塗装方法では、例え
ば2回塗り等、塗装工程から焼付工程に至るまでの一連
の工程を複数回繰り返して行なう必要があった。
- From the point of view mentioned above, in the past, in order to prevent the paint from sagging and to obtain a painted surface with as much smoothness as possible,
Painting was done using a paint with as little fluidity (low viscosity) as possible. The so-called ``sag limit'' at which paint sag on the vertical surface was about 40 am at maximum in terms of coating film thickness for conventional thermosetting paints.More specifically, thermosetting Dragging of mold paint tends to occur at the beginning of the setting process and the beginning of the baking process, especially at the beginning of the baking process, and the thickness of the paint applied during the painting process is determined to prevent dripping during this period. , the maximum value of this determined thickness, that is, the sagging limit value, is about 40 μm. Therefore, if you want to obtain a painted surface with even greater absolute smoothness, in the conventional painting method, for example, two coats, etc. , it was necessary to repeat the series of steps from the painting process to the baking process multiple times.

特開昭63−178871号公報には前述した吹付けに
より塗装を行なう場合に問題となるたれ限界というもの
を克服して、同じ塗膜の厚さであればより平滑度の優れ
た塗装面が得られるようにした塗装方法が開示されてい
る。すなわち、塗料を吹付けによる塗布する際の塗膜の
厚さをたれ限界以上の厚さとする一方、塗布された塗料
がたれが生じなくなるまで硬化するまでの間、被塗物を
略水平軸線回りに回転させるようにした塗装方法を開発
した。この塗装方法によれば、被塗物の回転によって塗
料に作用する重力の方向を変更してたれ発生を防止しつ
つ、塗料の大きな流動性というものを積極的に利用して
、同じ塗膜の厚さであればより平滑度の優れた塗装面を
得ることができる。
JP-A No. 63-178871 discloses a method that overcomes the sagging limit that is a problem when painting by spraying as described above, and provides a coated surface with better smoothness for the same coating thickness. A coating method is disclosed. In other words, when applying paint by spraying, the thickness of the paint film is set to be above the dripping limit, and the object to be coated is rotated around the approximately horizontal axis until the applied paint is cured to the point where no dripping occurs. We have developed a painting method that rotates the paint. According to this coating method, the rotation of the object to be coated changes the direction of the gravity acting on the paint to prevent dripping, while actively utilizing the paint's great fluidity to achieve the same paint film. If it is thicker, a coated surface with better smoothness can be obtained.

(発明が解決しようとする問題点) しかしながら、かかる塗装方法を採用するときに、塗料
の吹付工程から乾燥工程への移送過程でたれを生ずる恐
れがある。すなわち、上記公報に記載の塗装方法では、
塗膜の膜厚を大きくするあるいは塗料に含まれる溶剤等
を多くして塗装条件をたれ限界以上の塗膜の厚さとする
ものである以上、かかる塗装方法は、被塗物に塗料を吹
付けた直後から塗料のたれが発生する恐れを内在するも
のである。したがって、吹付工程への移送に所定時間要
すとすれば、この移送過程でのたれ発生を抑える必要が
ある。
(Problems to be Solved by the Invention) However, when such a coating method is employed, there is a risk that dripping may occur during the transfer process from the paint spraying process to the drying process. That is, in the coating method described in the above publication,
Since the thickness of the paint film is increased or the amount of solvent contained in the paint is increased to increase the thickness of the paint film beyond the dripping limit, such painting methods involve spraying the paint onto the object to be coated. There is an inherent risk that paint will drip immediately after the paint is applied. Therefore, if a predetermined time is required for transfer to the spraying process, it is necessary to suppress the occurrence of sagging during this transfer process.

これに対して、たれ限界以上の塗膜の厚さにするにして
も、少なくとも上記移送過程でたれが発生しない程度の
膜厚とする、あるいは塗料に含まれる溶剤等を少なくし
て塗料それ自体の流動性を小さくする等が考えられる。
On the other hand, even if the thickness of the paint film exceeds the dripping limit, it should be at least thick enough to prevent dripping during the transfer process, or reduce the amount of solvent, etc. contained in the paint so that the paint itself Possible solutions include reducing the liquidity of

しかし、このような手法を採用するときには、塗装条件
に一定の制約が設けられることになり、上記公報に記載
の塗装方法によってせっかく従来の塗装条件からたれ限
界という大きな制約を解除した意味が希薄化してしまう
ことになる。
However, when such a method is adopted, certain restrictions are placed on the coating conditions, and the meaning of removing the major restriction of the sag limit from the conventional coating conditions by using the coating method described in the above publication is diluted. This will result in

そこで、本発明の目的は、塗装条件に制約を加えること
なく、被塗物に吹付けられた塗料を物理的に流動し難く
して、吹付工程と乾燥工程との間でのたれ発生を抑える
ようにした塗装方法を提供することにある。
Therefore, the purpose of the present invention is to make it difficult for the paint sprayed on the object to physically flow, without imposing restrictions on the coating conditions, and to suppress the occurrence of dripping between the spraying process and the drying process. The object of the present invention is to provide a coating method that achieves this.

C問題点を解決するための手段) かかる技術的課題を達成すべく、本発明にあっては、被
塗物に対する塗装が、塗料を吹付ける吹付工程と、該吹
付けられた塗料を乾燥させる乾燥工程とを有し、 前記吹付工稈では、少なくとも前記被塗物の縦面におい
て塗料のたれが生じる以−Lの厚さに塗料が吹付けられ
、 前記乾燥工程では、少なくとも+iii記被塗物の縦面
において塗料のたれが生じ始める前でかつ塗料がたれを
生じなくなるまでの間、前記被塗物が略水平軸線回りに
回転され、 該被塗物の回転はその回転速度が、重力によって塗料が
たれを生じ始める前に垂直状態から少なくとも水平状態
へと変更される回転速度よりも大きく、かつ回転に起因
する遠心力によって塗料のたれを生じさせるような回転
速度よりも小さい範囲として設定され、 前記吹付工程と前記乾燥工程との間には、」)II記吹
付けられた塗料を冷却する冷却工程が前記吹付工程の直
後に設けられている,ような構成としてある。
Means for Solving Problem C) In order to achieve this technical problem, in the present invention, painting the object to be coated includes a spraying step of spraying the paint and drying the sprayed paint. In the spraying culm, the paint is sprayed to a thickness of -L so that the paint drips on at least the vertical surface of the object to be coated, and in the drying step, the paint is sprayed to a thickness of at least +iii. Before the paint starts to drip on the vertical surface of the object and until the paint stops dripping, the object to be painted is rotated about a substantially horizontal axis, and the rotation speed of the object is determined by gravity. Set as a range that is greater than the rotational speed at which the vertical state changes from a vertical state to at least a horizontal state before the paint starts to drip, and smaller than the rotational speed that causes paint to drip due to centrifugal force caused by rotation. Between the spraying step and the drying step, a cooling step for cooling the sprayed paint is provided immediately after the spraying step.

(作用、効果) 以上の構成により、被塗物に塗布された塗料に対して作
用する重力の方向が、被塗物を略水平軸線回りに回転さ
せることによって変更されるため、塗料は、゜゛たれ”
を生じることなく乾燥されることになる。
(Operation, Effect) With the above configuration, the direction of gravity acting on the paint applied to the object to be coated is changed by rotating the object to be coated around a substantially horizontal axis, so that the paint is "Sauce"
It will dry without causing any damage.

このことは、1回当りに塗布する塗料の膜厚を従来より
もはるかに厚くして、平滑度が従来限界とされていたレ
ベルをはるかに越えた極めて良好な塗装面を得ることが
できる。また、塗料を従来と同じような塗膜の厚さとし
た場合でも、塗料の流動性をil用して凹凸のより小さ
いものすなわち平滑度のより大きい優れた塗装面とする
ことができる。さらに、同じ平滑度、例えば従来の塗装
方法で得られる平滑度と同等の平滑度を有する塗装面を
得ようとすれば、塗料の膜厚を薄くすることができ、こ
の薄くし得る分だけ使用する塗料の量を低減することが
できる。
This means that the film thickness of the paint applied per coat can be made much thicker than conventionally, and it is possible to obtain an extremely good coated surface whose smoothness far exceeds the level conventionally considered to be the limit. Furthermore, even when the coating film has the same thickness as conventional coatings, the fluidity of the coating material can be utilized to produce an excellent coated surface with fewer irregularities, that is, greater smoothness. Furthermore, if you want to obtain a painted surface with the same level of smoothness, for example, the same level of smoothness as that obtained with conventional painting methods, you can reduce the film thickness of the paint, and use only the amount that can be made thinner. The amount of paint used can be reduced.

ここで、塗料の吹付けは、静′I′Ii塗装による吹付
けでもよい。また、塗料のたれは、塗料を吹付けた状態
で放置したときに目視によって確認し得る程度の塗料の
移動をいい(塗料が硬化したときにi′i’h状となっ
て表われる)、一般には2mm程度の塗料の移動が確認
されたときにたれが生じたものとされる。したがって、
たれ限界以上の厚さに塗料を吹付けるということは、そ
のまま1ll置しておけば少なくとも2mm程度の塗料
の移動が生じるような厚さとすることになり、用いる塗
料の流動性が大きいほどたれ限界の厚さは小さくなる。
Here, the paint may be sprayed by static 'I'Ii painting. In addition, paint dripping refers to the movement of paint that can be visually confirmed when the paint is left in a sprayed state (it appears as an i'i'h shape when the paint hardens). Generally, dripping is considered to have occurred when paint movement of about 2 mm is confirmed. therefore,
Spraying paint to a thickness that exceeds the dripping limit means that the thickness must be such that if 1 liter of paint is left as it is, it will move at least 2 mm, and the more fluid the paint used, the higher the dripping limit. becomes smaller.

このたれ限界以上の厚さとするには、1回の吹付けによ
り行なってもよく (1ステージ吹き)、2回あるいは
3回以上の吹付けによって最終的にたれ限界以上の厚さ
としてもよい(多重ステージ吹き)。さらに、被塗物の
略水平軸線回りの回転は、重力の作用によって塗料に大
きな移動が生じないようにすればよいので、塗料がたれ
を生じるような大きな流動状態を有しなくなるまでの間
,すなわち塗料が硬化するまでの間、所定の−R向へ連
続してあるいは断続して行なうようにしてもよく、また
正逆回転を連続してあるいは断続して行なうこともでき
る。被塗物の回転角度範囲としては、たれ限界上の厚さ
に塗料が吹付けられた任意の部分に対して重力の作用す
る方向が反転するようにすればよく、270゜あれば十
分である。
To achieve a thickness that exceeds the sag limit, it may be done by one spraying (1-stage spraying), or it may be sprayed two or three times or more to achieve a final thickness that exceeds the sag limit ( multiple stage blowing). Furthermore, since the rotation of the object to be coated around the approximately horizontal axis should be such that the paint does not move significantly due to the action of gravity, until the paint no longer has a large flow state that would cause dripping, That is, until the paint hardens, rotation may be performed continuously or intermittently in the predetermined -R direction, or forward and reverse rotation may be performed continuously or intermittently. As for the rotation angle range of the object to be coated, it is sufficient that the direction in which gravity acts is reversed for any part where the paint is sprayed to a thickness above the dripping limit, and 270 degrees is sufficient. .

そして,被塗物の回転軸線は、真の水平軸線に対して3
0度程度の範囲で傾いていてもよく、この回転軸線を揺
動させることもできる。
The axis of rotation of the object to be coated is 3
It may be tilted within a range of about 0 degrees, and the axis of rotation may also be swung.

! O また、上記冷却工程で行なう塗料の冷却は、少なくとも
波塗物に塗布された塗料の粘度を上昇させる程度のもの
であればよい。
! O In addition, the cooling of the paint performed in the cooling step may be at least as long as it increases the viscosity of the paint applied to the corrugated object.

これにより、被塗物に吹付けられた塗料は、その後直ち
に冷却されて、その塗着粘度が上昇されるため、塗料の
流動性が低ドされることとなる。
As a result, the paint sprayed onto the object to be coated is immediately cooled down and its coating viscosity is increased, resulting in a decrease in fluidity of the paint.

したがって、この冷やすことによる塗料の流動性の低下
によって塗料は物理的にたれにくくなり、吹付工程から
乾燥工程との間でのたれ発生を抑えることがir能とな
る。
Therefore, the fluidity of the paint decreases due to this cooling, making it physically difficult for the paint to sag, and the IR function makes it possible to suppress the occurrence of sag between the spraying process and the drying process.

(実施例) 以下,本発明の実施例を添付した図面に基づいて説明す
る。
(Embodiments) Hereinafter, embodiments of the present invention will be described based on the attached drawings.

i生L皇1 第1図は、被塗物としての自動車用ボディを塗装する場
合の全体工程を示してあり、各工程をP1〜P3で示し
てある。
Figure 1 shows the overall process for painting an automobile body as an object to be coated, and each process is designated by P1 to P3.

先ず、電着塗装によって既知のように下塗りが完了され
たボディが、台車に保持されつつ塗装工11 程P1に送り込まれる。この塗装工程P1では、ボディ
の外表面全体に、所望の色の塗料が吹付けにより塗布さ
れる。この後、後述する冷却工程P2を経た後に乾燥工
程P3で、セッティングおよび引続く焼付けによって、
塗料が十分に乾燥される。
First, a body that has been undercoated by electrocoating in a known manner is conveyed to a painting process P1 while being held on a truck. In this painting step P1, paint of a desired color is applied to the entire outer surface of the body by spraying. After this, after passing through the cooling process P2 described later, in the drying process P3, by setting and subsequent baking,
Allow the paint to dry thoroughly.

上記塗装工程Plでは、塗布される塗料の厚さは、たれ
限界以上の厚さとされる。そして、乾燥工程P3では、
塗料がたれを生じなくなるまで屹燥するまでの間、例え
ば第2図に示すようにボディWが略水f軸回りに回転さ
れる。
In the coating process Pl, the thickness of the paint applied is greater than the dripping limit. Then, in the drying process P3,
Until the paint dries until it no longer drips, the body W is rotated approximately around the water axis f, as shown in FIG. 2, for example.

ボディW等の被塗物の回転速度としては、吹付けられた
塗料の膜厚、粘度により変化するが、基本的には、次の
ような下限値と上限値との間の範囲の回転速度に設定さ
れる。すなわち、回転速度の下限値は、塗装表面の塗料
が重量によって移動してたれを生じる前に塗面を少なく
とも垂直状態から水平状態とし得るような回転速度のう
ちの最小値である。また、上限値は、回転によって発生
する遠心力によってたれが生′じないような回転速1 
2 度のうちの最大値であるが、回転先端位置において38
0cm/秒以下の回転速度とするのがよい。なお、被塗
物を略水平軸線回りに回転させる場合、その回転軸は,
水f軸線に対して30’程度傾いてもよいが、好ましく
はこの傾きを10’以内にするのが良い。
The rotational speed of the object to be coated, such as the body W, varies depending on the film thickness and viscosity of the sprayed paint, but basically the rotational speed is within the range between the lower limit and upper limit as shown below. is set to That is, the lower limit of the rotational speed is the minimum value of the rotational speeds at which the painted surface can be brought from at least a vertical state to a horizontal state before the paint on the painted surface moves due to weight and causes dripping. In addition, the upper limit is set at a rotation speed of 1 at which no sagging occurs due to the centrifugal force generated by rotation.
The maximum value of 2 degrees is 38 degrees at the rotation tip position.
The rotation speed is preferably 0 cm/sec or less. Note that when the object to be coated is rotated around a substantially horizontal axis, the rotation axis is
Although it may be inclined by about 30' with respect to the water f axis, it is preferable that this inclination is within 10'.

被塗物を略水乎軸線回りに回転させる期間としては、少
なくとも乾燥工程において、塗面にたれを生じる前から
たれが生じなくなるまで硬化するまでの間であればよい
。勿論、設備等の関係から、乾燥工程全体に渡って被塗
物を回転させてもよい。また、この回転は一一h向への
連続回転、正転と逆転とを交互に行う正逆回転、更には
途中に同転停Eヒ期間を介する間欠同転のいずれであっ
てもよい。
The period of time during which the object to be coated is rotated approximately around the water axis may be at least in the drying step, from before sag occurs on the coated surface until it hardens until no sagging occurs. Of course, the object to be coated may be rotated throughout the drying process depending on the equipment and the like. Further, this rotation may be continuous rotation in the 1-h direction, forward/reverse rotation in which forward rotation and reverse rotation are alternately performed, or intermittent simultaneous rotation with a simultaneous rotation stop period Ehi in the middle.

ボディの塗   の異 例 (11下塗り塗料 カチオン電着 焼付け=170℃×30分 膜厚:20±2μm l 3 (2)上塗り (1)通常粘度0.6poiseの場合a. 塗料:ア
ルキッドメラミン・ハイソリッド熱硬化型塗料(主樹脂
分平均分子量 : 2800 .色相:ブラック) b. 塗料粘度(塗着粘度):Q. 6poiseC.
 不揮発分=48重量% d. 溶剤:トルエン=25重量部/ソルベツソ1 0
0 : 25重量部/ソルベツソ150 : 50重量
部 e. たれ防止剤:梁橘アクリル樹脂扮末;不揮発分に
対して3欽量%) r. 塗装コータ:ミニベル(ベル径6,Omm:日本
ランズバーグ製) ミニベル回転数: l 6000rpmシェービング圧
:3kg/cm2 電圧: −90KV ガン距離: 30cm 2回吹付の場合はインターバル5分 g. 吹付雰囲気:温度20℃±2℃ 1 4 h. 1 . J ・ ブース風速度 0.3士 0.1/秒(プッシュ.プル
 ダウンフロー) セッティング条件:セッティング開始温度20℃±2℃
/セッティング 時間7分間 焼付条件 :温度140℃/時間25分間昇温速度=8
分(20℃→140℃) 回転条件 波学物の中心軸から75cmの距離離れた水平軸を中心
にして、被塗物の両端面が平行になるように回転させた
。回転速度は6rpmである。
Unusual body coating (11 Undercoat cationic electrodeposition baking = 170℃ x 30 minutes Film thickness: 20±2μm l3 (2) Topcoat (1) Normal viscosity 0.6 poise a. Paint: Alkyd melamine high Solid thermosetting paint (main resin average molecular weight: 2800. Hue: black) b. Paint viscosity (coating viscosity): Q. 6poiseC.
Non-volatile content = 48% by weight d. Solvent: Toluene = 25 parts by weight/Solbetsuso 1 0
0: 25 parts by weight/Solbetsuso 150: 50 parts by weight e. Anti-sagging agent: Liang Chian acrylic resin powder; 3% based on non-volatile content) r. Paint coater: Mini bell (bell diameter 6, Omm: manufactured by Ransburg Japan) Mini bell rotation speed: l 6000 rpm Shaving pressure: 3 kg/cm2 Voltage: -90 KV Gun distance: 30 cm For two sprays, 5 minute interval g. Spraying atmosphere: Temperature 20℃±2℃ 1 4 hours. 1. J ・ Booth wind speed 0.3 degrees 0.1/sec (push, pull, down flow) Setting conditions: Setting starting temperature 20℃±2℃
/Setting time: 7 minutes Baking conditions: Temperature: 140°C/Time: 25 minutes Heating rate = 8
(20° C.→140° C.) Rotation Conditions Waveform The object to be coated was rotated about a horizontal axis 75 cm away from the center axis of the object so that both end surfaces were parallel to each other. The rotation speed is 6 rpm.

低粘度Q.2poiseの場合 塗料:上記(1)と同じ 塗料粘度(塗着粘度):0.2poise不揮発分:3
5重量% 溶剤:トルエン=35重量部/ソルベツソ1 00 :
 25重電部/ソルベツソl50 : 50重量部 1 5 他のe − jは上記(1)の0.6poiseの場合
と同じ。
Low viscosity Q. For 2 poise Paint: Same as above (1) Paint viscosity (coating viscosity): 0.2 poise Non-volatile content: 3
5% by weight Solvent: Toluene = 35 parts by weight/Solbetsuso 100:
25 parts by weight/Solbetsuso l50: 50 parts by weight 15 Other e - j are the same as in the case of 0.6 poise in (1) above.

1掖1』24i旦 中塗りと上塗りとが同一の塗料とされている。1 scoop 1” 24i day The intermediate coat and top coat are the same paint.

a.塗料  ・:ポリエステルウレタン塗料ホワイト(
日本ビーケミカル(株)製、 商品名P−263) 主樹脂 :ポリエステルボリオールホワイト硬化剤 :
へキサメチレンジイソシアネート混合比(重量比):主
樹脂4に対して硬化剤1の割合 b.塗装機 :圧送式エアスプレーガン(岩田塗装機(
株)製、商品名ワ イダーW71) C.塗着粘度: 0.6poise及び0.2poised.塗料吐出量
:350cc/分 e.霧化空気圧: 4.Okg/am2f.吹付け距離
:30cm l 6 g.2回塗りの場合はインターバル5分h.乾燥条件:
セッティング7分(室温)90℃×25分 (昇温速度5分(20℃−90℃)) i. 回転速度:熱硬化型塗料の場合と同じ熱し』2【
i剪 (1)中塗り a.塗料  :熱硬化オイルフリーポリエステル塗料(
グレー) b.塗着粘度: 0.6poise及び0.2poiseC.塗装lll
:ミニベル(ベル径60mm)回転数2200Orpm 電圧−90KV シェービングエアー圧 3.0kg/cm2 ガン距離30cm d.乾燥条件:セッティング7分(室温)後、140℃
×25分 l 7 (2)上塗り a.塗料  :熱硬化アクリルメラミン塗料(ブラック
) b.塗着粘度: 0.6poise及び0.2poiseC不揮発分=4
2重量%(0.6poise)33重量%(0.2po
 i se) d.溶剤: ■0.6poiseの場合 トルエン 50重量%/ソルベツソ10050重量% ■0.2poiseの場合 トルエン 55重遺%/ソルベツソlOO45重量% e.たれ防止剤: 架橋アクリル樹脂粉末 (=不揮発分に対して6噴歇%) その他塗装機算の塗装条件は1r11記アルキッドメラ
ミン・ハイソリッド熱硬化型塗料と同じ。
a. Paint: Polyester urethane paint white (
Manufactured by Nippon B Chemical Co., Ltd., product name P-263) Main resin: Polyester polyol white Hardening agent:
Hexamethylene diisocyanate mixing ratio (weight ratio): ratio of 1 part curing agent to 4 parts main resin b. Painting machine: Pressure-feeding air spray gun (Iwata Painting Machine)
Co., Ltd., product name Wider W71) C. Coating viscosity: 0.6 poise and 0.2 poised. Paint discharge amount: 350cc/min e. Atomization air pressure: 4. Okg/am2f. Spraying distance: 30cm l 6 g. For two coats, the interval is 5 minutes h. Drying conditions:
Setting 7 minutes (room temperature) 90°C x 25 minutes (heating rate 5 minutes (20°C-90°C)) i. Rotation speed: same heating speed as for thermosetting paint 2
i Pruning (1) Intermediate coating a. Paint: Thermosetting oil-free polyester paint (
gray) b. Application viscosity: 0.6poise and 0.2poiseC. Painting
: Mini bell (bell diameter 60mm) rotation speed 2200Orpm Voltage -90KV Shaving air pressure 3.0kg/cm2 Gun distance 30cm d. Drying conditions: 140℃ after setting for 7 minutes (room temperature)
x 25 minutes 7 (2) Top coat a. Paint: Thermosetting acrylic melamine paint (black) b. Coating viscosity: 0.6poise and 0.2poiseC non-volatile content = 4
2% by weight (0.6poise) 33% by weight (0.2poise)
i se) d. Solvent: ■For 0.6 poise: Toluene 50% by weight/Solbetsuso 10050% by weight ■For 0.2 poise: Toluene 55% by weight/Solbetsuso 100% by weight e. Anti-sag agent: Cross-linked acrylic resin powder (= 6% based on non-volatile content) Other coating conditions for the coating calculation are the same as for the alkyd melamine high solid thermosetting paint described in 1r11.

l 8 ボディに ましい塗 ここで、自動f[ボディWの塗装に用いられる塗料とし
ては、下記の第1表に示すように、倹料樹脂の数平均分
Pκは2000〜20000の範囲のものが好ましい。
l 8 A suitable coating for the body Here, automatic f is preferred.

自動車の塗料として数平均分子嶺を2000〜2000
0の範囲とすることが好ましい理由は、2000未満の
ものは電子線か紫外線で硬化する塗料が該当し、この塗
料は栗橋密度が高くてもろいため耐久性がなく (2〜
3年)、自動屯用外板用としてはあまり好ましくない。
The number average molecular peak is 2000 to 2000 for automobile paint.
The reason why it is preferable to set it in the range of 0 is that if it is less than 2000, it corresponds to a paint that is cured by electron beam or ultraviolet light, and this paint has a high Kurihashi density and is brittle, so it is not durable (2~
3 years), is not very desirable for use as an outer panel for automatic tunnels.

また、20000を越える場合は、粘度が高くなるため
溶剤を多量に必要として、溶剤を多く排出するため好ま
しくなく、さらに数平均分子量が20000を越えるラ
テックスボリマについては、吹付け直後に粘度が高くな
るため,平滑性を上げることが困難となって好ましくな
い。
In addition, if it exceeds 20,000, the viscosity becomes high, requiring a large amount of solvent, and a large amount of solvent is discharged, which is undesirable.Furthermore, latex volima with a number average molecular weight exceeding 20,000 has a high viscosity immediately after spraying. This makes it difficult to improve smoothness, which is undesirable.

(以下余白) l 9 表 宣 塗  さとたれ  と   と    との第3図は、
熱硬化型塗料を例にして、塗膜厚さがたれ限界に与える
影響について示すものである。この第3図では、塗膜厚
さとして、40μm、53μm、65μmの3通りの場
合を示してある。このいずれの厚さの場合も、セッティ
ング工程初期と焼付工程初期との両方の時期に、゜′た
れ゜゜のビークが生じることが理解される。また、たれ
限界は、通常1分間に1〜2mmのたれを生じるときの
値をいうが(目視して2mm/分以上のたれを生じると
塗装面が不良とされる)、このたれ限界以下の範囲で得
られる最大の塗膜厚さは、従来の塗料で40um程度で
ある。
(The following is a blank space) l 9 The third diagram of Hyosen-nuri Satatare and and is as follows.
This paper uses a thermosetting paint as an example to illustrate the influence of coating film thickness on the sagging limit. FIG. 3 shows three cases of coating film thickness: 40 μm, 53 μm, and 65 μm. It is understood that for any of these thicknesses, a sagging peak occurs both at the beginning of the setting process and at the beginning of the baking process. In addition, the sag limit is normally the value when sagging occurs at a rate of 1 to 2 mm per minute. The maximum film thickness obtainable in the range is around 40 um with conventional paints.

一方、第4図は、ボディWを水平方向に回転させるとき
とそうでないときとの、平滑度に与える影響を示してあ
る。その第4図中Aは、ボディWを回転させない状態を
示してある(従来の塗装方法)。第4図Bは、ボディW
を90゜回転させた後逆転させる場合を示してある(第
2図 18)と(c)との間で正逆同転)。第4図Cは
、ボディ21 Wを135゜回転させた後逆転させる場合を示してある
(第2図(a)と(d)との間で正逆回転)。第4図D
は、ボディWをl80゜回転させた後逆転させる場合を
示してある(第2図(a)と(e)との間で正逆回転)
。第4図Eは、ボディWを連続して同一方向に回転させ
る場合を示してある(第2図(a)、(b)、(c)・
 (i)の順の姿勢をとり、再び(a)へと戻る)。
On the other hand, FIG. 4 shows the influence on the smoothness when the body W is rotated in the horizontal direction and when it is not. A in FIG. 4 shows a state in which the body W is not rotated (conventional painting method). Figure 4B shows the body W
The case is shown in which the rotation is performed by 90 degrees and then reversed (forward and reverse rotation is the same between Figure 2 18) and (c). FIG. 4C shows a case where the body 21W is rotated by 135 degrees and then reversed (forward and reverse rotation between FIGS. 2(a) and (d)). Figure 4D
shows the case where the body W is rotated by l80 degrees and then reversed (forward and reverse rotation between Figure 2 (a) and (e))
. FIG. 4E shows the case where the body W is continuously rotated in the same direction (FIGS. 2(a), (b), (c),
Take the posture in the order of (i) and return to (a) again).

この第4図から明らかなように、同じ塗膜の厚さであれ
ば、ボディWを回転させた方が(第4図B.C,D.E
) 、回転させない場合(第4図A)よりも、平滑度の
大きいものが得られる。また、同じ回転でも、360゜
同一方向に回転させるのが平滑度を高める上では好まし
いことが理解される。勿論、ボディWの回転無しの場合
は、塗膜の厚さに限界をきたすため、平滑度を大きくす
るには限度がある。
As is clear from Fig. 4, if the thickness of the coating film is the same, it is better to rotate the body W (Fig. 4 B.C, D.E.
), a higher degree of smoothness can be obtained than in the case of no rotation (Fig. 4A). Furthermore, it is understood that even if the rotation is the same, it is preferable to rotate 360 degrees in the same direction in order to improve the smoothness. Of course, if the body W does not rotate, there is a limit to the thickness of the coating film, so there is a limit to how much smoothness can be increased.

ちなみに、塗膜の厚さを65μmとしてボディWを36
0”回転させる場合には,得られる!Y滑2 2 度は、写像鮮映度1.6で「8.7J. (P G D
値で1,Oの下限値)である。また、塗膜の厚さを40
umとした場合には、ボディWの回転無しの場合はI.
Gでr58J  (PGD値で0.7の下限値)である
のに対し、ボディWを360゜回転させた場合はI.G
でr68J  (PGD値で0. 8の下限値)である
By the way, assuming the thickness of the coating film is 65μm, the body W is 36mm.
When rotating by 0", the obtained !Y slide 2 2 degrees is "8.7J. (P G D
The value is 1, the lower limit of O). In addition, the thickness of the coating film was increased to 40
In the case of um, if the body W does not rotate, I.
G is r58J (lower limit of PGD value 0.7), whereas when body W is rotated 360°, I. G
and r68J (lower limit of PGD value of 0.8).

なお、既知のように、写像鮮映度におけるIG(イメー
ジクロス)は、鏡面(黒ガラス)を100とし、それに
対する鮮映度の比率を示すものであり、PGDは反射映
像の識別度を1.0から低下するに従って塗装面の・ト
滑度が低下する値である。
As is known, IG (Image Cross) in mapping sharpness indicates the ratio of sharpness to a mirror surface (black glass) of 100, and PGD indicates the degree of discrimination of a reflected image to 1. This is a value at which the smoothness of the painted surface decreases as it decreases from 0.

第3図、第4図に示したデータの試験条件は、次の通り
であるが、この試験条件は、P2で上塗りを行なう場合
の条件を示してある。
The test conditions for the data shown in FIGS. 3 and 4 are as follows, and these test conditions indicate the conditions when overcoating is performed at P2.

a.塗料:メラミンアルキッド(ブラック)粘度:フォ
ードカップ#4で 22秒/20”C b.哨膜機:ミニベル(+6、OOOrpm)2 3 シェービングエア ..2.0kg/cm2 C.吐出量:2回に分けての吹付けで、第1回目. .
 . I OOcc/m i n第2回目 ..1 50 〜200cc/mi nd.セッティン
グ時間=10分×常温 e.焼付条件    =140゜C×25分f.下地平
滑度:0.6(PGD値) (中塗、I) Eデープ上) g.回転または反転作動域: セッティング(10分)〜焼付け(10分)h.w1塗
物二一辺30cmの角筒体の側面に塗装、中心で回転可
能に支持 i.被塗物の回転速度:6rpm,30rpm.60r
pmの3通りで行なったが、回転速度の相違による差異
は事実上生じなかった。
a. Paint: Melamine alkyd (black) Viscosity: 22 seconds/20”C with Ford cup #4 b. Shaving machine: Minibell (+6, OOOrpm) 2 3 Shaving air.. 2.0 kg/cm2 C. Discharge amount: 2 times The first time was sprayed in several parts...
.. I OOcc/min 2nd time. .. 150-200cc/min. Setting time = 10 minutes x room temperature e. Baking conditions = 140°C x 25 minutes f. Base smoothness: 0.6 (PGD value) (Intermediate coating, I) on E-dep) g. Rotation or reversal operating range: Setting (10 minutes) to baking (10 minutes) h. w1 Coating: Painted on the sides of a rectangular tube with sides of 30 cm, rotatably supported at the center i. Rotation speed of the object to be coated: 6 rpm, 30 rpm. 60r
The experiment was carried out at three different pm values, but virtually no difference occurred due to the difference in rotational speed.

(以−ド余白) 2 4 塗軽己と(之 第5図(イ)は、被塗装物であるボディWに吹付け塗装
を行なう塗装工程PI及びその直後に続く冷却工程P2
を示す。
(Left blank) 2 4 Painting process (Figure 5 (a) shows the painting process PI in which spray painting is performed on the body W, which is the object to be painted, and the cooling process P2 that immediately follows.
shows.

第5図(イ)において、l2は、ボディWを塗装ライン
に沿って搬送する台車であって、台車12はその底部に
設けられた車輪l4によって床面l6の上を走行可能で
ある。床面l6の下方に設けられたビットl8の内部に
は、適当な駆動ト段によって駆動される搬迭用チェーン
20が敷設されており、この搬送用チェーン20に固持
されたロッド22に係合することにより台車12は搬.
送される。
In FIG. 5(A), reference numeral 12 denotes a truck for transporting the body W along the painting line, and the truck 12 can run on a floor surface 16 by means of wheels 14 provided at its bottom. A transport chain 20 driven by an appropriate drive stage is installed inside the bit l8 provided below the floor surface l6, and is engaged with a rod 22 fixed to the transport chain 20. By doing so, the trolley 12 is transported.
sent.

台車l2は,水平方向に延びる前後一対の車体保持軸2
4、25を回転自在に保持している。前部屯体保持軸2
4の前端部にはギヤボックス26の内部に収納された傘
歯車28が伺定されており,この傘歯車28は、ボディ
Wの前部で回転自在に保持された屯直回転軸30・の上
端部に固定された傘歯車32と噛合している。また、垂
直回・転2 5 軸30の下端部にはスブロケットホイル34が固定され
、このスプロケットホイル34は、ビット18内部に設
置された回転用チェーン36と係合しており、垂直回転
軸30は、回転用チェーン36の駆動に伴って回転する
と共に,傘歯車28、32を介して前部車体保持軸24
ひいてはボディWを回転させる。
The bogie l2 has a pair of front and rear car body holding shafts 2 extending in the horizontal direction.
4 and 25 are held rotatably. Front barrel holding shaft 2
A bevel gear 28 housed inside the gear box 26 can be seen at the front end of the body W. It meshes with a bevel gear 32 fixed to the upper end. Further, a sprocket wheel 34 is fixed to the lower end of the vertical rotation/rotation shaft 30, and this sprocket wheel 34 is engaged with a rotation chain 36 installed inside the bit 18. 30 rotates as the rotating chain 36 is driven, and connects to the front vehicle body holding shaft 24 via bevel gears 28 and 32.
In turn, the body W is rotated.

塗装工程P1においては、台車12に截置されて塗装工
程PI・を通過するボディWの上方及び左右側方の適所
に、ボディWに対して上塗り塗料を吹付ける塗装機(ミ
ニベル)38、38が配置されている。
In the painting process P1, painting machines (minibells) 38, 38 spray top coat paint onto the body W at appropriate locations above and on the left and right sides of the body W, which is placed on the trolley 12 and passes through the painting process PI. is located.

図示して.いない下塗り塗装工程で公知の電着塗装によ
って下塗り塗装を施されたボディWは,ボディW内外の
ごみがエアブロー等の清掃、・手段によって除去された
後、台車12により塗装工程P1に移送され、この塗装
工程P1において、ボデ、イWの移動を伴いつつフロン
トから順にリャ部にかけて塗料が塗装機38によって2
〜3分間程度吹付けられる。
Please illustrate. The body W is coated with an undercoat by known electrodeposition in the undercoat painting process, and after dust inside and outside the body W is removed by cleaning or other means such as air blowing, the body W is transferred to the painting process P1 by a trolley 12. In this painting process P1, the paint is applied by the paint machine 38 from the front to the rear while moving the body.
It is sprayed for about 3 minutes.

2 6 塗装工程PIの車体出口部に隣接して冷却工程P2が設
けられており、この冷却工程P2は、前後に開口する冷
却用ドーム40を備えている。冷却ドーム40は、その
上部に冷気供給ダクト42が配設され、この冷気供給ダ
クト42には下方に向けて開口する冷気吹出口42aが
複数設けられている。上記冷気供給用ダクト42には、
熱交換器43で冷却された空気がブロア44によって強
制的に供給されるようになっており、冷気はダクト42
を通って冷気吹出口42aからドーム40内へ吐出され
る。
2 6 A cooling process P2 is provided adjacent to the vehicle body exit portion of the painting process PI, and this cooling process P2 is provided with a cooling dome 40 that opens in the front and rear. A cold air supply duct 42 is disposed in the upper part of the cooling dome 40, and the cold air supply duct 42 is provided with a plurality of cold air outlets 42a that open downward. The cold air supply duct 42 includes:
The air cooled by the heat exchanger 43 is forcibly supplied by the blower 44, and the cold air is sent to the duct 42.
The cold air is discharged into the dome 40 through the cold air outlet 42a.

これにより、塗装工程PIを退出したボディWはフロン
ト側から冷却用ドーム40内へと移送され、ボディWの
表面に塗布された塗料は、冷気吹出口42aから吐出さ
れる冷気によって冷却されてその粘度が上界する。
As a result, the body W that has left the painting process PI is transferred from the front side into the cooling dome 40, and the paint applied to the surface of the body W is cooled by the cold air discharged from the cold air outlet 42a. The viscosity is upper bound.

ちなみに、第6図は、アルキッドメラミン・ハイソリッ
ド熱硬化型塗料における塗料潟度(単位二℃)と塗料粘
度(po i se)との関係を示す。この第6図に示
されるように、常温である22 7 O℃の温度では塗料粘度が約0.6poiseであるの
に対して、5℃の温度では塗料粘度が約2poiseに
上昇している。従って、冷却工程P2でボディWに吹付
ける冷気の温度としては、限定されるものではないが5
℃程度が好ましいことが理解できる。
Incidentally, FIG. 6 shows the relationship between paint lag (unit: 2° C.) and paint viscosity (poise) in an alkyd melamine high solid thermosetting paint. As shown in FIG. 6, the viscosity of the paint is approximately 0.6 poise at room temperature of 227 O°C, whereas the viscosity of the paint increases to approximately 2 poise at a temperature of 5°C. Therefore, the temperature of the cold air blown onto the body W in the cooling process P2 is not limited to 5.
It can be understood that approximately ℃ is preferable.

尚、本実施例では、好ましい例として、リャ部への塗料
の塗布が完了し、ボディWが塗装−f稈P1から脱出し
た段階、つまりボディWが全体的に冷気用ダクト42に
ほぼ移送された段階で、ボディWは車体保持軸24、2
5により略水乎軸回りに回転される。このボディWの回
転はボディWの均一冷却のために行われるものであり、
これにより、ボディWはその表面に塗布されている塗料
が均一に冷却され、塗料の粘度は均一に上昇することに
なる。
In this embodiment, as a preferable example, the stage is set such that the application of the paint to the rear part is completed and the body W has escaped from the painting-f culm P1, that is, the body W is almost entirely transferred to the cold air duct 42. At this stage, the body W is attached to the vehicle body holding shafts 24, 2.
5, it is rotated approximately around the water axis. This rotation of the body W is performed for uniform cooling of the body W,
As a result, the paint applied to the surface of the body W is uniformly cooled, and the viscosity of the paint is uniformly increased.

以上のように、ボディWは塗装工程PIで塗装された直
後に冷却工程P2に移送され、塗料は冷却工程P2で冷
却されて粘度が上界するので、塗装直後における塗料の
たれが確実に防市され2 8 る。
As described above, the body W is transferred to the cooling process P2 immediately after being painted in the painting process PI, and the paint is cooled in the cooling process P2 and its viscosity reaches its upper limit, so that dripping of the paint immediately after painting is reliably prevented. Marketed 2 8 .

第5図(ロ)は、焼付工程P3のうち、ボディWに塗布
された塗料から溶剤を揮発させるセッティング工程を示
す。このセッティング工程では、冷却工程P2から移送
されてきたボディWを、前述したように、常温下で水平
軸の回りに回転させながら、ボディW表面の塗料を約7
分間かけて乾燥させる。なお、前記のセッティング工程
においては、常温で溶.剤を揮発させる場合を斥したが
、これに代えて、塗装面を加熱しながら溶剤を揮発させ
てもよい。
FIG. 5(b) shows a setting step in which the solvent is evaporated from the paint applied to the body W in the baking step P3. In this setting process, as described above, the body W transferred from the cooling process P2 is rotated around the horizontal axis at room temperature, and the paint on the surface of the body W is removed by approximately 7.
Allow to dry for a minute. In addition, in the setting process described above, the melting temperature is set at room temperature. Although the case where the solvent is volatilized is excluded, instead of this, the solvent may be volatilized while heating the painted surface.

第5図(ハ)は、セッティング玉程の後に行なわれる焼
付工程P3を示す。この焼付工程P3は、適当な加熱手
段を有するトンネル状の乾燥炉44を備えており、セッ
ティングエ稈から移送されてきたボディWの塗装面を、
例えば140℃の温度雰囲気で焼付けする。この焼付ゾ
ーンでは、塗料が既に硬化しているのでボディWの回転
は不要であるが、塗装面の均一加熱という観点からボデ
ィWを水}ト軸回りに回転させながら焼付けを行2 9 なっでもよい。
FIG. 5(C) shows the baking step P3 which is carried out after the setting process. This baking process P3 is equipped with a tunnel-shaped drying oven 44 having an appropriate heating means, and the painted surface of the body W transferred from the setting culm is
For example, baking is performed in an atmosphere at a temperature of 140°C. In this baking zone, since the paint has already hardened, there is no need to rotate the body W, but from the viewpoint of uniformly heating the painted surface, baking is performed while rotating the body W around the water axis. good.

第7図は、前記第3図に対応し、塗料としてアルキッド
メラミン・ハイソリッド熱硬化型塗料を用い,その初期
塗着粘度が0.6poiseに調整されたものを、塗装
面の膜厚が65μm、53μm及び40μmになるよう
に上塗り塗装をした後、冷却工程P2、セッティング工
程及び焼付工程P3を行なう各場合における時間の経過
(単位:min)と塗料のたれ速度(mm/min)と
の関係を示すものである。
Fig. 7 corresponds to Fig. 3 above, and shows that an alkyd melamine high solid thermosetting paint was used as the paint, and the initial coating viscosity was adjusted to 0.6 poise, and the film thickness of the painted surface was 65 μm. , the relationship between the passage of time (unit: min) and the paint dripping speed (mm/min) in each case of performing the cooling process P2, setting process, and baking process P3 after applying a top coat to have a thickness of 53 μm and 40 μm This shows that.

これら第3図及び第7図から明らかなように、上塗り直
後に塗装面を冷却しない場合(第3図に示す場合)には
、塗装完了後まもなく、例えば塗装完了2〜3分後には
塗料たれ速度は上昇するが、塗装直後に塗装面を冷却す
る場合(第7図に示す場合)には、塗料の粘度が上昇し
ているため、塗料完了後暫く、例えば塗装完了3〜4分
後でも、塗料たれ速度は未だ余り大きくない。つまり、
冷却工程P2を加えることで、塗料のたれが発生する時
期を遅らせることが可能となる。
As is clear from these Figures 3 and 7, if the painted surface is not cooled immediately after topcoating (the case shown in Figure 3), the paint will drip immediately after the completion of painting, for example, 2 to 3 minutes after the completion of painting. Although the speed increases, if the painted surface is cooled immediately after painting (as shown in Figure 7), the viscosity of the paint has increased, so the speed will increase even after painting is completed, for example, 3 to 4 minutes after painting is completed. , the paint dripping speed is still not very high. In other words,
By adding the cooling step P2, it is possible to delay the timing at which paint drips occur.

3 0 また、塗料たれ限界とは、乾燥工程において、塗料が付
着した位置よりl〜2mm移動することにより乾燥後の
塗膜表面に目視にてその塗料の移動の痕跡が認められる
塗膜厚の限界を言い、塗、料たれ社が2mm以上の場合
に、一般に塗料不良と称している。従って、第7図に示
されるように、膜厚が40μmでは塗装約7分後に、膜
厚が53μmでは塗装5、6分後に、膜厚が65μmで
は塗装4、5分後に各々塗料たれ限界を超えるので、そ
れらの時間までに水平軸回りの回転を伴うセッティング
を行なえば塗料たれを確実に防止できることになる。
3 0 In addition, the paint dripping limit is the thickness of the paint film at which traces of paint movement can be visually observed on the dried paint film surface due to movement of 1 to 2 mm from the position where the paint adhered during the drying process. When the coating thickness is 2 mm or more, it is generally said that the coating is defective. Therefore, as shown in Figure 7, the paint dripping limit is reached approximately 7 minutes after painting for a film thickness of 40 μm, 5 and 6 minutes after painting for a film thickness of 53 μm, and 4 and 5 minutes after painting for a film thickness of 65 μm. Therefore, if settings involving rotation around the horizontal axis are performed before these times, paint dripping can be reliably prevented.

同様に、アルキッドメラミン・ハイソリッド熱硬化型塗
料に関し、その初期塗着粘度が0.2poiseとされ
たものに関するデータを第8図に示してある。また、第
9図には、これら塗料の塗着粘度の変化に関するデータ
を示すものである。
Similarly, data regarding an alkyd melamine high solid thermosetting paint having an initial coating viscosity of 0.2 poise is shown in FIG. Furthermore, FIG. 9 shows data regarding changes in the coating viscosity of these paints.

ちなみに、ポリエステルメラミン、アクリルメラミン型
塗料についても同じ結果が得られた。
Incidentally, the same results were obtained for polyester melamine and acrylic melamine type paints.

また、2液反応型塗料に関し、上述の場合と同3I 様に、初期塗着粘度が0.6poiseの場合(第IO
図)と0.2poiseの場合(第11図)とで、具体
的に実験した結果、共に冷却工程P2を設けることによ
る効果、つまり塗料のたれが発生する時期を遅らせるこ
とが可能であることを確認した。
Regarding the two-component reactive paint, as in the case 3I above, when the initial coating viscosity is 0.6 poise (No.
As a result of concrete experiments with the case of 0.2 poise (Fig. 1) and the case of 0.2 poise (Fig. 11), we found that the effect of providing the cooling process P2 in both cases is that it is possible to delay the timing at which paint drips. confirmed.

下記第2表は、ハイソリッド系の上塗り塗料をボディW
のボンネット及びドアに対して、膜厚が50〜55μm
及び62〜68μmになるように塗布した塗装面を、従
来どおり塗装直後に冷却しなかった場合と、塗装直後に
冷却した場合との各々において、I.G.値(鮮映値)
とPGD値(鮮映度)とを比較したものである。この第
2表から明らかなように、I.G.値とPGD値は冷却
工程を付加した場合と、付加しなかった場合との間にお
いて殆ど差が認められない。従って,被塗物に塗布され
た直後の上塗り塗料を冷却しても,塗装面の仕上りはま
ったく影響を受けないことが理解できる。尚、各種塗料
に関し、初期塗着粘度を変えてその仕上り結果を調べた
結果を第332 表に示す。
Table 2 below shows how to apply high solid top coat paint to the body W.
The film thickness is 50 to 55 μm for the bonnet and door of
The I.I. G. Value (sharpness value)
and the PGD value (sharpness). As is clear from this Table 2, I. G. There is almost no difference in the PGD value between the case where the cooling step is added and the case where the cooling step is not added. Therefore, it can be seen that even if the top coat is cooled immediately after being applied to the object, the finish of the painted surface is not affected at all. Table 332 shows the results of examining the finishing results of various paints by varying the initial coating viscosity.

(以下余白) 3 3 3ダ 第1図において、仮想線で示す工程P2’は第2実施例
を示すものである。
(The following is a blank space) 3 3 3da In FIG. 1, a process P2' indicated by a virtual line indicates the second embodiment.

すなわち、本実施例にあっては、冷却工程P2の次に台
車12を取り換える工程P2’が付加され、この台車取
換え工程P2’において,ボディWは回転焼付工程P3
専用の台車に移し換えが行なわれる。この工程P2’の
付加によって台車12に付着した塗料が回転焼付工程P
3の際に飛散し、この飛散した塗料がボディWの塗装面
に付着するという事故を回避することが可能となる。勿
論、この台車取換え工程P2’は、冷却工程P2の次に
行なわれるようになっているため、ボディWの塗料を冷
却することによる効果、つまり塗料のたれが発生する時
期が遅らされていることに基づいて付加し得るものであ
る。
That is, in this embodiment, a process P2' for replacing the trolley 12 is added after the cooling process P2, and in this trolley replacement process P2', the body W is transferred to the rotary baking process P3.
Transfer will be made to a special trolley. By adding this process P2', the paint attached to the trolley 12 is removed from the rotary baking process P2'.
It is possible to avoid an accident in which the paint is scattered during step 3 and the scattered paint adheres to the painted surface of the body W. Of course, this bogie replacement process P2' is performed after the cooling process P2, so the effect of cooling the paint on the body W, that is, the timing at which paint drips occur, is delayed. It can be added based on the fact that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実廁例を示す全体工程図。 第2図は被塗物としての自動車用ボディが回転すること
に伴う姿勢変化の状態を示す図。 3 6 第3図、第4図は塗料の厚さとたれと塗装面の平滑度と
回転との関係を示すグラフ。 第5図(イ)は塗装ラインのうち吹付工程と冷却工程と
を示す断面図、 第5図(ロ)は塗装ラインのうちセッティング工程を示
す断面図、 第5図(ハ)は塗装ラインのうち焼付工程を示す断面図
、 第6図は塗料編度と塗着粘度との関係を示す特性図、 第7図はアルキッドメラミン・ハイソリッド熱硬化型塗
料(初期塗着粘度: 0.6po i se)を用いた
塗装の完Y後、時間の経過と塗料たれ速度との関係を示
す特性図、 第8図はアルキッドメラミン・ハイソリッド熱硬化型塗
料(初期塗着粘度:O、2poise)を用いた塗装の
完了後、時間の経過と塗料たれ速度との関係を示す特性
図、 第9図はアルキッドメラミン・ハイソリッド熱硬化型塗
料(初期塗着粘度二0.6及び0.2p3 7 o i se)を用いた塗装の完了後、時間の経過と塗
着粘度との関係を示す特性図、 第10図は2液反応型塗料(初期塗着粘度:0.6po
 i se)を用いた塗装の完了後、時間の経過と塗料
たれ速度との関係を示す特性図,第11図は2液反応型
塗料(初期塗着粘度:0.2poise)を用いた塗装
の完了後、時間の経過と塗料たれ速度との関係を示す特
性図。 W : 1 2 = 38 : 40 : 4 2 = 44 : P l : P2 : P3 : P 2′  : 車体(被塗物) 台車 塗装機 冷却用ドーム 冷気用ダクト 乾燥炉 吹付工程 冷却工程 焼付工程(セッティング工程を含む) 台重取り換え工程 3 8 区 0 −512− N O (Y)(Y)
FIG. 1 is an overall process diagram showing an example of the present invention. FIG. 2 is a diagram showing a state in which the posture of an automobile body as an object to be coated changes as it rotates. 3 6 Figures 3 and 4 are graphs showing the relationship between the thickness and dripping of paint, the smoothness of the painted surface, and rotation. Figure 5 (a) is a cross-sectional view showing the spraying process and cooling process in the painting line, Figure 5 (b) is a cross-sectional view showing the setting process in the painting line, and Figure 5 (c) is a cross-sectional view of the painting line. Figure 6 is a characteristic diagram showing the relationship between paint knitting and coating viscosity; Figure 7 is an alkyd melamine high solid thermosetting paint (initial coating viscosity: 0.6poi). Figure 8 is a characteristic diagram showing the relationship between the passage of time and the paint dripping rate after the completion of painting using SE). Figure 9 is a characteristic diagram showing the relationship between the passage of time and the paint dripping rate after the completion of the coating using the alkyd melamine high solid thermosetting paint (initial coating viscosity 20.6 and 0.2p37o). Figure 10 is a characteristic diagram showing the relationship between the passage of time and coating viscosity after the completion of coating using a two-component reactive paint (initial coating viscosity: 0.6 po).
Figure 11 is a characteristic diagram showing the relationship between the passage of time and the rate of paint dripping after the completion of painting using a 2-component reactive paint (initial coating viscosity: 0.2 poise). A characteristic diagram showing the relationship between the passage of time and the paint dripping speed after completion. W: 1 2 = 38: 40: 4 2 = 44: Pl: P2: P3: P2': Car body (object to be coated) Trolley coating machine cooling dome Cold air duct Drying oven Spraying process Cooling process Baking process (setting (Including process) Platform weight replacement process 3 8 Ward 0 -512- N O (Y) (Y)

Claims (1)

【特許請求の範囲】[Claims] (1)被塗物に対する塗装が、塗料を吹付ける吹付工程
と、該吹付けられた塗料を乾燥させる乾燥工程とを有し
、 前記吹付工程では、少なくとも前記被塗物の縦面におい
て塗料のたれが生じる以上の厚さに塗料が吹付けられ、 前記乾燥工程では、少なくとも前記被塗物の縦面におい
て塗料のたれが生じ始める前でかつ塗料がたれを生じな
くなるまでの間、前記被塗物が略水平軸線回りに回転さ
れ、 該被塗物の回転はその回転速度が、重力によって塗料が
たれを生じ始める前に垂直状態から少なくとも水平状態
へと変更される回転速度よりも大きく、かつ回転に起因
する遠心力によって塗料のたれを生じさせるような回転
速度よりも小さい範囲として設定され、 前記吹付工程と前記乾燥工程との間には、前記吹付けら
れた塗料を冷却する冷却工程が前記吹付工程の直後に設
けられている、 ことを特徴とする塗装方法。
(1) Coating an object to be coated includes a spraying step of spraying the paint and a drying step of drying the sprayed paint, and in the spraying step, the paint is removed at least on the vertical surface of the object. The paint is sprayed to a thickness greater than that at which dripping occurs, and in the drying step, the paint is sprayed at least until the paint begins to drip on the vertical surface of the coated object and until the paint no longer drips. an object is rotated about a substantially horizontal axis, the rotation of the object is greater than the rotational speed at which the paint changes from a vertical position to at least a horizontal position before gravity begins to cause the paint to sag, and The rotational speed is set as a range smaller than the rotational speed that causes paint to drip due to centrifugal force caused by rotation, and a cooling step for cooling the sprayed paint is provided between the spraying step and the drying step. A coating method, which is provided immediately after the spraying step.
JP18772590A 1989-08-01 1990-07-16 Coating method Pending JPH03165871A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18772590A JPH03165871A (en) 1989-08-01 1990-07-16 Coating method
EP19900114712 EP0411585B1 (en) 1989-08-01 1990-07-31 Spray coating and drying method
DE1990609336 DE69009336T2 (en) 1989-08-01 1990-07-31 Spray coating and drying processes.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-201074 1989-08-01
JP20107489 1989-08-01
JP18772590A JPH03165871A (en) 1989-08-01 1990-07-16 Coating method

Publications (1)

Publication Number Publication Date
JPH03165871A true JPH03165871A (en) 1991-07-17

Family

ID=26504524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18772590A Pending JPH03165871A (en) 1989-08-01 1990-07-16 Coating method

Country Status (3)

Country Link
EP (1) EP0411585B1 (en)
JP (1) JPH03165871A (en)
DE (1) DE69009336T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256802A (en) * 2003-02-04 2004-09-16 Kansai Paint Co Ltd Water-based clear coating
CN103230863A (en) * 2013-05-08 2013-08-07 中国第一汽车股份有限公司 Whole machine paint spraying process of diesel engine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960008536B1 (en) * 1991-03-23 1996-06-28 마쓰다 가부시끼가이샤 Method and device for transferring a workpiece
US5324546A (en) * 1992-10-07 1994-06-28 Henlopen Manufacturing Co., Inc. Process for producing coatings having multiple raised beads simulating liquid droplets on surfaces of articles
DE4335986C2 (en) * 1992-10-21 2003-06-26 Dainippon Ink & Chemicals High solids resin composition and high solids paints
US6040009A (en) * 1994-06-23 2000-03-21 Mazda Motor Corporation Low solvent content type-resin composition, coating composition containing such resin composition and process for coating such coating composition
DE10006865B4 (en) * 2000-02-16 2004-09-23 EISENMANN Maschinenbau KG (Komplementär: Eisenmann-Stiftung) Process for painting vehicle bodies
CN104190566A (en) * 2014-09-23 2014-12-10 太仓万冠涂装设备有限公司 Electrostatic-adsorption paint spraying device
CN112420374A (en) * 2020-11-11 2021-02-26 广东电网有限责任公司 Transformer winding processing device and gelling method thereof
CN113369041B (en) * 2021-04-26 2022-12-06 东莞市科沃科技有限公司 Environment-friendly automatic paint spraying device capable of synchronously drying and deodorizing
CN115709155B (en) * 2022-11-30 2024-02-02 江西伯爵厨饰有限公司 Cabinet door baking finish equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261644B1 (en) * 1986-09-25 1991-02-27 Mazda Motor Corporation Coating method in coating line and coating apparatus therefor
EP0278482B1 (en) * 1987-02-10 1991-01-09 Mazda Motor Corporation Coating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256802A (en) * 2003-02-04 2004-09-16 Kansai Paint Co Ltd Water-based clear coating
CN103230863A (en) * 2013-05-08 2013-08-07 中国第一汽车股份有限公司 Whole machine paint spraying process of diesel engine
CN103230863B (en) * 2013-05-08 2014-06-11 中国第一汽车股份有限公司 Whole machine paint spraying process of diesel engine

Also Published As

Publication number Publication date
EP0411585B1 (en) 1994-06-01
EP0411585A1 (en) 1991-02-06
DE69009336T2 (en) 1994-09-15
DE69009336D1 (en) 1994-07-07

Similar Documents

Publication Publication Date Title
EP0278482B1 (en) Coating method
JPH03165871A (en) Coating method
JP3541434B2 (en) Coating method, coating equipment and workpiece
US5091215A (en) Coating method
US5063085A (en) Coating method
JP3202255B2 (en) Painting equipment
JP4848810B2 (en) Coating method and coating apparatus
US5009931A (en) Coating method
JP2810441B2 (en) Painting method
JP4935086B2 (en) Coating method using rotary atomizing coating equipment
JP2886901B2 (en) Painting method
JP4910443B2 (en) Painting method
JP5290800B2 (en) Electrostatic coating method
JP4834239B2 (en) Multilayer repair painting method for the groundwork
JP2656607B2 (en) Painting method
JP2656610B2 (en) Painting method
JPS596965A (en) Top-coating of automobile body
JPH02111481A (en) Painting method
JP2010188237A (en) Electrostatic coating method
JP2656608B2 (en) Painting method
KR940000490B1 (en) Coating method
JP2656609B2 (en) Painting method
JP4765637B2 (en) Painting method
JPS61138570A (en) Coating method of topcoat of car body
JPH02202961A (en) Repair coating for pearlescent coating and method of repair coating therewith