JPH03165243A - X-ray diffraction device - Google Patents

X-ray diffraction device

Info

Publication number
JPH03165243A
JPH03165243A JP1305162A JP30516289A JPH03165243A JP H03165243 A JPH03165243 A JP H03165243A JP 1305162 A JP1305162 A JP 1305162A JP 30516289 A JP30516289 A JP 30516289A JP H03165243 A JPH03165243 A JP H03165243A
Authority
JP
Japan
Prior art keywords
goniometer
sample
sample surface
rotation
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1305162A
Other languages
Japanese (ja)
Inventor
Kazuo Koyanagi
和夫 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1305162A priority Critical patent/JPH03165243A/en
Publication of JPH03165243A publication Critical patent/JPH03165243A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To always correct the angular error by the misalignment between a sample surface and the center of rotation of a goniometer and to analyze with high acuracy by providing a position detecting means which detects the misalignment between the sample surface and the center of rotation of th goniometer and a controller for the goniometer to which the output from this position detecting means is inputted. CONSTITUTION:The ultrasonic position sensor 9 is provided in the position where the X-ray passage in the direction perpendicular to the sample surface is not hindered. A displacement measuring part 10 is connected to this ultrasonic position sensor 9 and further, an angle error correcting part 11 is provided in this goniometer control part 8. The position of the sample 3 is detected by the ultrasonic position sensor 9 and the displacement quantity between the sample 3 and the center of rotation of th goniometer is measured by the displacement measuring part 10 from the detected value. The measured displacement quantity signal is inputted to the goniometer control part 8 and an theta axis and 2theta axis are so controlled by the angle error correcting part 11 as to attain the exact angle.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はX線回折装置、特にX線回折装置に用いるゴニ
オメータの制御に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray diffraction apparatus, and particularly to control of a goniometer used in an X-ray diffraction apparatus.

[従来技術] X線回折法は結晶などの原子の配列に関する情報を得る
分析法である。X線が結晶に照射された場合、結晶格子
面で反射し、お互いに干渉しあうので、所定の条件を満
たす方向の回折線のみ強度が増大し、他は打ち消しあっ
て観測されない。この所定の条件を満たす面間隔は一般
に物質固有の値で、一つの物質の数個の面間隔とそれに
対応する回折X線の相対強度が観測できれば、その物質
を同定することができる。
[Prior Art] X-ray diffraction is an analytical method for obtaining information regarding the arrangement of atoms in crystals and the like. When X-rays are irradiated onto a crystal, they are reflected on the crystal lattice planes and interfere with each other, so that only the diffraction rays in directions that meet predetermined conditions increase in intensity, while the others cancel out and are not observed. The interplanar spacing that satisfies this predetermined condition is generally a value unique to a substance, and if several interplanar spacings of a single substance and the relative intensities of the corresponding diffraction X-rays can be observed, that substance can be identified.

このX線回折法をもちいた従来のX線回折装置を第3図
により説明すると、ゴニオメータ部はX線管1、試料3
、検出器5を有する。X線管1の前にある発散スリット
2は試料3上のX線照射幅を決めるスリットであり、検
出器5の前にある検出スリット4は回折角度測定の分解
能を決めるスリットである。また、このゴニオメータ部
に結合されているθ軸駆動モータ6.2θ軸駆動モータ
7はゴニオメータ制御部8により制御される。
A conventional X-ray diffraction apparatus using this X-ray diffraction method is explained with reference to FIG.
, a detector 5. A divergence slit 2 in front of the X-ray tube 1 is a slit that determines the X-ray irradiation width on the sample 3, and a detection slit 4 in front of the detector 5 is a slit that determines the resolution of diffraction angle measurement. Further, the θ-axis drive motor 6 and the θ-axis drive motor 7 coupled to this goniometer section are controlled by a goniometer control section 8.

このX線回折装置の動作を説明すると、X線管1より取
り出された波長λのX線は発散スリット2を通り、試料
3に照射される。そして、試料3からの回折X線が検出
スリット4を通って検出器5に入る。この時の回折X線
は、試料の面間隔をdとしたとき、ブラッグの式nλ=
2d s i nθを満足する位置に回折される。これ
を検出するには、入射X線と試料のなす角θと試料3と
検出器5のなす角θが常に同じであるような関係を保ち
なからθを00〜80°程度走査する必要がある、この
ため、試料3の保持部と検出器5の保持部とは別々の駆
動軸を持ち、それぞれθ、2θすなわち1:2の比で駆
動されるように、ゴニオメータ制御部8によりθ軸駆動
モータ6.2θ軸駆動モータ7が制御される。
To explain the operation of this X-ray diffraction device, X-rays of wavelength λ taken out from an X-ray tube 1 pass through a divergence slit 2 and are irradiated onto a sample 3. Then, the diffracted X-rays from the sample 3 pass through the detection slit 4 and enter the detector 5. The diffracted X-ray at this time is expressed by Bragg's formula nλ=
It is diffracted to a position that satisfies 2d sin θ. To detect this, it is necessary to maintain a relationship such that the angle θ between the incident X-ray and the sample and the angle θ between the sample 3 and the detector 5 are always the same, and to scan θ about 00 to 80 degrees. Therefore, the holding part for the sample 3 and the holding part for the detector 5 have separate drive shafts, and the goniometer control part 8 controls the θ-axis so that they are driven at a ratio of θ and 2θ, that is, 1:2. Drive motor 6.2θ axis drive motor 7 is controlled.

[発明が解決しようとする課題] 上記のような従来のX線回折装置では、試料面がゴニオ
メータ部の回転中心にあるという保証は機械的な精度に
頼っており、試料面が平坦な場合はある程度部品の精度
から回転中心とのずれを最小にできる。しかし、試料面
が凹凸である場合やフィルター上に試料を収集した場合
には試料面と回転中心との間のずれが大きくなり、測定
精度に誤差を生じていた。
[Problems to be Solved by the Invention] In the conventional X-ray diffraction apparatus as described above, ensuring that the sample surface is at the center of rotation of the goniometer section relies on mechanical precision, and if the sample surface is flat, To some extent, the deviation from the center of rotation can be minimized due to the precision of the parts. However, when the sample surface is uneven or when the sample is collected on a filter, the deviation between the sample surface and the center of rotation becomes large, causing errors in measurement accuracy.

本発明は上記のような従来技術の欠点を解消するために
創案されたものであり、試料面とゴニオメータの回転中
心とのずれによる角度誤差を常に補正し、高精度の分析
が行えるとともに、操作性を向上することができるX線
回折装置を提供することを目的とする。
The present invention was devised to eliminate the drawbacks of the prior art as described above, and it constantly corrects the angular error caused by the misalignment between the sample surface and the rotation center of the goniometer, allowing highly accurate analysis and making it easier to operate. An object of the present invention is to provide an X-ray diffraction device that can improve the properties of the X-ray diffraction device.

[課題を解決するための手段] 上記目的を達成するために、本発明におけるX線回折装
置は、試料面とゴニオメータの回転中心とのずれを検出
する位置検出手段と、この位置検出手段の出力が入力さ
れるゴニオメータの制御装置とを有する。
[Means for Solving the Problems] In order to achieve the above object, the X-ray diffraction apparatus of the present invention includes a position detecting means for detecting a deviation between the sample surface and the rotation center of the goniometer, and an output of the position detecting means. and a goniometer control device to which the goniometer is input.

[作用] 上記のように構成されたX線回折装置は、測定する試料
面とゴニオメータの回転中心とのずれを位置検出手段に
よって検出し、検出したずれをゴニオメータの制御装置
に入力することによりそのずれによる測定角度の誤差を
演算し、ゴニオメータのθ軸、2θ軸の駆動信号を補正
する。
[Operation] The X-ray diffraction apparatus configured as described above detects the deviation between the sample surface to be measured and the rotation center of the goniometer using the position detection means, and inputs the detected deviation to the goniometer control device. The error in the measurement angle due to the shift is calculated, and the drive signals for the θ-axis and 2θ-axis of the goniometer are corrected.

[実施例] 実施例について図面を用いて説明すると、第1図におい
て、X線管1、発散スリット2、試料3、検出スリット
4、検出器5、θ軸駆動モータ62θ軸駆動モータ7、
ゴニオメータ制御部8は第3図と同じであり、これに加
えて試料面の垂直方向のX線通路を妨げない位置に超音
波位置センサ9が設けられているとともに、この超音波
位置センサ9に変位測定部10が接続されている。更に
、ゴニオメータ制御部8には角度誤差補正部11が設け
られている。
[Example] An example will be described with reference to the drawings. In FIG. 1, an X-ray tube 1, a diverging slit 2, a sample 3, a detection slit 4, a detector 5, a θ-axis drive motor 62, a θ-axis drive motor 7,
The goniometer control section 8 is the same as that shown in FIG. A displacement measuring section 10 is connected. Furthermore, the goniometer control section 8 is provided with an angular error correction section 11.

本発明のX線回折装置の動作を説明すると、超音波位置
センサ9により試料3の位置を検出し、その検出値より
変位測定部10によって試料3とゴニオメータの回転中
心との変位量を測定する。
To explain the operation of the X-ray diffraction apparatus of the present invention, the position of the sample 3 is detected by the ultrasonic position sensor 9, and the amount of displacement between the sample 3 and the rotation center of the goniometer is measured by the displacement measurement unit 10 based on the detected value. .

そして、この変位量測定信号をゴニオメータ制御部8に
入力し、角度誤差補正部11により試料3とゴニオメー
タの回転中心とのずれによる補正値を求めて、正確な角
度となるようにθ軸、2θ軸を制御する。
Then, this displacement measurement signal is input to the goniometer control unit 8, and the angle error correction unit 11 calculates a correction value due to the deviation between the sample 3 and the rotation center of the goniometer. Control the axis.

角度誤差補正部での演算例を第2図により説明すると、
第2図において、XはX線管からのX線の照射位置であ
り、Sは試料面、0はゴニオメータの回転中心である。
An example of calculation in the angle error correction section will be explained with reference to FIG.
In FIG. 2, X is the irradiation position of X-rays from the X-ray tube, S is the sample surface, and 0 is the rotation center of the goniometer.

X線の照射方向とゴニオメータの回転中心面との角度を
θ、回転中心と試料面との変位量をD、ゴニオメータ半
径をL、角度誤差をΔθとしたとき、つぎの式が成り立
つ。
When the angle between the X-ray irradiation direction and the rotation center plane of the goniometer is θ, the displacement between the rotation center and the sample surface is D, the goniometer radius is L, and the angular error is Δθ, the following equation holds true.

Δθ=sin−(a/L)・・・ (1)a=Dcos
(θ−Δθ) =D(cosθ’cosΔθ+sinθ。
Δθ=sin-(a/L)... (1) a=D cos
(θ−Δθ) = D(cosθ′cosΔθ+sinθ.

sinΔθ)      ・・・ (2)ただし、a=
LsinΔθである。
sinΔθ) ... (2) However, a=
L sin Δθ.

このとき、八〇は極めて小さいためcosΔθ≠1、s
inΔθ≠Δθが成り立つので、上記(2)式は、 a井D (co sθ+Δθ・sinθ)となる。また
、(1)式よりΔθ井a / Lであるので、 Δθ=D(cosθ+Δθ・sinθ)/Lとなる。し
たがって、変位が正方向の時、Δθ=Dcosθ/ (
L  Ds i nθ)変位が負方向の時、 Δθ=Dcosθ/ (L+Ds inθ)となり、変
位測定部10で変位ff1Dを測定することにより、θ
走査時の各θ値において角度誤差へ〇を求めることがで
きる。
At this time, since 80 is extremely small, cosΔθ≠1, s
Since inΔθ≠Δθ holds true, the above equation (2) becomes aiD (cosθ+Δθ·sinθ). Also, from equation (1), Δθ well a/L, so Δθ=D(cosθ+Δθ·sinθ)/L. Therefore, when the displacement is in the positive direction, Δθ=Dcosθ/ (
L Ds in θ) When the displacement is in the negative direction, Δθ=D cos θ/ (L+Ds in θ), and by measuring the displacement ff1D with the displacement measuring section 10, θ
It is possible to find the angular error at each θ value during scanning.

したがって、角度誤差補正部11で求めたこの補正値Δ
θをゴニオメータ制御部8に入力し、θ軸駆動モータ6
.2θ軸駆動モータ7への駆動信号を補正することによ
って、高精度の分析を行うことができる。
Therefore, this correction value Δ obtained by the angle error correction section 11
θ is input to the goniometer control section 8, and the θ-axis drive motor 6
.. By correcting the drive signal to the 2θ-axis drive motor 7, highly accurate analysis can be performed.

なお、上記の実施例では、位置検出器として超音波セン
サを用いたが、光学式センサ等、非接触型でX線の通路
を妨げないものであればその他の位置検出器を用いるこ
ともできる。
In the above embodiment, an ultrasonic sensor was used as the position detector, but other position detectors such as optical sensors can also be used as long as they are non-contact and do not obstruct the passage of X-rays. .

[発明の効果コ 以上説明したように、本発明は、試料面と回転中心との
ずれを検出し、角度誤差を常に補正するため精度の高い
分析を行うことができる。また、試料の回転中心へのセ
ットも従来のゴニオメータよりラフでよく、分析装置の
操作性を向上することができる。
[Effects of the Invention] As explained above, the present invention detects the deviation between the sample surface and the center of rotation and constantly corrects the angular error, so that highly accurate analysis can be performed. Furthermore, setting the sample at the center of rotation can be done more roughly than in conventional goniometers, and the operability of the analyzer can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のX線回折装置を示す図、第2図は角度
誤差補正値の演算方法を説明するための図、第3図は従
来のX線回折装置を示す図である1・・X線管、2・・
発散スリット、3・・試料、4・・検出スリット、5・
・検出器、6・・θ軸駆動モータ、7・・2θ軸駆動モ
ータ、8・・ゴニオメータ制御部、9・・超音波位置セ
ンサ、10・・変位測定部、11・・角度誤差補正部
FIG. 1 is a diagram showing the X-ray diffraction device of the present invention, FIG. 2 is a diagram for explaining the calculation method of the angular error correction value, and FIG. 3 is a diagram showing the conventional X-ray diffraction device.・X-ray tube, 2...
Divergence slit, 3. Sample, 4. Detection slit, 5.
・Detector, 6.. θ-axis drive motor, 7.. 2θ-axis drive motor, 8.. Goniometer control section, 9.. Ultrasonic position sensor, 10.. Displacement measurement section, 11.. Angle error correction section.

Claims (1)

【特許請求の範囲】[Claims] (1)ゴニオメータと、測定する試料面と上記ゴニオメ
ータの回転中心とのずれを検出する位置検出手段と、上
記位置検出手段の出力が入力されるゴニオメータの制御
手段とをそれぞれ有し、試料面とゴニオメータの回転中
心とのずれによる測定角度の誤差を補正するようにした
ことを特徴とするX線回折装置。
(1) Each has a goniometer, a position detection means for detecting a deviation between the sample surface to be measured and the rotation center of the goniometer, and a goniometer control means to which the output of the position detection means is input, and An X-ray diffraction apparatus characterized in that an error in a measurement angle due to a deviation from a rotation center of a goniometer is corrected.
JP1305162A 1989-11-24 1989-11-24 X-ray diffraction device Pending JPH03165243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1305162A JPH03165243A (en) 1989-11-24 1989-11-24 X-ray diffraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1305162A JPH03165243A (en) 1989-11-24 1989-11-24 X-ray diffraction device

Publications (1)

Publication Number Publication Date
JPH03165243A true JPH03165243A (en) 1991-07-17

Family

ID=17941813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1305162A Pending JPH03165243A (en) 1989-11-24 1989-11-24 X-ray diffraction device

Country Status (1)

Country Link
JP (1) JPH03165243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206415A (en) * 2013-04-11 2014-10-30 トヨタ自動車株式会社 Product quality inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206415A (en) * 2013-04-11 2014-10-30 トヨタ自動車株式会社 Product quality inspection method

Similar Documents

Publication Publication Date Title
US4426718A (en) X-Ray diffraction apparatus
US7352845B2 (en) Energy dispersion type X-ray diffraction/spectral device
JP6000696B2 (en) X-ray stress measuring apparatus and X-ray stress measuring method
US20050084066A1 (en) X-ray diffractometer and method of correcting measurement position thereof
JPH03165243A (en) X-ray diffraction device
JPH08313458A (en) X-ray equipment
US6310937B1 (en) X-ray diffraction apparatus with an x-ray optical reference channel
JPH03246452A (en) Total reflecting fluorescent x-ray analyzing instrument
JP3847913B2 (en) Crystal orientation determination device
JP2000213999A (en) X-ray stress measuring method
RU2617560C1 (en) Method of adjusting samples in x-ray diffractometer
SU828041A1 (en) Method of measuring monocrystal lattice period
JP2567840B2 (en) Crystal orientation determination device
JPH03269351A (en) X-ray measuring method for main strain distribution of thin film
JPH0714873Y2 (en) X-ray diffraction measuring device
JPH05288616A (en) X-ray residual stress measuring method
JPH05283963A (en) Inspection method and inspection device for cut surface of quartz pieces
SU1141321A1 (en) X-ray spectrometer
JPH0723733Y2 (en) Crystal azimuth measuring device
SU1744611A1 (en) Method of determination of curvature radius of atom planes in single crystal plates
JP2902441B2 (en) X-ray diffractometer
KR101603305B1 (en) Slit control system of x-ray
SU1041918A1 (en) Diffractometer primary beam adjusting method
RU2234693C2 (en) Method for measuring concentration of optically active substances in solutions (variants)
SU1144040A1 (en) Diffractometer adjustment method