JPH03165063A - Solid-state image sensor - Google Patents

Solid-state image sensor

Info

Publication number
JPH03165063A
JPH03165063A JP1305491A JP30549189A JPH03165063A JP H03165063 A JPH03165063 A JP H03165063A JP 1305491 A JP1305491 A JP 1305491A JP 30549189 A JP30549189 A JP 30549189A JP H03165063 A JPH03165063 A JP H03165063A
Authority
JP
Japan
Prior art keywords
type
region
film
light
charge transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1305491A
Other languages
Japanese (ja)
Inventor
Kageji Toriyama
鳥山 景示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1305491A priority Critical patent/JPH03165063A/en
Publication of JPH03165063A publication Critical patent/JPH03165063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To prevent false signals by sliding an electrode which reads or transfers charges with a thin light-shielding side wall made of a metal film or the like. CONSTITUTION:After a p-type well 2 is formed in an n-type semiconductor substrate 1 by ion implantation and diffusion heat treatment of a p-type, a p<+> type channel stop 5, an n-type photoelectric conversion region 3, and an n-type charge transfer region 4 are formed by ion implantation of p-type and n-type impurities. This step is followed by the formation of a charge transfer electrode 7 made of polysilicon via an insulating film 6 and then of an insulating film 6 on the surface of polysilicon under thermal oxidation. A light-shielding metal film 8 is uniformly grown from top of the film 6 by a method such as sputtering an organic metal CVD and anisotropically etched, thereby remaining in self-alignment on the side wall of the charge transfer electrode 7. The final step is to form an insulating film 6 as the interlayer film and an aluminum film 9 as its overlayer. This design allows the effective shield of oblique incident light incoming to the cell inner region other than photodetectors.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はCCD型あるいはMOS型の固体撮像素子に間
し、特に、スミア等の偽信号を低減せしめた固体撮像素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a CCD type or MOS type solid-state image sensor, and particularly relates to a solid-state image sensor that reduces false signals such as smear.

[従来の技術] 従来のこの種固体撮像素子の断面図を第4図に示す、こ
れは、CCD型2次元固体操像素子の例であって、同図
において、1はn型半導体基板、2はp型ウェル、3は
n型光電変換領域、4はn型電荷転送領域、5はp+型
チャネルストップ、6は絶縁膜、7はポリシリコンから
なる電荷転送電極、9はアルミニウム遮光膜である。
[Prior Art] A cross-sectional view of a conventional solid-state imaging device of this type is shown in FIG. 4. This is an example of a CCD type two-dimensional solid-state imaging device, and in the same figure, 1 is an n-type semiconductor substrate, 2 is a p-type well, 3 is an n-type photoelectric conversion region, 4 is an n-type charge transfer region, 5 is a p + type channel stop, 6 is an insulating film, 7 is a charge transfer electrode made of polysilicon, and 9 is an aluminum light shielding film. be.

この固体撮像素子において、撮像素子への入射光はアル
ミニウム遮光膜9により、光電変換領域4へのみ入射す
るように規制されている。光電変換領域で発生した信号
電荷は、電荷転送電極7へ読み出しパルスおよび転送パ
ルスを印加することにより、電荷転送領域4へ読み出さ
れ、該領域内を水平電荷転送素子へ向けて紙面に対して
垂直方向に転送される。
In this solid-state image sensor, incident light to the image sensor is regulated by an aluminum light-shielding film 9 so that it is incident only on the photoelectric conversion region 4 . Signal charges generated in the photoelectric conversion region are read out to the charge transfer region 4 by applying readout pulses and transfer pulses to the charge transfer electrode 7, and are directed within the region toward the horizontal charge transfer element relative to the paper surface. Transferred vertically.

[発明が解決しようとする課題] 上述した従来の固体撮像素子では、アルミニウム遮光膜
9は、素子に垂直な入射光に関しては効果を発揮する。
[Problems to be Solved by the Invention] In the conventional solid-state image sensor described above, the aluminum light-shielding film 9 is effective for incident light perpendicular to the element.

しかし、現実の撮像装置においては垂直入射光以外の斜
め入射光が存在するので、第4図に示すように光電変換
領域3以外の領域に斜め入射光13が入射する。この場
合に、この斜め入射光による光電変換電荷14の一部は
電荷転送領域4に集められスミア成分となる。従来の固
体撮像素子では、高輝度の被写体を撮像すると、この斜
め入射光成分により生じたスミア成分によって画像崩れ
を起こした。
However, in an actual imaging device, since obliquely incident light other than vertically incident light exists, the obliquely incident light 13 enters a region other than the photoelectric conversion region 3 as shown in FIG. In this case, a part of the photoelectrically converted charge 14 due to the obliquely incident light is collected in the charge transfer region 4 and becomes a smear component. When a conventional solid-state image sensor captures an image of a high-brightness object, the image becomes distorted due to a smear component caused by this obliquely incident light component.

斜め入射光が光電変換領域以外の領域に入射しないよう
にする方法として、第5図に示すようにアルミニウム遮
光膜9aの受光素子上の開口部を狭くし、電荷転送電極
7の側面をアルミニウム遮光膜9aで覆ってしまう方法
が考えられる。しかし、この方法だとアルミニウム遮光
膜をバターニングする際に、アライメントずれが生じた
場合でも電荷転送電極7の側面を露出せしめないように
するには、十分大きなマージンを設けなければならない
ので、開口部が狭くなり感度が大幅に低下するという問
題が生じる。特に素子が高密度化された最近の固体撮像
素子においてはこの手段を採用することが困難である。
As a method for preventing obliquely incident light from entering areas other than the photoelectric conversion area, as shown in FIG. A possible method is to cover it with a film 9a. However, with this method, when patterning the aluminum light-shielding film, a sufficiently large margin must be provided to prevent the sides of the charge transfer electrode 7 from being exposed even if misalignment occurs. A problem arises in that the area becomes narrower and the sensitivity is significantly lowered. In particular, it is difficult to employ this method in recent solid-state image sensing devices in which the device density has been increased.

[課題を解決するための手段] 本発明の固体撮像素子は、第1導電型半導体領域内に設
けられた複数の第2導電型の光電変換領域と、各光電変
換領域に隣接して設けられた第1導電型の電荷読み出し
領域と、前記光電変換領域内で発生した信号電荷を前記
電荷読み出し領域を介して受け取る信号電荷受け取り領
域と、前記電荷読み出し領域上に絶縁膜を介して形成さ
れたゲート電極と、半導体基板上に前記ゲート電極を覆
うように形成された金属遮光膜と、前記ゲート電極の側
壁に前記金属遮光膜よりも膜厚が薄くかつ前記金属遮光
膜とは分離されて形成された遮光膜とを具備するもので
ある。
[Means for Solving the Problems] A solid-state imaging device of the present invention includes a plurality of photoelectric conversion regions of a second conductivity type provided within a semiconductor region of a first conductivity type, and a plurality of photoelectric conversion regions provided adjacent to each photoelectric conversion region. a charge readout region of a first conductivity type; a signal charge receiving region that receives signal charges generated in the photoelectric conversion region via the charge readout region; and a signal charge receiving region formed on the charge readout region with an insulating film interposed therebetween. a gate electrode, a metal light-shielding film formed on a semiconductor substrate so as to cover the gate electrode, and a film thickness thinner than the metal light-shielding film and formed on a sidewall of the gate electrode to be separated from the metal light-shielding film. The light shielding film is provided with a light shielding film.

[実施例] 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例を示す断面図である。同図
において、第4図の従来例の部分と共通する部分には同
一の参照番号が付されているので重複する説明は省略す
る0本実施例では、電荷転送電極7の側壁にタングステ
ンからなる膜厚0゜1μmの遮光性金属膜8が形成され
ている。
FIG. 1 is a sectional view showing one embodiment of the present invention. In this figure, the same reference numerals are given to parts that are common to the parts of the conventional example shown in FIG. A light-shielding metal film 8 having a film thickness of 0° and 1 μm is formed.

上記膜厚のタングステン膜は光の透過率が0゜1%以下
であるので、この膜に入射する斜め入射光はほぼ完全遮
断できる。したがって、本実施例撮像素子では、高輝度
被写体を撮像した場合であっても問題となるほどの画像
崩れは生じない、また、上記膜厚め遮光性金属膜は、開
口面積をほとんど減じることがないので感度が低下する
ことはない。
Since the tungsten film having the above-mentioned thickness has a light transmittance of 0.1% or less, obliquely incident light entering the film can be almost completely blocked. Therefore, in the image sensor of this example, even when capturing an image of a high-brightness object, image distortion does not occur to the extent that it becomes a problem.In addition, the thick light-shielding metal film described above hardly reduces the aperture area. There is no decrease in sensitivity.

次に、第2図(a)〜(d)を参照して、本実施例の製
造方法について説明する。
Next, the manufacturing method of this example will be explained with reference to FIGS. 2(a) to 2(d).

常法により、n型半導体基板1にp型不純物のイオン注
入と拡散熱処理によりp型ウェル2を形成した後、p型
不純物およびn不純物のイオン注入によりp+型チャネ
ルストップ5、n型光電変換領域3およびn型電荷転送
領域4を形成する。
After forming a p-type well 2 in an n-type semiconductor substrate 1 by ion implantation of p-type impurities and diffusion heat treatment by a conventional method, a p+-type channel stop 5 and an n-type photoelectric conversion region are formed by ion implantation of p-type and n-impurities. 3 and an n-type charge transfer region 4 are formed.

続いて、絶縁M6を介してポリシリコンからなる電荷転
送電極7を形成する[第2図(a)]。
Subsequently, a charge transfer electrode 7 made of polysilicon is formed via the insulation M6 [FIG. 2(a)].

次に、熱酸化によりポリシリコンの表面に絶縁膜6を形
成し、その上に第2図(b)に示すように遮光性金属膜
8をスパッタ法、有機金属CVD法等の方法で一様に成
長させる。続いて、遮光性金属膜に対して異方性エツチ
ングを施すことにより、第2図(c)に示すように、電
荷転送電極7の側壁に自己整合的に遮光性金属膜8を残
す。
Next, an insulating film 6 is formed on the surface of the polysilicon by thermal oxidation, and a light-shielding metal film 8 is uniformly formed thereon by a method such as a sputtering method or an organometallic CVD method, as shown in FIG. 2(b). to grow. Subsequently, the light-shielding metal film 8 is anisotropically etched to leave the light-shielding metal film 8 on the side wall of the charge transfer electrode 7 in a self-aligned manner, as shown in FIG. 2(c).

次いで、第2図(d)に示すように、眉間膜として絶縁
膜6を形成し、その上にアルミニウム遮光膜9を形成す
れば第1図に示す固体撮像素子が得られる。
Next, as shown in FIG. 2(d), an insulating film 6 is formed as a glabellar film, and an aluminum light-shielding film 9 is formed thereon to obtain the solid-state imaging device shown in FIG. 1.

第3図は本発明の他の実施例を示す断面図である。これ
はMO3型固体撮像素子に間するものであって、この素
子においては光電変換領域3内で発生した信号電荷は、
ゲート電極11に読み出しパルスを印加することにより
、n型ドレイン領域10へ読み出され、信号線12を介
して取り出される。
FIG. 3 is a sectional view showing another embodiment of the present invention. This is connected to the MO3 type solid-state image sensor, and in this device, the signal charge generated within the photoelectric conversion region 3 is
By applying a read pulse to the gate electrode 11, the signal is read to the n-type drain region 10 and taken out via the signal line 12.

本実施例でも、ゲート電極11と信号線12との側壁に
は薄い遮光性金属膜8が設けられているので、光電変換
領域以外の部分へ光が漏れ込むことはなくなり、偽信号
電荷による画像崩れは抑制される。
In this embodiment as well, since the thin light-shielding metal film 8 is provided on the side walls of the gate electrode 11 and the signal line 12, light does not leak into areas other than the photoelectric conversion area, and images caused by false signal charges are prevented. Collapse is suppressed.

なお、以上の実施例では、側壁遮光膜の材料としてタン
グステンを用いていたが、本発明はこれに限定されるも
のではなく、他の金属材料あるいはそのシリサイドを用
いることができる。
In the above embodiments, tungsten was used as the material for the sidewall light-shielding film, but the present invention is not limited thereto, and other metal materials or silicides thereof may be used.

[発明の効果] 以上説明したように、本発明は、電荷の読み出しあるい
は電荷転送を行う電極の側壁に金属膜等からなる薄い遮
光性サイドウオールを形成したものであるので、本発明
によれば、受光素子の開口面積をほとんど減じることな
く、受光素子以外のセル内部領域に入射しようとする斜
め入射光を効果的に遮蔽することができる。したがって
、本発明によれば、感度を低下させることなく、高輝度
の被写体を撮像した場合に問題となる斜め入射光成分に
よる偽信号の発生を防止することができ、偽信号により
生じる画像崩れを抑制することができる。
[Effects of the Invention] As explained above, in the present invention, a thin light-shielding sidewall made of a metal film or the like is formed on the side wall of an electrode that performs charge readout or charge transfer. , it is possible to effectively block obliquely incident light that is about to enter the cell internal region other than the light receiving element without substantially reducing the aperture area of the light receiving element. Therefore, according to the present invention, it is possible to prevent the generation of false signals due to obliquely incident light components, which is a problem when imaging a high-brightness subject, without reducing sensitivity, and to prevent image distortion caused by false signals. Can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す断面図、第2図(a
)〜(d)は、その製造工程を説明するための断面図、
第3図は、本発明の他の実施例を示す断面図、第4図、
第5図は、それぞれ従来例を示す断面図である。 1・・・n型半導体基板、  2・・・p型ウェル、3
・・・n型光電変換領域、  4・・・n型電荷転送領
域、   5・・・p1型チャネルストップ、  6・
・・絶縁膜、  7・・・電荷転送電極、   8・・
・遮光性金属膜、  9・・・アルミニウム遮光膜、 
 10・・・n型ドレイン領域、  11・・・ゲート
電極、12・・・信号線、  13・・・斜め入射光、
  14・・・光電変換電荷。
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG.
) to (d) are cross-sectional views for explaining the manufacturing process,
FIG. 3 is a sectional view showing another embodiment of the present invention, FIG.
FIG. 5 is a sectional view showing each conventional example. 1... N-type semiconductor substrate, 2... P-type well, 3
...n-type photoelectric conversion region, 4...n-type charge transfer region, 5...p1-type channel stop, 6.
...Insulating film, 7...Charge transfer electrode, 8...
・Light-shielding metal film, 9... Aluminum light-shielding film,
DESCRIPTION OF SYMBOLS 10... N-type drain region, 11... Gate electrode, 12... Signal line, 13... Oblique incident light,
14...Photoelectric conversion charge.

Claims (1)

【特許請求の範囲】[Claims]  第1導電型半導体領域内に設けられた複数の第2導電
型の光電変換領域と、各光電変換領域に隣接して設けら
れた第1導電型の電荷読み出し領域と、前記光電変換領
域内で発生した信号電荷を前記電荷読み出し領域を介し
て受け取る信号電荷受け取り領域と、前記電荷読み出し
領域上に絶縁膜を介して設けられたゲート電極と、半導
体基板上に前記ゲート電極を覆うように形成された前記
光電変換領域上に開口を有する金属遮光膜と、前記ゲー
ト電極の側壁に前記金属遮光膜よりも膜厚が薄くかつ前
記金属遮光膜とは分離されて形成された遮光膜とを具備
する固体撮像素子。
a plurality of second conductivity type photoelectric conversion regions provided within the first conductivity type semiconductor region; a first conductivity type charge readout region provided adjacent to each photoelectric conversion region; A signal charge receiving region that receives generated signal charges via the charge readout region, a gate electrode provided on the charge readout region with an insulating film interposed therebetween, and a signal charge receiving region formed on the semiconductor substrate so as to cover the gate electrode. a metal light-shielding film having an opening over the photoelectric conversion region; and a light-shielding film formed on a side wall of the gate electrode to be thinner than the metal light-shielding film and separated from the metal light-shielding film. Solid-state image sensor.
JP1305491A 1989-11-24 1989-11-24 Solid-state image sensor Pending JPH03165063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1305491A JPH03165063A (en) 1989-11-24 1989-11-24 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1305491A JPH03165063A (en) 1989-11-24 1989-11-24 Solid-state image sensor

Publications (1)

Publication Number Publication Date
JPH03165063A true JPH03165063A (en) 1991-07-17

Family

ID=17945801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1305491A Pending JPH03165063A (en) 1989-11-24 1989-11-24 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JPH03165063A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846169A (en) * 1994-05-21 1996-02-16 Lg Semicon Co Ltd Ccd image device and its preparation
JP2006344916A (en) * 2005-06-10 2006-12-21 Canon Inc Solid-state imaging apparatus
EP2544238A3 (en) * 2004-02-19 2013-04-17 Canon Kabushiki Kaisha Solid-state image pick-up device and imaging system using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846169A (en) * 1994-05-21 1996-02-16 Lg Semicon Co Ltd Ccd image device and its preparation
EP2544238A3 (en) * 2004-02-19 2013-04-17 Canon Kabushiki Kaisha Solid-state image pick-up device and imaging system using the same
JP2006344916A (en) * 2005-06-10 2006-12-21 Canon Inc Solid-state imaging apparatus
EP2267777A3 (en) * 2005-06-10 2012-04-04 Canon Kabushiki Kaisha Solid-state image sensing device

Similar Documents

Publication Publication Date Title
US7705381B2 (en) Solid-state image sensing device and camera system using the same
US6606124B1 (en) Solid-state imaging device with photoelectric conversion portions in an array and manufacturing method thereof
JP3149855B2 (en) Solid-state imaging device and method of manufacturing the same
US5246875A (en) Method of making charge coupled device image sensor
JPH03165063A (en) Solid-state image sensor
GB2246017A (en) Method for producing a self-aligned CCD sensor
JP3248225B2 (en) Method for manufacturing solid-state imaging device
JPH05175471A (en) Solid-state image sensing device
KR19980056216A (en) Solid-state image sensor and its manufacturing method
JPS61229355A (en) Solid-state image pickup device
JP2514941B2 (en) Method of manufacturing solid-state imaging device
JPH02278874A (en) Solid state image sensor and manufacture thereof
US5699114A (en) CCD apparatus for preventing a smear phenomenon
JP2849249B2 (en) Infrared image sensor and method of manufacturing the same
JP3052367B2 (en) Solid-state imaging device
JPH04354161A (en) Solid-state image sensing element
JP3417231B2 (en) Solid-state imaging device
JPH05145056A (en) Solid state image sensor
JPS63285969A (en) Solid-state image pick-up element
JPH07120773B2 (en) Interline solid-state image sensor
JPS62269355A (en) Solid-state image sensing element
JP3772920B2 (en) Manufacturing method of light receiving part of solid-state imaging device
JPH03171770A (en) Solid state image sensing device
JPH0221659A (en) Solid-state image pick-up device
KR19990076166A (en) Solid state imaging device manufacturing method