JPH03163993A - Stereoscopic camera device - Google Patents

Stereoscopic camera device

Info

Publication number
JPH03163993A
JPH03163993A JP1301840A JP30184089A JPH03163993A JP H03163993 A JPH03163993 A JP H03163993A JP 1301840 A JP1301840 A JP 1301840A JP 30184089 A JP30184089 A JP 30184089A JP H03163993 A JPH03163993 A JP H03163993A
Authority
JP
Japan
Prior art keywords
optical
optical axis
optical path
lens system
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1301840A
Other languages
Japanese (ja)
Inventor
Hajime Sudo
肇 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1301840A priority Critical patent/JPH03163993A/en
Publication of JPH03163993A publication Critical patent/JPH03163993A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a feeling of three dimensions without generating the deviation between two right and left images at all by synthesizing two images onto one optical axis and performing the zoom operation with one lens system. CONSTITUTION:An optical axis 2 related to the image for left eye is turned by longitudinal polarization dependent upon a first optical system 31 consisting of a longitudinally polarizing reflection mirror 4 and a reflection mirror 5 and reaches a beam splitter 7 as an optical path synthesizing means 32. An optical axis 3 related to the image for right eye is reflected by a transverse polarizing reflection mirror 6 as a second optical system 33 and reaches the beam splitter 7. The beam splitter 7 functions as the optical path synthesizing means which synthesizes the optical axis 2 for left eye and the optical axis 3 for right eye onto one optical axis 8. This optical axis 8 is made incident on a lens system 9, and the image is expanded/reduced and focused by this lens system 9 and is made incident on a polarizing beam splitter 10 as an optical path separating means 34.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、両眼視差を利用する立体カメラ装置に係り
、ズームレンズ操作によっ、て2つの撮影方向からの映
像の位置ズレを防止し得るように、かつ、微細でチラツ
キの少ない映像が得られるよう工夫した立体カメラ装置
に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a stereoscopic camera device that utilizes binocular parallax, and is capable of capturing images from two photographing directions by operating a zoom lens. The present invention relates to a three-dimensional camera device that is devised to prevent positional deviation and to obtain fine images with less flickering.

(従来の技術) 遠隔地に設置された作業機械を操作する際の視覚情報と
して、いわゆる立体カメラ装置は非常に有用な手段とな
っている。
(Prior Art) A so-called stereoscopic camera device has become a very useful means for providing visual information when operating a working machine installed in a remote location.

この立体カメラ装置にあっては、1つの観察対象を少し
だけ異なる視差で撮影し、適宜手段でこれらの映像を観
察者の左右眼に個別に呈示することにより、観察者に立
体映像を提供するものがある。
This stereoscopic camera device provides a stereoscopic image to the observer by photographing one observation target with slightly different parallax and presenting these images to the left and right eyes of the observer individually using appropriate means. There is something.

適正な立体映像を観察させるためには、左右眼の映像に
垂直ズレが無く、水平方向のみに前記の視差に相当する
分だけ離れていることが望ましい。
In order to observe a proper stereoscopic image, it is desirable that the images of the left and right eyes have no vertical deviation and are separated only in the horizontal direction by an amount corresponding to the above-mentioned parallax.

しかしながら従来の立体カメラ装置では、撮像系とこれ
に取付けられるレンズ系はそれぞれ2つ、つまり1組を
用い、この1組の「撮像素子+レンズ」系で撮影された
映像を用いているため、ズームレンズ等の操作を行うレ
ンズ動作に伴い2つの映像の光軸が独立的に変動して上
述した映像の垂直ズレが生じ、立体感の消失が甚しかっ
た。
However, conventional stereoscopic camera devices use two imaging systems and two lens systems attached to them, that is, one set, and use images shot with this one set of "imaging element + lens" system. The optical axes of the two images fluctuate independently as the lens moves to operate the zoom lens, etc., resulting in the above-mentioned vertical deviation of the images, resulting in a severe loss of stereoscopic effect.

これを防止する方法として、前記1組の「撮像素子十レ
ンズ」系に調整機構を設けてこれによって光軸変動を常
に補正する方法や、多くのレンズの中から光軸ズレの生
じないペアを選択する方法など様々な試みがなされてい
るが、いずれの方法も機構の複雑さや、コストの点から
実用的なものとはいえない。
As a method to prevent this, there are methods to provide an adjustment mechanism to the above-mentioned set of "image sensor and ten lenses" system and use this to constantly correct optical axis fluctuations, or to select a pair of lenses from among many lenses that will not cause optical axis misalignment. Although various attempts have been made to select methods, none of these methods can be said to be practical due to the complexity of the mechanism and cost.

そこで、焦点やズーム値の調整を行うレンズを1個にす
ると、光軸のズレは無くなると云う利点はあるが、これ
では映像の見える周期が長くなってチラツキを生じると
云う欠点がある。
Therefore, using only one lens for adjusting the focus and zoom value has the advantage of eliminating optical axis misalignment, but has the disadvantage that the period in which the image is visible becomes longer and flickering occurs.

即ち、かかる構或の立体テレビでは、例えば2フィール
ドで一画面を構或するもので第1のフィールドを右眼の
情報として、又、第2のフィールドを左眼の情報として
、ディスプレイに出力して偏光眼鏡を使用しシャツタを
画面に同期させて右→左→右と開閉すると、右眼には第
1のフィールドの映像が、左眼には第2のフィールドの
映像が順次入るので立体感が出てくる。
That is, in a stereoscopic television having such a structure, for example, two fields constitute one screen, and the first field is output as right eye information, and the second field is output as left eye information on the display. When you use polarized glasses and open and close the shirt in synchronization with the screen from right to left to right, the image of the first field enters the right eye and the image of the second field enters the left eye, creating a three-dimensional effect. comes out.

しかし、右眼および左眼にはそれぞれ片方のフィールド
の映像しか入らないため、フリツカーを生じ、映像がチ
ラツクので精細な映像とはならない恐れがある。
However, since only one field of image enters the right eye and the left eye, flickering occurs and the image flickers, so there is a risk that the image will not be sharp.

(発明が解決しようとする課題) 上述の如く既存の立体カメラ、即ち「撮像素子+レンズ
」系においてズーム化を図る際に、左右眼用の映像に関
する光軸の調整をズーム値に応じて頻繁に行う必要があ
った、又この繁雑さを避ける為には、多数の撮像素子と
レンズの組み合わせの中から、光軸ズレの生じない適合
ペアの選別を行なわねばならなかった。
(Problem to be Solved by the Invention) As mentioned above, when attempting to zoom in an existing stereoscopic camera, that is, an "imaging element + lens" system, it is necessary to frequently adjust the optical axis for images for the left and right eyes depending on the zoom value. In order to avoid this complexity, it was necessary to select compatible pairs that would not cause optical axis misalignment from among a large number of combinations of image pickup elements and lenses.

これらの構成および作業は機構的に複雑になるばかりで
なく、非常に多くの手間や費用を余儀なくされていた。
These structures and operations are not only mechanically complex, but also require a great deal of effort and expense.

そこでこの発明は2つの撮影方向からの映像の位置ズレ
を防止し得ると共に、精細でチラツキの少ない映像を得
ることを目的としている。
Therefore, it is an object of the present invention to prevent positional deviation of images from two photographing directions and to obtain fine images with less flickering.

[発明の構成] (課題を解決するための手段) 前記課題を解決するためこの発明の構成は、観察対象を
見込む1組の光路の少なくとも一方に偏光を掛けて取り
込む光学系と、この光学系によって少なくとも一方が偏
光を掛けられた1組の光信号に係る光路を同一光軸に合
成する光路合或手段と、この光路合成手段からの出力光
の焦点調整やズーム値調整を行うレンズ系と、このレン
ズ系5 からの光信号に係る光路を前記2つの偏光の種別に応じ
て2つの光路に分離する光路分離手段と、これらの分離
されたそれぞれの光信号に従う映像を撮影する1組の撮
影手段と、この撮影手段の出力側に設けた映像信号処理
手段とを備えたものである。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the structure of the present invention includes an optical system that polarizes and captures at least one of a set of optical paths that look into an observation object, and this optical system. an optical path combining means for combining optical paths related to a set of optical signals, at least one of which is polarized, onto the same optical axis; and a lens system for adjusting the focus and zoom value of the output light from the optical path combining means. , an optical path separating means for separating the optical path of the optical signal from this lens system 5 into two optical paths according to the two types of polarization, and a set of optical path separating means for photographing images according to each of these separated optical signals. The apparatus includes a photographing means and a video signal processing means provided on the output side of the photographing means.

(作用) 観察対象は、これを見込む1組の光路の少なくとも一方
が光学系で偏光を掛けられ、次に光路合成手段によって
一つの光軸に合成され、この合成された光信号に係る光
路が1つのレンズ系によって拡大、縮小、合焦され、そ
の後再び左右眼用の映像に光路分離手段で分離され、2
つの映像手段で各々の撮影を撮影する。
(Operation) At least one of a pair of optical paths looking into the observation target is polarized by an optical system, and then combined into one optical axis by an optical path combining means, and the optical path related to this combined optical signal is The images are enlarged, reduced, and focused by one lens system, and then separated again into images for the left and right eyes by an optical path separation means.
Each shot is taken using two video means.

そして、1つのレンズ系によるズーム操作は、前記2の
光軸にズレを発生させることは無く立体感が得られる。
A zoom operation using one lens system can provide a three-dimensional effect without causing a shift in the two optical axes.

しかも、合焦,ズーム値調整が行われて再び左右眼用の
映像に分離されて2つの映像手段で各々の映像を撮影し
ているので、1フィールド毎に左6 右それぞれの眼に映像が同時に観察でき、精細でチラッ
キの無い立体画像が得られることになった。
Moreover, after focusing and zoom value adjustment are performed, the images are separated again for the left and right eyes, and each image is shot using two imaging means, so that for each field, images are sent to each of the left and right eyes. They can be observed simultaneously, and detailed, flicker-free 3D images can be obtained.

(実施例), 次にこの発明の実施例を図にもとづいて説明する。(Example), Next, embodiments of the present invention will be described based on the drawings.

まず、第1図に示すこの発明の立体カメラ装置の第1実
施例を説明する。
First, a first embodiment of the stereoscopic camera device of the present invention shown in FIG. 1 will be described.

観察対象1は或る視差をもった2つの光軸2および3で
観察されるものである。
An observation object 1 is observed with two optical axes 2 and 3 having a certain parallax.

左眼用映像に係る光軸2は、例えば縦型偏光反射鏡4と
反射鏡5とからなる第1の光学系31によって縦偏光が
掛けられて光路変更され、光路合成手段32としてのビ
ームスプリッタ7に至る。
The optical axis 2 related to the left eye image is vertically polarized by a first optical system 31 consisting of, for example, a vertical polarizing reflector 4 and a reflector 5 to change the optical path, and a beam splitter as an optical path combining means 32 It reaches 7.

右眼用映像に係る光軸3は、第2の光学系33としての
例えば横型偏光反射鏡6で反射された後、前記ビームス
プリッタ7に至る。
The optical axis 3 related to the right eye image is reflected by, for example, a horizontal polarizing reflector 6 as the second optical system 33, and then reaches the beam splitter 7.

ビームスプリッタ7は、前記左右眼用映像の光軸2,3
を、同一光軸8にまとめる光路合或手段として作用する
The beam splitter 7 separates the optical axes 2 and 3 of the left and right eye images.
It acts as an optical path combining means that brings together the same optical axis 8.

このまとめられた光軸8は、レンズ系9に入射し、この
レンズ系9によって拡大、縮小、合焦処理を受けた後、
光路分離手段34としての偏光ビームスブリッタ10に
入射する。
This combined optical axis 8 enters a lens system 9, and after being subjected to enlargement, reduction, and focusing processing by this lens system 9,
The light enters the polarization beam splitter 10 as the optical path separation means 34.

入射した映像のうち、縦型偏光で変調された左眼用映像
は、この偏光ビームスブリッタ10を直進した後、左眼
用の撮像手段11で撮影される。
Among the incident images, the left-eye image modulated by vertically polarized light travels straight through the polarizing beam splitter 10 and then is photographed by the left-eye imaging means 11 .

又、横型偏光で変調された右眼用映像は、前記偏光ビー
ムスプリッタ10で反射した後、反射鏡12でさらに反
射され、右眼用の撮像手段13で撮影される。
Further, the right-eye image modulated by horizontal polarization is reflected by the polarizing beam splitter 10, further reflected by the reflecting mirror 12, and photographed by the right-eye imaging means 13.

このように、偏光ビームスプリッタ10の偏光機能によ
り、異なる偏光或分は偏光ビームスブリッタ10を通過
、反射することは無く、左右眼の映像は完全に分離され
た型で各々の撮像手段11,13に到る。
In this way, due to the polarization function of the polarizing beam splitter 10, different polarized light beams do not pass through or are reflected by the polarizing beam splitter 10, and the images of the left and right eyes are completely separated, and the images of the left and right eyes are completely separated. reach.

図示例では、偏光ビームスプリッタ10と左眼用の撮像
手段11の間、および反射鏡12と右眼用の撮像手段1
3の間には各々、光軸調整手段14と15が設置され、
レンズ系9と各撮像手段11,13間の光軸の初期調整
を行っている。
In the illustrated example, between the polarizing beam splitter 10 and the left eye imaging means 11, and between the reflecting mirror 12 and the right eye imaging means 1,
Optical axis adjustment means 14 and 15 are respectively installed between 3,
Initial adjustment of the optical axis between the lens system 9 and each imaging means 11 and 13 is performed.

撮像手段11.13の映像信号は、左右眼用映像信号を
交互に出力する映像切替器16と、映像切替器l6の出
力を映し出す映像表示装置17と、映像表示装置17の
表示面付近に装着されて映像切替器16の出力信号に同
期して偏光状態が切り替る偏光切替器18と、偏光切替
器18の制御を行う偏光切替制御装置19とからなる映
像信号処理手段35によって処理される。
The video signals of the imaging means 11 and 13 are transmitted through a video switch 16 that alternately outputs video signals for left and right eyes, a video display device 17 that displays the output of the video switch 16, and a video display device 17 mounted near the display surface of the video display device 17. The polarization switching device 18 switches the polarization state in synchronization with the output signal of the video switching device 16, and the polarization switching control device 19 controls the polarization switching device 18.

偏光切替器18では、直線偏光を使用する場合は縦型と
横型の状態が交互に切替り、円偏光を使用する場合では
右旋回と左旋回が交互に切替る。
In the polarization switch 18, when linearly polarized light is used, vertical and horizontal states are alternately switched, and when circularly polarized light is used, right-handed rotation and left-handed rotation are alternately switched.

観察者21は、使用される偏光の種類に応じた偏光眼鏡
20(直線偏光又は円偏光)をかけることにより、左右
眼用映像を各々の眼で観察して立体映像を得る。
By wearing polarized glasses 20 (linearly polarized light or circularly polarized light) depending on the type of polarized light used, the observer 21 observes the left and right eye images with each eye to obtain a stereoscopic image.

なお、前記第1実施例において、光軸2を横偏光に、光
軸3を縦偏光としても良く、あるいは直線偏光の代りに
円偏光を用いてもよい。
In the first embodiment, the optical axis 2 may be horizontally polarized and the optical axis 3 may be vertically polarized, or circularly polarized light may be used instead of linearly polarized light.

前記光軸調整は、一般に初めに1回のみ行われれば以後
行う必要は無く、又、片方の撮像手段に9 のみ設置されていても良い。
Generally, if the optical axis adjustment is performed only once at the beginning, there is no need to perform it thereafter, and only one of the imaging means 9 may be provided.

又、光軸調整手段14.15には、画像の拡大率などを
変更する手段を付加しても良く、さらにこれらの手段を
前記レンズ系9の部分に追加しても良い。
Further, means for changing the magnification of the image, etc. may be added to the optical axis adjustment means 14, 15, and these means may be added to the lens system 9.

映像信号処理手段35は、公知の種々の構成を利用でき
るものであり、前記図示例に限られるものでは無い。
The video signal processing means 35 can utilize various known configurations, and is not limited to the illustrated example.

続いて、第2図に示すこの発明の立体カメラ装置の第2
実施例を説明する。
Next, the second stereoscopic camera device of the present invention shown in FIG.
An example will be explained.

この実施例では観察対象を見込む光軸2,3のうち左眼
用映像の光路は光路合或手段62としての偏光ビームス
プリッタ71を直進的に通過して縦型偏光に変調される
In this embodiment, the optical path of the left-eye image among the optical axes 2 and 3 looking into the observation object passes straight through a polarizing beam splitter 71 as an optical path combining means 62, and is modulated into vertically polarized light.

又、右眼用映像の光路は反射鏡61で反射した後、この
偏光ビームスプリッタ71でさらに反射される際、横型
偏光に変調される。
Further, when the optical path of the right eye image is reflected by the reflecting mirror 61 and further reflected by the polarizing beam splitter 71, it is modulated into horizontally polarized light.

前記偏光ビームスプリッタ71は各偏光変調をかけると
同時に、前記2つの光路で同一光軸8にまとめる機能を
有している。
The polarizing beam splitter 71 has the function of applying each polarization modulation and converging the two optical paths onto the same optical axis 8.

10 第1実施例では左右眼用映像の光路長は両者が同一であ
り、観察対象1がレンズ系31.33の焦点距離程度以
下に近づいても立体視には何等影響を及ぼさない。
10 In the first embodiment, the optical path lengths of the images for the left and right eyes are the same, and even if the observation object 1 approaches the focal length of the lens system 31, 33 or less, the stereoscopic vision is not affected in any way.

第2図の第2実施例では、光学手段は第1実施例に比べ
て簡単な構造であるが右眼用映像光路長が左眼用映像の
光路長に比べて長いため、右眼用映像の大きさが左眼用
映像に比して小さく、両者の比はレンズ系9の拡大率が
大きくなるほど、又、観察対象1を近距離で見るほど大
きくなるので、立体視の可能な領域が制限される場合が
ある。
In the second embodiment shown in FIG. 2, the optical means has a simpler structure than the first embodiment, but since the optical path length of the right eye image is longer than the optical path length of the left eye image, the right eye image is smaller than the left-eye image, and the ratio of the two increases as the magnification of the lens system 9 increases, and as the object 1 is viewed from a closer distance, the area where stereoscopic vision is possible increases. There may be restrictions.

前記2つの実施例で使用する偏光ビームスプリッタ7,
・10.71は透過率あるいは反射率を適宜調整するこ
とによって画質劣化の低減が可能である。
Polarizing beam splitter 7 used in the above two embodiments,
- For 10.71, image quality deterioration can be reduced by appropriately adjusting the transmittance or reflectance.

レンズ系9の前方、即ちレンズ系つと観察対象1の間の
左右眼映像用光軸に関わる偏光は、必要により偏光成分
のみの透過率或いは反射率を高くすることによって光量
の減少を防止できる。
Regarding the polarized light related to the optical axis for left and right eye images in front of the lens system 9, that is, between the lens system 1 and the observation object 1, a decrease in the amount of light can be prevented by increasing the transmittance or reflectance of only the polarized light component, if necessary.

又、撮像手段11.13の直前の偏光ビームスプリッタ
10は、一般に透過率と反射率とが等しく設定される。
Furthermore, the polarizing beam splitter 10 immediately in front of the imaging means 11, 13 is generally set to have equal transmittance and reflectance.

次に作用を説明する。Next, the action will be explained.

前記実施例では、ズーム操作に伴うレンズ系9はl組だ
けであり、ここで左右眼用映像の2つの光路が同時に拡
大、縮小、合焦され、その後再び左右眼用の映像に分離
され、このレンズ系に固着された2つの映像手段11.
13で各々の映像を撮影する。
In the embodiment described above, there are only l sets of lens systems 9 involved in the zoom operation, and here the two optical paths of the images for the left and right eyes are simultaneously enlarged, reduced, and focused, and then separated again into images for the left and right eyes. Two imaging means 11 are fixed to this lens system.
13 to shoot each video.

そして前記レンズ系9と2つの撮像手段11,13の光
軸の初期調整が光軸調整手段14.15によってなされ
ていてレンズ系9は1つであるので、如何なるズーム操
作を行っても前記2つの光軸3,4にズレが生じること
はない。
Since the optical axes of the lens system 9 and the two imaging means 11 and 13 are initially adjusted by the optical axis adjustment means 14 and 15, and there is only one lens system 9, no matter what zoom operation is performed, the optical axes of the two imaging means 11 and 13 are No deviation occurs between the two optical axes 3 and 4.

又、観察対象1は視差をもった1組の光学系により左右
眼映像が互いに異なる偏光で変調される。
Furthermore, the left and right eye images of the observation object 1 are modulated with different polarizations by a pair of optical systems with parallax.

直線偏光を用いている場合には右眼用映像は例えば縦偏
光に左眼用映像は横偏光に変調される。
When linearly polarized light is used, the image for the right eye is modulated into vertically polarized light, and the image for the left eye is modulated into horizontally polarized light, for example.

そして、変更された後、光路合戊手段7又は71によっ
て再び同一光軸上の映像に合成され、レ11 ンズ系9に入射する。
After being changed, the images are combined again into an image on the same optical axis by the optical path combining means 7 or 71, and then enter the lens system 9.

左右眼用映像は予め偏光変調されているので、このレン
ズ系9から出射した後は、同一光軸の左右眼用映像は偏
光ビームスプリッタ10.12などを用いた光路分離手
段34によって容易に元の2つの光軸2,3に分離でき
る。
Since the images for the left and right eyes have been polarized in advance, after exiting from this lens system 9, the images for the left and right eyes on the same optical axis can be easily converted back to their original state by an optical path separation means 34 using a polarizing beam splitter 10, 12 or the like. can be separated into two optical axes 2 and 3.

この分離された2つの映像は、各々の撮像手段11.1
3によってそれぞれ撮影されるので、映像表示装置17
に現われる映像を偏光眼鏡20を介して観察すると、左
右双方の眼に完全な一画面としての映像が観察されるの
で、精細でチラツキの無い立体画像が見られることにな
る。
These two separated images are captured by each imaging means 11.1.
3, the video display device 17
When the image appearing on the screen is observed through the polarized glasses 20, the image is viewed as a complete screen by both the left and right eyes, so a fine, flicker-free stereoscopic image can be seen.

そして上記構成では撮像手段11.13に到るまでにお
いて、可動部分は1つのレンズ系9のみでありその他の
各手段は機械的にも電気的にも可動部分は皆無であるの
で、初期設定さえ確実にしておけば、レンズ操作に伴う
光軸ズレは全く発生せず、また偏光変調を実現するため
に電気的な同期をとる必要も無いことから、極めて簡単
な機械、電気的構戊により立体カメラのズーム化を実現
て1 3 12 きる。
In the above configuration, up to the imaging means 11 and 13, the movable part is only one lens system 9, and the other means have no mechanically or electrically movable parts, so even the initial settings are If this is done securely, there will be no optical axis misalignment due to lens operation, and there is no need for electrical synchronization to achieve polarization modulation. The camera can be zoomed 1 3 12.

[発明の効果] 以上によって明らかなようにこの発明の構成によれば、
左右2つの映像は1つの光軸に合成されて1つのレンズ
系によりズーム操作が行われるので、2つの映像にズレ
は全く発生せず、立体感が得られる。
[Effects of the Invention] As is clear from the above, according to the configuration of this invention,
Since the two left and right images are combined onto one optical axis and the zoom operation is performed using one lens system, there is no misalignment between the two images and a three-dimensional effect can be obtained.

そして、合焦、ズーム値調整が行われて再び左右眼用の
映像に分離されて2つの映像手段で各々の映像を撮影し
ているので、左右それぞれの眼に完全な一画面としての
映像が観察でき、精細でチラツキの無い立体画像が得ら
れることになり、また、従来のように2組のTVカメラ
を設けた場合に比べてこの発明は簡易で低コストな立体
カメラ装置が実現できた。
Then, the focus and zoom values are adjusted and the images are separated again for the left and right eyes, and each image is shot using two video means, so each eye sees a complete image of one screen. It is possible to obtain detailed and flicker-free stereoscopic images, and compared to the conventional case where two sets of TV cameras are provided, this invention has realized a simpler and lower-cost stereoscopic camera device. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図はこの発明に係る立体カメラ装置の各実
施例を示す構成図である。 1・・・観察対象 9・・・レンズ系 11.13・・・撮像手段 31.33・・・光学系1
 4 32.62・・・光路合成手段 34・・・光路分離手段 35・・・映像信号処理手段
FIGS. 1 and 2 are configuration diagrams showing each embodiment of a stereoscopic camera device according to the present invention. 1... Observation object 9... Lens system 11.13... Imaging means 31.33... Optical system 1
4 32.62... Optical path combining means 34... Optical path separating means 35... Video signal processing means

Claims (2)

【特許請求の範囲】[Claims] (1)観察対象を見込む1組の光路の少なくとも一方に
偏光を掛けて取り込む光学系と、この光学系によって少
なくとも一方が偏光を掛けられた1組の光信号に係る光
路を同一光軸に合成する光路合成手段と、この光路合成
手段からの出力光の焦点調整やズーム値調整を行うレン
ズ系と、このレンズ系からの光信号に係る光路を前記2
つの偏光の種別に応じて2つの光路に分離する光路分離
手段と、これらの分離されたそれぞれの光信号に従う映
像を撮影する1組の撮影手段と、この撮影手段の出力側
に設けた映像信号処理手段とを備えていることを特徴と
する立体カメラ装置。
(1) An optical system that polarizes and takes in at least one of a set of optical paths looking into the observation target, and a set of optical paths associated with a set of optical signals, at least one of which is polarized by this optical system, on the same optical axis. a lens system for adjusting the focus and zoom value of the output light from this optical path combining means; and an optical path for the optical signal from this lens system.
an optical path separating means for separating into two optical paths according to the type of polarization, a set of photographing means for photographing images according to each of these separated optical signals, and a video signal provided on the output side of this photographing means. A stereoscopic camera device comprising: processing means.
(2)観察対象を互いに異なる偏光を掛けて取り込む1
組の光学系と、この1組の光学系からの光信号に係る光
路を同一光軸に合成する光路合成手段と、この光路合成
手段からの出力光の焦点調整やズーム値調整を行うレン
ズ系と、このレンズ系からの光信号に係る光路を前記2
つの偏光の種別に応じて2つの光路に分離する光路分離
手段と、これらの分離されたそれぞれの光信号に従う映
像を撮影する1組の撮影手段と、この撮影手段の出力側
に設けた映像信号処理手段とを備えていることを特徴と
する立体カメラ装置。
(2) Capturing the observation target with different polarizations 1
a set of optical systems, an optical path combining means that combines optical paths related to optical signals from this set of optical systems onto the same optical axis, and a lens system that adjusts the focus and zoom value of the output light from this optical path combining means. And, the optical path related to the optical signal from this lens system is
an optical path separating means for separating into two optical paths according to the type of polarization, a set of photographing means for photographing images according to each of these separated optical signals, and a video signal provided on the output side of this photographing means. A stereoscopic camera device comprising: processing means.
JP1301840A 1989-11-22 1989-11-22 Stereoscopic camera device Pending JPH03163993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1301840A JPH03163993A (en) 1989-11-22 1989-11-22 Stereoscopic camera device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1301840A JPH03163993A (en) 1989-11-22 1989-11-22 Stereoscopic camera device

Publications (1)

Publication Number Publication Date
JPH03163993A true JPH03163993A (en) 1991-07-15

Family

ID=17901792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1301840A Pending JPH03163993A (en) 1989-11-22 1989-11-22 Stereoscopic camera device

Country Status (1)

Country Link
JP (1) JPH03163993A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312545A (en) * 2003-04-09 2004-11-04 N H K Technical Service:Kk Stereoscopic image pickup device
JP2012133311A (en) * 2010-11-30 2012-07-12 Sharp Corp Stereoscopic photographing device and electronic apparatus equipped with the same
WO2012127924A1 (en) * 2011-03-22 2012-09-27 シャープ株式会社 Stereoscopic image capturing device and electronic equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312545A (en) * 2003-04-09 2004-11-04 N H K Technical Service:Kk Stereoscopic image pickup device
JP2012133311A (en) * 2010-11-30 2012-07-12 Sharp Corp Stereoscopic photographing device and electronic apparatus equipped with the same
WO2012127924A1 (en) * 2011-03-22 2012-09-27 シャープ株式会社 Stereoscopic image capturing device and electronic equipment
JP2012198414A (en) * 2011-03-22 2012-10-18 Sharp Corp Stereoscopic image photographing device and electronic apparatus
WO2013001880A1 (en) * 2011-06-29 2013-01-03 シャープ株式会社 Three-dimensional imaging device and electronic equipment provided with same

Similar Documents

Publication Publication Date Title
JP4131818B2 (en) Single-axis stereoscopic video imaging device with optical axis alignment capability
US7061532B2 (en) Single sensor chip digital stereo camera
JP3186448B2 (en) 3D TV camera
US5914810A (en) Stereoscopic imaging arrangement and viewing arrangement
US20030007193A1 (en) Three-dimensional image producing method and apparatus therefor
JP2004524553A6 (en) Single-axis stereoscopic video imaging device with optical axis alignment capability
EP0577268B1 (en) Optical system
JP2004312545A (en) Stereoscopic image pickup device
JP3205552B2 (en) 3D image pickup device
JPH03163993A (en) Stereoscopic camera device
JPH08191462A (en) Stereoscopic video reproducing device and stereoscopic image pickup device
JPH08205200A (en) Three-dimensional image pickup device
KR100389794B1 (en) Dual lens stereo camera
JPH01319721A (en) Stereoscopic microscope
JP2000152282A (en) Stereoscopic picture photographing device
JP3520197B2 (en) 3D camera device
GB2150311A (en) Viewing system
CN112291448A (en) Small viewpoint distance view shooting and acquiring system
JPS5884589A (en) Image pickup system for stereoscopic television
JP2001075046A (en) Stereoscopic vision system
US20140118505A1 (en) Stereoscopic image capture
KR100194566B1 (en) Stereoscopic image recording and recording equipment for camcorders
CA2177165C (en) Stereoscopic imaging arrangement and viewing arrangement
JPH10271534A (en) Stereoscopic image photographing device
JPH11258516A (en) Stereomicroscope allowed to be ubserved by plural observers