JP2001075046A - Stereoscopic vision system - Google Patents

Stereoscopic vision system

Info

Publication number
JP2001075046A
JP2001075046A JP25283199A JP25283199A JP2001075046A JP 2001075046 A JP2001075046 A JP 2001075046A JP 25283199 A JP25283199 A JP 25283199A JP 25283199 A JP25283199 A JP 25283199A JP 2001075046 A JP2001075046 A JP 2001075046A
Authority
JP
Japan
Prior art keywords
stereoscopic
screen
optical system
optical axis
screens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25283199A
Other languages
Japanese (ja)
Other versions
JP2001075046A5 (en
JP4332766B2 (en
Inventor
Eriko Shimizu
栄理子 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25283199A priority Critical patent/JP4332766B2/en
Publication of JP2001075046A publication Critical patent/JP2001075046A/en
Publication of JP2001075046A5 publication Critical patent/JP2001075046A5/ja
Application granted granted Critical
Publication of JP4332766B2 publication Critical patent/JP4332766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a small adapter which is mounted to a normal zoom camera for photographing a stereoscopic picture by using an optical system constituting a stereoscopic unit picture of optical axis conversion which has a pair of concave lenses at an objective input part and whose output part is connected with a telephoto lens picture inputting optical system. SOLUTION: Respective left/right input pictures L and R are taken by objective concave lenses L1L and L1R, and enter the zoom optical system Z1 of a camera 31 through reflecting mirror pair optical systems M1L, M2L and M1R, M2R being optical axis converting optical system consisting of objective side reflecting mirrors M1L, M1R and eye piece side reflecting mirrors M2L, M2R to constitute a stereoscopic unit picture 41 on a camera picture receiving surface. Then, the optical axis of an inputted picture is moved by bL and bR in a horizontal direction by these left and right pair of reflecting mirrors to realize a stereoscopic gap (b8 of left/right stereoscopic pictures as their sums bL+bR. By using this optical system constituting stereoscopic unit picture, a small adapter which is mounted to a normal zoom camera for photographing a stereoscopic picture is realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は立体視システムの構成方
式に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a configuration system of a stereoscopic vision system.

【0002】[0002]

【従来の技術】従来、立体視差に相当する距離だけ左右
に離れた位置からの立体両画面を、上下又は左右に並べ
て一枚の立体単位画面に構成し表示する立体視システム
がある。このシステムに於いては、立体画像入力手段と
して左右の各画面に対し各々2枚の反射鏡を組み合わる
事により各画面の光軸を移動して立体単位画面を形成す
るアダプタを利用する手法が用いられていた。また、こ
の立体視システムでは、表示画面に並べられた左右両画
面を、光軸を屈折する観測光学系を通して重ね合わせる
事により立体視がなされていた。
2. Description of the Related Art Conventionally, there is a stereoscopic viewing system in which both stereoscopic screens from a position left and right separated by a distance corresponding to stereoscopic parallax are arranged vertically and horizontally and formed as one stereoscopic unit screen and displayed. In this system, there is a method of using an adapter to form a stereoscopic unit screen by moving the optical axis of each screen by combining two reflecting mirrors for each of the left and right screens as stereoscopic image input means. Was used. In this stereoscopic vision system, stereoscopic vision is achieved by superimposing both left and right screens arranged on a display screen through an observation optical system that refracts the optical axis.

【0003】[0003]

【発明が解決しようとする課題】しかし、立体単位画面
による立体視システムに於いて、この立体単位画面を構
成する反射鏡対によるアダプタを実現する場合には、そ
の入力部にあたる左右両画面を入力する対物側反射鏡か
ら、これらの画面を接眼側反射鏡により組み合わせて単
位画面としてカメラに出力する出力部となるカメラの画
像入力レンズの位置までの間には、上記の左右両画面間
の立体視差間隔に相当する距離や、これらの反射鏡光学
系を設置するためのスペースなど、アダプタ光学系を構
成するための一定の間隔が必要になる。これに伴い、画
面の角度の広がりに合わせてこの間隔を確保するため
に、特に最も外側に位置する対物側反射鏡の面積を大き
く広げる事が必要になる。特にパノラマ画面のように画
面を横に広く取ろうとすると、間隔の増大とともに画面
が急激に広がるために、対物側反射鏡として極端に大き
な面積が必要になり、従って従来この方式による立体単
位画面構成光学系を構成しようとすると、特にパノラマ
画面の場合、非常に大型で実用性に乏しい構成になって
しまっていた。一方、立体単位画面上に並んだ左右立体
両画面を重ね合わせて立体視するとき、この両画面の境
界面では、両画面の端が相互に入り交じりぼやけた領域
が出来てしまうために、明確な重ね合わせが出来なくな
るだけでなく、さらに重ね合わせた時ここに混じり込ん
だ不要な画面部分も入るため、明瞭な立体視が出来なか
った。本発明はこれらの欠点を解除し、小型コンパクト
な立体単位画面構成光学系と明瞭な立体視を可能にする
観測光学系による立体視システムを実現する事を目的と
したものである。
However, in a stereoscopic system using a stereoscopic unit screen, when implementing an adapter using a pair of reflecting mirrors constituting the stereoscopic unit screen, both left and right screens corresponding to the input units are input. From the objective-side reflecting mirror to the position of the image input lens of the camera, which is an output unit that outputs these images to the camera as a unit screen by combining these screens with the eyepiece-side reflecting mirror, A certain interval for configuring the adapter optical system, such as a distance corresponding to the parallax interval and a space for installing these reflecting mirror optical systems, is required. Along with this, in order to secure this interval according to the spread of the angle of the screen, it is particularly necessary to greatly increase the area of the outermost objective-side reflecting mirror. In particular, when trying to make the screen wide horizontally like a panoramic screen, the screen rapidly expands with an increase in the interval, so an extremely large area is required as the objective-side reflecting mirror. When trying to configure an optical system, particularly in the case of a panoramic screen, the configuration has been very large and impractical. On the other hand, when the left and right three-dimensional screens arranged on the three-dimensional unit screen are superimposed and stereoscopically viewed, the edges of both screens enter each other at the boundary surface of these two screens, resulting in a blurred area, Not only was it impossible to superimpose the images, but when the images were further superimposed, unnecessary screens were mixed into the images, making clear stereoscopic vision impossible. An object of the present invention is to eliminate these drawbacks and to realize a stereoscopic vision system using a compact and compact stereoscopic unit screen constituting optical system and an observation optical system which enables clear stereoscopic vision.

【0004】[0004]

【課題を解決するための手段】これらの目的を達成する
ために、本発明ではまず対物凹レンズと、画像を入力す
るカメラが一般に持っている狭角の望遠レンズ機能との
組み合わせを利用した単位画面構成光学系を実現した。
即ち、この光学系をコンパクトにするためには望遠レン
ズのように画角を小さく取ることにより、反射鏡光学系
を設置するのに必要な間隔を設定しても、この中での画
面の広がりを極力小さくすることを目指した。本発明を
応用しようとしている、通常のビデオカメラ等において
は、ズーム光学系が用いられる場合が多く、これらのカ
メラでは広角画面と共にズーミングにより容易に望遠画
面を得ることが可能になっている。しかもかなり狭い画
角(強い望遠)を可能にしているのが一般的であり、こ
の目的に大変適している。しかし、これは上述のような
パノラマ画面の広角画面を必要とする場合とは逆になっ
てしまうので、そのままではコンパクトな構成にしよう
とすればするほど非常に狭い画角の立体画面しか得られ
なくなってしまう。
In order to achieve these objects, the present invention first provides a unit screen utilizing a combination of an objective concave lens and a narrow-angle telephoto lens function generally provided in a camera for inputting an image. The constituent optical system was realized.
That is, in order to make this optical system compact, the angle of view is set to be small like a telephoto lens, so that even if the interval required for installing the reflecting mirror optical system is set, the screen spreads in this space. The goal was to minimize as much as possible. A general video camera or the like to which the present invention is applied often uses a zoom optical system. In these cameras, a telephoto screen can be easily obtained by zooming together with a wide-angle screen. In addition, it generally enables a considerably narrow angle of view (strong telephoto), and is very suitable for this purpose. However, this is the opposite of the case where a wide-angle panoramic screen is required as described above, so that a stereoscopic screen with a very narrow angle of view can be obtained as it is if a compact configuration is used as it is. Will be gone.

【0005】このため本発明では、最終的に得ようとす
る広角画面をまず対物凹レンズで画角の狭い圧縮した画
面に変換し、この圧縮画面をカメラ望遠レンズ光学系の
狭い画角の光学系で画像入力することにより、最終的に
元の広角画面の入力画像を得る機能を実現した。カメラ
が一般的機能として持つズームレンズ光学系の望遠レン
ズ機能を利用する構成とすることにより、これまでの横
方向に広がりのあるパノラマ立体画面を構成する場合
に、光学系の反射鏡が大型化してしまうと言う懸案のあ
った立体単位画面構成光学系を、著しく小型コンパクト
な形の反射鏡光学系で、かつ必要な広角入力画面で得ら
れる立体単位画面構成光学系を実現する事ができた。な
お、従来もカメラ光学系の前に装着して広角画面を得る
広角アタッチメントは良く知られている。しかし、これ
はあくまで、もとのカメラの光学系の焦点距離を等価的
に短くするアタッチメントレンズであり、本発明のよう
に、反射鏡光学系を設定するスペースを確保するために
カメラの持つ狭い画角の望遠レンズ機能を活用し、これ
を補完し最終的に広角画面をするために対物凹レンズを
装着する場合とは、目的、原理をまったく異にするもの
である。
For this reason, in the present invention, a wide-angle screen to be finally obtained is first converted into a compressed screen having a narrow angle of view by an objective concave lens, and this compressed screen is converted into an optical system having a narrow angle of view of a camera telephoto lens optical system. Thus, the function of finally obtaining the input image of the original wide-angle screen was realized by inputting an image with the. By using the telephoto lens function of the zoom lens optical system, which is a general function of the camera, the size of the reflector of the optical system has been increased in the case of forming a panoramic three-dimensional screen that has spread horizontally in the past. It was possible to realize a stereoscopic unit screen configuration optical system that can be obtained with a remarkably compact and compact reflecting mirror optical system and a necessary wide-angle input screen, instead of the stereoscopic unit screen configuration optical system that was a concern that . A wide-angle attachment that is mounted in front of a camera optical system to obtain a wide-angle screen has been well known. However, this is merely an attachment lens that shortens the focal length of the optical system of the original camera equivalently, and as in the present invention, the narrow space of the camera to secure the space for setting the reflecting mirror optical system. The purpose and principle are completely different from the case where the objective concave lens is attached to utilize the telephoto lens function of the angle of view, complement it, and finally provide a wide-angle screen.

【0006】一方、立体単位画面構成の立体視方式にお
いては、例えば縦型配列方式の場合、立体表示面に表示
される上下の画面を観測光学系により重ね合わせて立体
視する事になるが、左右の各眼から見たときには左右各
画面に相当する部分以外は完全に遮蔽されている事が望
ましい。表示画面の周辺部については、もともと表示画
面自身が周囲を縁取りされておりマスク機能があるので
あまり問題にはならない。しかし、特に単位画面中央部
での立体両画面の境界部分については、境界を明確に区
分しようとすればするほど両者を正確にマスクして明確
に区分する必要がある。しかし、光学的に単位画面を構
成しようとする場合、この部分は例えば縦型構成の場合
上下に並ぶ立体両画面の光学系が重なり合う部分なの
で、一般には両画面が相互ににじみ合い、ぼやけた無駄
な境界部分を形成してしまう場合が多く、現実には明確
にマスクすることが非常に困難であった。このために、
立体単位画面上の両画面境界領域について、一定の幅の
領域を強制的にブランク領域として設定すれば、端がぼ
やけて両画面が混じり合う不明瞭領域がこれでマスクさ
れ、左右両画面の領域が明確に枠取りされるので、左右
画面についてその重ね合わせ動作を容易にする事が可能
になる。一方、立体視観測光学系に遮蔽板を設け、これ
により画面上の不要部分をマスクする場合もあるが、こ
の遮蔽板は眼の近くに位置する事になるために、マスク
する縁がどうしてもぼけてしまっていた。しかしこの場
合でも、このブランク領域によりこのブランク領域に相
当する分だけマスク画面が前もって明瞭に縁取りされる
ので、このボケの影響を無くす事が出来て明確なマスク
が非常に簡単に出来るようになり、立体視観測が非常に
やり易くなる。さらには、このブランク部分はコントロ
ールデータ等の画像関連情報の格納領域として利用する
ことも出来る。
On the other hand, in a stereoscopic system having a stereoscopic unit screen configuration, for example, in the case of a vertical arrangement system, upper and lower screens displayed on a stereoscopic display surface are superimposed by an observation optical system and stereoscopically viewed. When viewed from the left and right eyes, it is desirable that the portions other than the portions corresponding to the left and right screens be completely shielded. As for the peripheral portion of the display screen, the display screen itself is originally bordered and has a mask function, so that there is not much problem. However, in particular, as for the boundary portion between the stereoscopic screens at the center of the unit screen, the more the boundary is to be clearly defined, the more accurately the two need to be masked and must be clearly defined. However, when attempting to optically configure a unit screen, for example, in the case of a vertical configuration, since the optical systems of the two-dimensional screens arranged vertically overlap each other, the two screens generally permeate each other, resulting in blurred waste. In many cases, a sharp boundary portion is formed, and in practice, it is very difficult to clearly mask. For this,
If a fixed width area is forcibly set as a blank area for both screen boundary areas on the three-dimensional unit screen, the unclear area where the edges are blurred and the two screens are mixed is masked by this, and the area on both the left and right screens is masked. Are clearly framed, so that the superimposing operation on the left and right screens can be facilitated. On the other hand, a shielding plate may be provided in the stereoscopic observation optical system to mask unnecessary parts on the screen, but since this shielding plate is located near the eyes, the edge to be masked is inevitably blurred. Had been lost. However, even in this case, the mask area is clearly bordered in advance by the blank area in an amount corresponding to the blank area, so that the effect of the blur can be eliminated and a clear mask can be very easily formed. This makes it very easy to perform stereoscopic observation. Further, this blank portion can be used as a storage area for image-related information such as control data.

【0007】更にこの場合、上下各画面の各外側の縁に
当たる各々の上端または下端の視野を、対応する他方画
面の視野よりもやや大きく取るようにすれば、重ね合わ
せた画面の上端および下端が一部平面画像になるが、全
体として画面が広がり、かつ、画面の外側端にあたる上
記上下端を除く主要な大部分が立体画像になる。これに
より、立体感を殆ど損なう事なく、全体として画面が広
がった立体視を実現する事が可能になる。
Further, in this case, if the field of view of the upper end or the lower end corresponding to the outer edge of each of the upper and lower screens is made slightly larger than the corresponding field of view of the other screen, the upper and lower ends of the superimposed screens can be adjusted. Although a part of the screen becomes a planar image, the main part of the screen becomes a three-dimensional image except for the upper and lower ends corresponding to the outer edges of the screen as a whole. As a result, it is possible to realize a stereoscopic view in which the screen is widened as a whole without substantially impairing the stereoscopic effect.

【0008】また、表示面に表示された立体単位画面を
観測光学系を通して立体視する場合には、表示面におい
て左右各々の眼から見える立体単位画面上で両画面の境
界部分を含む不必要な画面部分を、観測光学系に対で設
けられる遮蔽板により各々マスクする事により、より明
瞭な立体視が実現される。しかし、この遮蔽板を備える
観測光学系は一般に眼に接した間近の位置にあり、特に
従来はこの遮蔽板が観測光学系のレンズやプリズムの上
辺または下辺に直接つけるなど眼に密着していたため、
近すぎて観測時にマスク像が焦点ボケしてしまってい
た。このためマスクとなる遮蔽板の辺の部分もぼやけて
しまい、ぼやけた不完全なマスキングしか出来なかっ
た。従って、本発明の観測光学系に於いては、眼からの
距離を離した位置に遮蔽板を設置する構成とする事によ
り、マスクする境界部のぼけを著しく少なくする事を可
能にしたものである。 更に、立体単位画面上の両画面
の境界部をマスクする上記2枚の遮蔽板の一方または両
方を可変構造とする事により、観測光学系での立体視観
測に際し、観測する立体画面の画角に対応してマスクさ
れる面を、この遮蔽板を動かし調整設定する事により、
明瞭に重ね合わされた立体画面を観測出来るようにし
た。 またこの場合には、一方の遮蔽板は固定として、
他方の遮蔽板のみ可変とすることでも、この立体画面の
合わせを行う事が可能である。
When the stereoscopic unit screen displayed on the display screen is stereoscopically viewed through the observation optical system, unnecessary three-dimensional unit screens including the boundary between the two screens on the stereoscopic unit screen viewed from the right and left eyes on the display surface. By masking the screen portions with shielding plates provided in pairs in the observation optical system, clearer stereoscopic vision is realized. However, the observation optical system equipped with this shielding plate is generally located close to the eye, especially in the past because this shielding plate was closely attached to the eye such as directly attached to the upper or lower side of the lens or prism of the observation optical system ,
The mask image was out of focus during observation because it was too close. For this reason, the side portions of the shielding plate serving as a mask are also blurred, and only a blurry and incomplete masking can be performed. Therefore, in the observation optical system of the present invention, the configuration in which the shielding plate is installed at a position away from the eyes enables the blur at the boundary portion to be masked to be significantly reduced. is there. Furthermore, by making one or both of the two shielding plates having a variable structure to mask the boundary between the two screens on the three-dimensional unit screen, the angle of view of the three-dimensional screen to be observed in the stereoscopic observation with the observation optical system. By moving this shield plate and adjusting the masked surface corresponding to
The 3D image clearly superimposed can be observed. In this case, one of the shielding plates is fixed,
By making only the other shield plate variable, it is possible to match the three-dimensional screen.

【0009】[0009]

【発明の実施の形態】次に本発明の実施の形態を実施例
に基づき図面を参照して説明する。図7には本発明立体
単位画面構成光学系の動作原理を示す。まず図7(a)に
示される通り、この光学系では、対物凹レンズL1に入っ
た画角w1の入力画面Aはこの凹レンズL1により画角w2に
圧縮される。ここで、この画角w2を、装着される画像入
力光学系となるカメラ光学系Z1のズーム望遠画面の画角
に合致させた場合、カメラから見たときこの入力画面の
受光画像Gは、丁度画角w1の画面を直接入力した場合に
相当する受光画像GIと同等になる。従って、本光学系
を構成する事により、対物凹レンズには等価的に広い画
角w1の画像を入力しながら、画面の広がりを抑えた狭い
画角w2の状態で、対物レンズL1とカメラ光学系レンズZ1
との間に距離xのスペースを確保する事を可能にした。
即ち、図7(b)に示されるように、本構成により確保さ
れた距離xの中に、対物側反射鏡M1および接眼側反射鏡M
2により、左右立体両画面の立体間隔を確保する光軸移
動を行うための反射鏡対光学系M1、M2を構成することが
可能になる。この場合、凹レンズを用いず入力広角画面
w1に対して直接この間隔xのスペースをとって反射鏡光
学系を構成しようとすると、画角の広がりをカバーする
ために巨大な面積の反射鏡が必要となり、現実には実現
が困難であった。この場合、カメラ光学系Z1の画角は必
ずしも画角w2に合わせなくても良いが、画面の拡大をよ
り抑え長い距離xを得るために更に狭い画角を取ろうと
すれば、対物画面に於いて取り込もうとする画角も狭く
なってしまう。 また、カメラのズーム光学系について
は、特にビデオカメラの場合には、一般にズーム望遠倍
率が高く非常に狭い画角が容易に得られるので、本発明
の構成を実現するのに大変適している。更に、このズー
ム動作により画角w2は自由に変えられるので、入力画面
の画角w1と対物凹レンズとの組み合わせ設定の自由度が
非常に高くなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described based on examples with reference to the drawings. FIG. 7 shows the operation principle of the stereoscopic unit screen constituting optical system of the present invention. First, as shown in FIG. 7A, in this optical system, the input screen A of the angle of view w1 entering the objective concave lens L1 is compressed to the angle of view w2 by the concave lens L1. Here, when this angle of view w2 is matched with the angle of view of the zoom telephoto screen of the camera optical system Z1 which is the image input optical system to be mounted, the light reception image G of this input screen when viewed from the camera is exactly This is equivalent to the received light image GI corresponding to the case where the screen of the angle of view w1 is directly input. Therefore, by configuring this optical system, the objective lens L1 and the camera optical system can be input to the objective concave lens in a state of a narrow angle of view w2 that suppresses the spread of the screen while equivalently inputting an image with a wide angle of view w1. Lens Z1
Enabled to secure a space of distance x between
That is, as shown in FIG. 7B, within the distance x secured by the present configuration, the objective-side reflecting mirror M1 and the eyepiece-side reflecting mirror M
According to 2, it becomes possible to configure the reflecting mirror pair optical systems M1 and M2 for performing the optical axis movement for securing the three-dimensional space between the left and right three-dimensional screens. In this case, input wide-angle screen without concave lens
If an attempt is made to construct a reflecting mirror optical system by directly taking the space of the distance x with respect to w1, a reflecting mirror having a large area is required to cover the widening of the angle of view. Was. In this case, the angle of view of the camera optical system Z1 does not necessarily have to match the angle of view w2, but if an attempt is made to obtain a narrower angle of view in order to further suppress the enlargement of the screen and obtain a long distance x, the angle of view on the objective screen is reduced. The angle of view that is trying to capture is also narrowed. In addition, the zoom optical system of the camera is particularly suitable for realizing the configuration of the present invention, especially in the case of a video camera, since the zoom telephoto magnification is generally high and a very narrow angle of view can be easily obtained. Further, since the angle of view w2 can be freely changed by the zoom operation, the degree of freedom in setting the combination of the angle of view w1 of the input screen and the objective concave lens is very high.

【0010】図1には本発明立体視システムの光軸変換
立体単位画面構成光学系の実施例を示す.即ち、図1の
本発明光学系は縦型配列の立体単位画面方式の場合の例
である。ここでは、左右の各入力画面L,Rが対物凹レン
ズL1L,L1Rにより取り込まれ、対物側反射鏡M1L、M1Rおよ
び接眼側反射鏡M2L、M2Rで構成される光軸変換光学系で
ある反射鏡対光学系M1L,M2LおよびM1R,M2Rを通ってカ
メラ31のズーム光学系Z1に入り、カメラ受像面に立体単
位画面41を構成している。このとき、この左右の反射鏡
対により入力画面の光軸を水平方向へbL,bRだけ移動さ
せ、その和bL+bRとして左右立体画面の立体間隔bを実現
している。この場合、カメラ光学系Z1のズーム画角を狭
く取るほど反射鏡の面積は小さく、かつ対物凹レンズL1
L、L1Rの大きさ(径)が小さくて済むが、これは同時にこ
れら対物凹レンズの焦点距離を短くして、圧縮度合いを
大きく取ることが必要になる。
FIG. 1 shows an embodiment of an optical axis conversion stereoscopic unit screen constituting optical system of the stereoscopic viewing system of the present invention, that is, an example in which the optical system of the present invention in FIG. It is. Here, the left and right input screens L and R are captured by the objective concave lenses L1L and L1R, respectively, and a pair of reflecting mirrors as an optical axis conversion optical system including the objective-side reflecting mirrors M1L and M1R and the eyepiece-side reflecting mirrors M2L and M2R. It enters the zoom optical system Z1 of the camera 31 through the optical systems M1L and M2L and M1R and M2R, and forms a stereoscopic unit screen 41 on the camera image receiving surface. At this time, the optical axis of the input screen is moved by bL and bR in the horizontal direction by the pair of left and right reflecting mirrors, and the sum bL + bR of the left and right three-dimensional screens is realized. In this case, the smaller the zoom angle of view of the camera optical system Z1, the smaller the area of the reflecting mirror and the objective concave lens L1
Although the size (diameter) of L and L1R can be small, it is necessary to shorten the focal length of these objective concave lenses and increase the degree of compression at the same time.

【0011】次に、図2に本発明立体視システムの光軸
変換立体単位画面構成光学系の他の実施例を示す。これ
は、左右両画面光学系の一方に、画面の光軸を移動させ
る光軸変換光学系を含まない構成のものである。即ち、
先の図1の場合に於いて、必要な立体間隔bをbLまたはb
Rの何れか一方(例えばbRとする)でカバーすれば、他
方(bL)での光軸移動量はゼロとする事が出来るので、そ
の側の反射鏡対(M1L、M2L)を含まず、反射鏡対が一方の
側(M1R、M2R)のみの光学系を構成する事が可能になる。
従って、図2に示される通り、立体間隔bの光軸移動を
右画面の反射鏡光学系M1R、M2Rで実現し、左画面光学系
では対物凹レンズL1L2から光軸変換光学系を通さず直接
画像入力光学系のカメラレンズZ1に接続する構成を実現
している。この場合、左画面Lの光学系としては、カメ
ラ光学系Z1の前に直接対物凹レンズL1L2が設定される
が、その径は小さくて良い。なお、この構成は、片方の
画面を画像劣化の少ない直接入力とする事が出来るの
で、立体視の際に左右両画面の片方の精細度が高けれ
ば、他方の精細度が低くても高精細でかつ充分な立体感
が得られると言う立体感効果を有効に活用する事が可能
である。また、凸面鏡は凹レンズと平面反射鏡の組み合
わせと同じ働きをするので、対物凹レンズL1L、L1L2、L1R
とこれらに対応する反射鏡対の対物側反射鏡M1L、M1Rと
の組み合わせは、対物反射鏡M1L、M1Rを凸面反射鏡とす
る事により置き換える事が出来る。即ち、この凸面反射
鏡による構成も当然本発明に含まれるものである。更
に、実際に光学系を構成するときは、光軸移動の為に反
射鏡対M1LとM2L又はM1RとM2Rの間には、左右画面の光軸
方向を合わせる為に光軸屈折プリズムを入れて画面光軸
を屈折させる事が多いが、ここでは本発明の動作の説明
には直接関係しないため説明を省略している。なお、本
発明の実施例としては主としてビデオカメラの場合を中
心に説明してきたが、もちろん本発明はこれに限らず、
通常のスチルカメラや電子カメラなど一般的な画像入力
カメラに広く適用し得るものである。
Next, FIG. 2 shows another embodiment of the optical system for forming an optical axis conversion stereoscopic unit screen of the stereoscopic vision system of the present invention. This is a configuration in which one of the left and right screen optical systems does not include an optical axis conversion optical system for moving the optical axis of the screen. That is,
In the case of FIG. 1 described above, the required solid space b is set to bL or b
If any one of R (for example, bR) is covered, the optical axis movement amount on the other (bL) can be made zero, so the mirror pair on that side (M1L, M2L) is not included, The reflecting mirror pair can constitute an optical system only on one side (M1R, M2R).
Therefore, as shown in FIG. 2, the movement of the optical axis at the three-dimensional interval b is realized by the reflecting mirror optical systems M1R and M2R on the right screen, and the image on the left screen is directly transmitted from the concave objective lens L1L2 without passing through the optical axis converting optical system. A configuration for connecting to the camera lens Z1 of the input optical system is realized. In this case, as the optical system of the left screen L, the objective concave lens L1L2 is set directly in front of the camera optical system Z1, but its diameter may be small. In this configuration, one of the screens can be used as direct input with little image degradation. Therefore, when stereoscopic viewing is performed, if the definition of one of the left and right screens is high, the definition of the other is high even if the other is low. It is possible to effectively utilize the three-dimensional effect that a sufficient three-dimensional effect can be obtained. In addition, since the convex mirror performs the same function as the combination of the concave lens and the plane reflecting mirror, the objective concave lenses L1L, L1L2, L1R
The combination of the reflecting mirror pair corresponding to these with the objective-side reflecting mirrors M1L and M1R can be replaced by using the objective reflecting mirrors M1L and M1R as convex reflecting mirrors. That is, the configuration using the convex reflecting mirror is naturally included in the present invention. Furthermore, when actually configuring an optical system, an optical axis refracting prism is inserted between the pair of reflecting mirrors M1L and M2L or M1R and M2R for moving the optical axis to align the optical axis directions of the left and right screens. Although the screen optical axis is often refracted, the description is omitted here because it is not directly related to the operation of the present invention. Although the embodiment of the present invention has been described mainly with respect to a video camera, the present invention is not limited to this.
It can be widely applied to general image input cameras such as ordinary still cameras and electronic cameras.

【0012】次に図3には左右両画面を上下に配列した
縦型配列方式の立体単位画面を構成する表示面の従来例
を示す。ここに示される通り、上下に並べられた画面
は、例えば図1の光学系ではカメラレンズZ1の直前の接
眼側反射鏡M2L、M2Rで組み合わされるため、このM2LとM2
Rの境界に対応する部分では両画面が滲んで重なり合い
ぼやけた部分3Fが出来てしまう。又は、レンズの前に実
像イメージを結ばせるなど追加の光学系を用いる事によ
り両画面の境界部分を明確に区分する単位画面像を構成
したとしても、今度はこれを観測する観測光学系に於い
て、不要となる画面部分を遮蔽板によりマスクすると
き、眼の近くにある遮蔽板のエッジがぼやけて見えてし
まうため、両画面の境界部はやはりぼやけてしまう。こ
のため、立体視のためにこれらを重ね合わせた立体視画
面では、図3(b)に示される通り、この場合には画面の
上端と下端に両画面の滲み出た不必要な部分3CU,3CDが
入ってしまう。従って、明瞭な立体像はこの不必要部分
3CU,3CDを更にマスクして除去した有効立体画面3Sの部
分しか残らず、有効な立体視面積が大幅に小さくなって
しまう。
Next, FIG. 3 shows a conventional example of a display surface constituting a three-dimensional unit screen of a vertical arrangement system in which both left and right screens are arranged vertically. As shown here, the screens arranged vertically are combined by, for example, the eyepiece-side reflecting mirrors M2L and M2R in front of the camera lens Z1 in the optical system of FIG.
In the part corresponding to the boundary of R, both screens are blurred and overlapped to form a blurred part 3F. Alternatively, even if a unit screen image that clearly separates the boundary between the two screens is formed by using an additional optical system, such as forming a real image before the lens, the observation optical system for observing the unit screen image should be used. When masking an unnecessary screen portion with a shielding plate, the edge of the shielding plate near the eyes appears blurred, so that the boundary between the two screens is also blurred. For this reason, in a stereoscopic screen in which these are superimposed for stereoscopic viewing, as shown in FIG. 3B, in this case, unnecessary portions 3CU, 3CD is inserted. Therefore, a clear stereoscopic image is an unnecessary part of this
Only the portion of the effective stereoscopic screen 3S from which 3CU and 3CD are further masked and removed remains, and the effective stereoscopic viewing area is significantly reduced.

【0013】これに対し図4に、左右両画面を上下に配
列した縦型配列方式を構成する場合についての本発明立
体単位画面の表示面の構成例を示す。即ち、図4(a)は
立体単位画面の表示面41について、先の図3(a)の両画
面の境界部の滲み領域3Fに相当する部分の画面を完全に
遮蔽したブランク領域4Fとしたものである。このブラン
ク領域は単位画面を作成する撮影時に、例えばM2L、M2R
の接眼部境界領域に細長いマスクストライプを設置する
などにより画面上でマスクしたり、入力画像の画像処理
によりマスク領域を生成する等で、単位画面上に設定す
る事が出来るが、もし単位画面上に設定出来ない場合で
も、表示面上の対応部分にストライプマスクを設定する
事により実現する事も出来る。また、屈折光学系を用い
ずに反射光学系のみで画面光軸の移動を行おうとする
と、立体単位画面に組み合わされるとき、両画面の境界
部で各画面の端の部分に他画面の端が一部くい込んでし
まう事がおこるが、この部分も前述の両画面間の滲みと
同様に、このブランク領域の設定によりマスクする事が
出来る。この結果、図4(a)の単位画面を立体視により
重ね合わせた立体視画面は、図4(b)に示される通り、
立体視画面の上端と下端にはそれぞれブランク領域4Fに
相当する幅で左右何れか片方のみの2次元画面部分とな
る4CU,4CDの領域が出来る。しかしここでは不必要な画
面部分は完全にマスクされていて滲み画面は出ないの
で、画面の面積を広く有効に利用する事が可能になる。
即ち、上下端に2次元画像部分が入るが、画面の中央部
を中心とする大部分の領域は立体視画面になるので、立
体感は殆ど損なわずに広い画面を得る事が出来る。な
お、図4(a)の画面で、このブランク領域4Fから左右各
画面部分4Lまたは4Rへの境界部分は、完全ブランク状態
からステップ状に移行せずに、4L、4Rに向かい徐々にフ
ェードイン状態で移行する画像構成とすれば、立体視画
面上で2次元画像部分から3次元画像部分へのつながり
をスムースに構成出来る。例えば先に述べた図1のM2L、
M2Rの接眼部にマスクストライプを設置する場合などで
は、マスク面がカメラレンズに近いためにマスクの辺が
ある程度ぼやけるので、逆にこの効果を得る事が出来
る。また、画面全体を立体画面として構成する場合に
は、立体単位画面上に於いてこのブランク領域を除いた
画面部分4L、4Rのみの領域で左右両画面を構成すれば良
い。この場合には図4(b)での立体視画像は4Sの領域の
みになるが、この場合は4CU,4CDの領域は完全なブラン
ク領域となるため、実際の立体視に於いてブランク領域
のマージンが拡がった事になり、観測光学系に於ける遮
蔽板によるマスクがラフな状態でも明瞭な立体視が可能
になる。また、図4(a)の立体単位画面での左右両画面
の構成は、各々の画面がブランク領域を含めた領域(こ
の場合は左画面は4L+4F、右画面は4R+4F)となるように
画面構成された例であるが、この場合は重ね合わせ画面
は図4(b)に示される通り、全体画面が4S+4CU+4CDとな
り、先に述べたとおり上下端の4CU,4CD部分は2次元画
像になるが大きな画面を得る事が可能になる。
On the other hand, FIG. 4 shows an example of the configuration of the display surface of the three-dimensional unit screen of the present invention in the case of forming a vertical arrangement system in which both left and right screens are arranged vertically. That is, FIG. 4A shows a display area 41 of the three-dimensional unit screen, which is a blank area 4F in which a screen corresponding to the blur area 3F at the boundary between the two screens in FIG. Things. This blank area is used when shooting to create a unit screen, for example, M2L, M2R
It can be set on a unit screen by masking on the screen by installing a long and thin mask stripe in the eyepiece boundary area, or by generating a mask area by image processing of the input image. Even if it cannot be set above, it can be realized by setting a stripe mask on the corresponding portion on the display surface. In addition, when trying to move the screen optical axis only by the reflection optical system without using the refractive optical system, when combined with the stereoscopic unit screen, the edge of the other screen is located at the edge of each screen at the boundary between both screens. Although a part of the image may be partially penetrated, this part can be masked by setting the blank area as in the case of the blur between the two screens described above. As a result, as shown in FIG. 4B, a stereoscopic screen in which the unit screens of FIG.
At the upper end and the lower end of the stereoscopic screen, there are 4CU and 4CD areas each having a width corresponding to the blank area 4F and a left or right one of two-dimensional screen parts. However, in this case, unnecessary screen portions are completely masked and no bleeding screen appears, so that the screen area can be widely and effectively used.
That is, although the two-dimensional image portion is located at the upper and lower ends, most of the area centered on the center of the screen is a stereoscopic screen, so that a wide screen can be obtained with little loss of stereoscopic effect. In the screen of FIG. 4 (a), the boundary from the blank area 4F to the left and right screen parts 4L or 4R does not shift from a completely blank state to a step shape, but gradually fades in toward 4L and 4R. If the image configuration is shifted in a state, the connection from the two-dimensional image portion to the three-dimensional image portion can be smoothly formed on the stereoscopic screen. For example, the M2L of FIG.
In the case where a mask stripe is installed on the eyepiece of the M2R, the side of the mask is somewhat blurred because the mask surface is close to the camera lens, and conversely, this effect can be obtained. When the entire screen is configured as a three-dimensional screen, both the left and right screens may be configured on the three-dimensional unit screen using only the screen portions 4L and 4R excluding the blank area. In this case, the stereoscopic image in FIG. 4B is only the area of 4S, but in this case, the area of 4CU and 4CD is a complete blank area. This means that the margin has been expanded, and clear stereoscopic vision is possible even when the mask formed by the shielding plate in the observation optical system is rough. Also, in the configuration of both the left and right screens in the stereoscopic unit screen of FIG. 4A, each screen is an area including a blank area (in this case, the left screen is 4L + 4F, and the right screen is 4R + 4F). In this case, the overall screen is 4S + 4CU + 4CD as shown in FIG. 4 (b), and the upper and lower 4CU and 4CD parts are as described above. Is a two-dimensional image, but a large screen can be obtained.

【0014】図5に本発明立体視システムに於ける立体
視観測装置の実施例を示す。これは立体単位画面上で見
える不要な画面部分を眼から離れた位置に設定された遮
蔽板により明瞭にマスクする機能を持つものである。即
ち、図5に於ける立体単位画面15上の左右画面15L、15R
は、立体視観測装置35の中の光軸屈折光学系25L、25Rを
通して左右の眼で各々左画面45L、右画面45Rとして観測
する事により立体視される。この場合、左右の眼YL、YR
で観測するとき容易に立体視出来るためには、不必要な
画面はマスクし見えないようにする事が必要である。こ
のため本発明方式では、眼の位置から一定距離dsだけ離
れた位置に遮蔽板S5L、S5Rを設定する事により、遮蔽板
の辺が眼に近すぎてぼやけて見える事がなく、明確にマ
スクする事が出来る様にしたものである。この遮蔽板
は、そのマスク辺が立体単位画面の配列方向に可変で調
整出来るような構造になっている。この場合は縦型構成
の立体単位画面なので、図の遮蔽板について矢印で示さ
れる通り、上下に可動な構造であり各画面を観測する時
の画角に合わせてマスク位置を上下に動かし正確に調整
する機能を有している。これにより左右各眼から見て不
要な画面部分を明確にマスクする事が出来る。具体的に
は、例えば左眼YLでは光軸屈折光学系25Lに入る画面の
うち、必要な左画面15Lのみ通し、不必要となる右画面1
5Rを遮蔽板S5Lでマスクする。この時遮蔽板S5Lは眼から
の距離dsだけ離れた位置にあるため、そのマスクされた
エッジは明瞭になり、左眼YLで見える画面45Lに於いて
遮蔽板S5Lで遮蔽されるエッジ部35ELは明瞭にマスクさ
れた辺として観測する事が出来る。同様に、右眼YRで見
る画面45Rでは、遮蔽板S5Rにより左画面15Lが遮蔽さ
れ、明瞭に遮蔽された辺35ERを持つ画面45Rを得る事が
出来る。勿論これらの遮蔽板S5L、S5Rは一方を固定に
し、他方を可変とする事でも、観測する画角に対する調
整は可能である。また、眼からの距離dsは、遮蔽板をと
りつけた立体視観測装置自身について眼から離す間隔を
変える事でも設定する事が出来る。この場合は、遮蔽板
が固定された観測装置を眼から離す距離を変える事によ
り、この遮蔽板を通して観測される立体画面のマスク角
度を調整する事が出来るので、これにより遮蔽板のマス
ク辺を可動調整するのと同じマスク調整動作を実現する
事が出来る。
FIG. 5 shows an embodiment of a stereoscopic observation apparatus in the stereoscopic system of the present invention. This has a function of clearly masking an unnecessary screen portion visible on the three-dimensional unit screen by a shielding plate set at a position away from the eyes. That is, the left and right screens 15L and 15R on the three-dimensional unit screen 15 in FIG.
Is stereoscopically viewed by observing the left and right eyes as the left screen 45L and the right screen 45R through the optical axis refracting optical systems 25L and 25R in the stereoscopic observation device 35, respectively. In this case, the left and right eyes YL, YR
It is necessary to mask unnecessary screens so that they cannot be seen in order to easily stereoscopically observe when observing with. Therefore, in the method of the present invention, by setting the shielding plates S5L and S5R at a position separated by a certain distance ds from the position of the eye, the side of the shielding plate is not too close to the eyes and appears blurred, and the mask is clearly masked. It is something that you can do. This shielding plate has a structure in which the mask side can be variably adjusted in the arrangement direction of the three-dimensional unit screen. In this case, since it is a three-dimensional unit screen with a vertical configuration, as shown by the arrow on the shielding plate in the figure, it is a structure that can move up and down, and move the mask position up and down according to the angle of view when observing each screen, and accurately It has a function to adjust. This makes it possible to clearly mask unnecessary screen portions as viewed from the left and right eyes. Specifically, for example, in the left eye YL, among the screens entering the optical axis refracting optical system 25L, only the necessary left screen 15L passes through, and the unnecessary right screen 1L becomes unnecessary.
5R is masked with a shielding plate S5L. At this time, since the shielding plate S5L is located at a position apart from the eye by the distance ds, the masked edge becomes clear, and the edge portion 35EL shielded by the shielding plate S5L on the screen 45L viewed by the left eye YL is It can be observed as a clearly masked side. Similarly, on the screen 45R viewed by the right eye YR, the left screen 15L is shielded by the shielding plate S5R, and a screen 45R having a clearly shielded side 35ER can be obtained. Of course, it is also possible to adjust the angle of view by observing one of these shielding plates S5L and S5R and fixing the other. Further, the distance ds from the eye can also be set by changing the interval of separating the stereoscopic observation device itself from the eye with the shielding plate attached. In this case, the mask angle of the three-dimensional screen observed through the shield plate can be adjusted by changing the distance at which the observation device to which the shield plate is fixed is separated from the eyes. The same mask adjustment operation as that of the movable adjustment can be realized.

【0015】更に図6は本発明の立体視観測装置の他の
実施例を示す。これは図5の観測装置を一層簡単な構造
にしたものであり、一方の(この例では左側の)遮蔽板
S6Lを固定にし、他方(この場合右側S6R)のみ可変調節
可にした場合である。また、光軸屈折光学系について
も、左側は直接画面を入力する構成を取る事として、右
側のみ対物側反射鏡MZ1Rと接眼側反射鏡MZ2Rの2枚の反
射鏡対MZ1R、MZ2Rによる光軸屈折光学系を設置したもの
である。このペア反射鏡を用いて光軸屈折角を可変とす
る事により、簡単小型な構成で立体表示面を自由な距離
から観測することを可能にした立体視観測装置を実現し
た。また、片方のみ反射鏡ペアを用いる事により、両画
面までの光軸距離に差が出る可能性があるが、下方に位
置する右画面16Rに対し、より近い位置である眼より下
の位置から光軸を取り入れるので、光軸距離が等しくな
るように観測点を設定する事は厳密には可能であるが、
この距離の差は僅かなので一般的には実用上無視して扱
う事が出来る。
FIG. 6 shows another embodiment of the stereoscopic observation apparatus of the present invention. This is a simpler structure of the observation device of FIG. 5, and one of the shielding plates (in this example, on the left side).
This is a case where S6L is fixed and only the other (in this case, S6R on the right side) is variably adjustable. Also, regarding the optical axis refracting optical system, the left side is configured to directly input the screen, and only the right side is the optical axis refraction by two reflecting mirror pairs MZ1R and MZ2R of the objective side reflecting mirror MZ1R and the eyepiece side reflecting mirror MZ2R. An optical system is installed. By making the optical axis refraction angle variable by using this pair of reflecting mirrors, a stereoscopic observation device that can observe a stereoscopic display surface from a free distance with a simple and compact configuration has been realized. Also, by using only one reflector pair, there is a possibility that the optical axis distance to both screens may differ, but from the position below the eye, which is closer to the lower right screen 16R. Since the optical axis is adopted, it is strictly possible to set the observation points so that the optical axis distance is equal,
Since this difference in distance is small, it can be generally ignored in practical use.

【0016】[0016]

【発明の効果】本発明による立体視システムに於いて、
まず、本発明の立体単位画面構成光学系を用いる事によ
り、通常のズーム型カメラに装着して、特に広がりの大
きいパノラマ画面まで含めた立体画面の撮影を行う事が
出来るアダプタを、著しく小型に実現する事を可能とし
た。このアダプタを用いる事により、非常に小型で日常
誰もが手軽に使える立体視撮影システムを実現する事が
出来た。
In the stereoscopic system according to the present invention,
First, by using the three-dimensional unit screen configuration optical system of the present invention, an adapter that can be mounted on a normal zoom type camera and that can capture a three-dimensional screen including a panoramic screen having a particularly large spread can be significantly reduced in size. It is possible to realize. By using this adapter, a stereoscopic imaging system that is very small and can be easily used by anyone on a daily basis was realized.

【0017】更に、本発明による立体視システムでは、
立体表示面の画面境界部にブランク領域を持つ立体単位
画面構成の導入と、さらに立体画面の縁取りを明確にす
る遮蔽板を備えた立体視観測光学系を導入する事によ
り、立体単位画面を極めて容易に立体視する事が出来る
ようになった。
Further, in the stereoscopic vision system according to the present invention,
By introducing a stereoscopic unit screen configuration with a blank area at the screen boundary of the stereoscopic display surface and further introducing a stereoscopic observation optical system equipped with a shielding plate that clarifies the outline of the stereoscopic screen, the stereoscopic unit screen is extremely enhanced It is now possible to easily stereoscopically view.

【0018】即ち、本発明による立体視システムの実現
により、従来は専門家による大がかりで特殊高価なシス
テムでしか実現出来なかった立体映像の撮影および鑑賞
を、一般の人々が小型手軽でしかも立体視がし易いシス
テムとして、通常の写真やビデオと同様に楽しむ事を初
めて可能にした。これは、情報社会の先導役とも云うべ
き3次元画像が日常生活の中により広く浸透して行く事
が望まれる現在に於いて、立体画像の一般社会への普
及、拡大を可能にするものであり、その社会的貢献は計
り知れないものである。
In other words, the realization of the stereoscopic vision system according to the present invention allows ordinary people to take small and convenient stereoscopic video photography and viewing, which can be realized only by a large and specially expensive system by an expert. As a easy-to-use system, it has become possible for the first time to enjoy it in the same way as ordinary photos and videos. This enables the spread and expansion of stereoscopic images to the general society at the present time when it is desired that three-dimensional images, which can be said to be the leaders of the information society, spread more widely in daily life. Yes, and their social contributions are immeasurable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明立体視システム光軸変換立体単位画面構
成光学系の実施例を示す図。
FIG. 1 is a diagram showing an embodiment of an optical system constituting a stereoscopic unit optical axis conversion stereoscopic unit screen of the present invention.

【図2】本発明立体視システム光軸変換立体単位画面構
成光学系の他の実施例を示す図。
FIG. 2 is a diagram showing another embodiment of the optical system for constituting the stereoscopic unit optical axis conversion stereoscopic unit screen of the present invention.

【図3】縦型配列方式の立体単位画面を構成する表示面
の従来例を示す図。
FIG. 3 is a diagram showing a conventional example of a display surface constituting a three-dimensional unit screen of a vertical arrangement type.

【図4】縦型配列方式の立体単位画面を構成する本発明
表示面の構成を示す図。
FIG. 4 is a diagram showing a configuration of a display surface of the present invention constituting a three-dimensional unit screen of a vertical arrangement type.

【図5】本発明立体視システムに於ける立体視観測装置
の実施例を示す図。
FIG. 5 is a diagram showing an embodiment of a stereoscopic observation device in the stereoscopic system of the present invention.

【図6】本発明の立体視観測装置の他の実施例を示す
図。
FIG. 6 is a diagram showing another embodiment of the stereoscopic observation device of the present invention.

【図7】本発明光軸変換立体単位画面構成光学系の動作
原理を示す図。
FIG. 7 is a diagram showing the operation principle of the optical axis conversion stereoscopic unit screen configuration optical system of the present invention.

【符号の説明】[Explanation of symbols]

3F、 両画面の滲んだ部分 3CD、3CU、 両画面の滲み出した不必
要な部分 3S、 有効立体画面部分 4F、 ブランク領域 4L、4R、 左右画面部分 4CD、4CU、 2次元画面部分 4S、 立体視画像領域 15、16、 立体単位画面 15L、15R、16L、16R、 左右画面 25L、25R、 光軸屈折光学系 31、 カメラ 35、36、 立体視観測装置 35EL、35ER、36EL、36ER、 遮蔽されるエッジ部 41、 立体単位画面の表示面 45L、45R、46L、46R、 左右観測画面 A、 入力画面 b、 立体間隔 bL、bR、 光軸移動距離 G、GI、 受光像 L、R、 入力画面 L1、L1L、L1L2、L1R、 対物レンズ M1、M1L、M1R、MZ1R、 対物側反射鏡 M2、M2L、M2R、MZ2R, 接眼側反射鏡 S5L、S5R、S6L、S6R、 遮蔽板 w1、w2、 画角 x、 距離 YL、YR、 左右眼 Z1、 カメラ光学系レンズ
3F, bleeding part of both screens 3CD, 3CU, oozing unnecessary part of both screens 3S, effective stereoscopic screen part 4F, blank area 4L, 4R, left and right screen part 4CD, 4CU, two-dimensional screen part 4S, stereoscopic Visual image area 15, 16, stereoscopic unit screen 15L, 15R, 16L, 16R, left and right screen 25L, 25R, optical axis refracting optical system 31, camera 35, 36, stereoscopic observation device 35EL, 35ER, 36EL, 36ER, shielded Edge part 41, display surface of stereo unit screen 45L, 45R, 46L, 46R, left and right observation screen A, input screen b, solid space bL, bR, optical axis movement distance G, GI, received light L, R, input screen L1, L1L, L1L2, L1R, Objective lens M1, M1L, M1R, MZ1R, Objective mirror M2, M2L, M2R, MZ2R, Eyepiece mirror S5L, S5R, S6L, S6R, Shield w1, w2, Angle of view x, distance YL, YR, left and right eyes Z1, camera optics lens

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】対物入力部に凹レンズ光学系対を有し、出
力部が望遠レンズ画像入力光学系に接続されて成る事を
特徴とする光軸変換立体単位画面構成光学系による立体
視システム。
1. A stereoscopic system using an optical axis conversion stereoscopic unit screen constituting optical system, comprising an objective input unit having a concave lens optical system pair and an output unit connected to a telephoto lens image input optical system.
【請求項2】左右光学系の一方に光軸変換光学系を含ま
ない事を特長とする請求項1の立体視システム。
2. The stereoscopic system according to claim 1, wherein one of the left and right optical systems does not include an optical axis conversion optical system.
【請求項3】表示される立体両画面の境界部分に、ブラ
ンク領域を設定した事を特長とする立体単位画面構成。
3. A stereoscopic unit screen configuration characterized in that a blank area is set at a boundary between both displayed stereoscopic screens.
【請求項4】表示画面の外端に各々拡張画面部分を含む
事を特長とする、請求項3の立体単位画面構成
4. A three-dimensional unit screen structure according to claim 3, wherein an extended screen part is included at each outer end of the display screen.
【請求項5】画面遮蔽板の一方又は両方を可変として画
角マスク角度を調整する機能を備えた立体視観測装置
5. A stereoscopic observation apparatus having a function of adjusting an angle of view mask by making one or both of screen shielding plates variable.
【請求項6】眼の位置から離れた位置に画面遮蔽板が設
置された事を特長とする立体視観測装置。
6. A stereoscopic observation apparatus characterized in that a screen shielding plate is installed at a position distant from the position of the eyes.
JP25283199A 1999-09-07 1999-09-07 Stereoscopic system Expired - Fee Related JP4332766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25283199A JP4332766B2 (en) 1999-09-07 1999-09-07 Stereoscopic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25283199A JP4332766B2 (en) 1999-09-07 1999-09-07 Stereoscopic system

Publications (3)

Publication Number Publication Date
JP2001075046A true JP2001075046A (en) 2001-03-23
JP2001075046A5 JP2001075046A5 (en) 2007-04-19
JP4332766B2 JP4332766B2 (en) 2009-09-16

Family

ID=17242817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25283199A Expired - Fee Related JP4332766B2 (en) 1999-09-07 1999-09-07 Stereoscopic system

Country Status (1)

Country Link
JP (1) JP4332766B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221686A (en) * 2004-02-05 2005-08-18 View Magic:Kk Stereoscopic screen constitution, adjustment method and apparatus therefor
WO2011086890A1 (en) * 2010-01-14 2011-07-21 パナソニック株式会社 Lens barrel adapter, lens barrel and imaging device
CN103676446A (en) * 2012-09-05 2014-03-26 张伟 Photographic bracket
JP2015108744A (en) * 2013-12-05 2015-06-11 オリンパス株式会社 Stereoscopic imaging optical system, stereoscopic imaging device and endoscope

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221686A (en) * 2004-02-05 2005-08-18 View Magic:Kk Stereoscopic screen constitution, adjustment method and apparatus therefor
JP4632148B2 (en) * 2004-02-05 2011-02-16 株式会社ビューマジック Three-dimensional screen configuration and adjustment method and apparatus
WO2011086890A1 (en) * 2010-01-14 2011-07-21 パナソニック株式会社 Lens barrel adapter, lens barrel and imaging device
CN103676446A (en) * 2012-09-05 2014-03-26 张伟 Photographic bracket
JP2015108744A (en) * 2013-12-05 2015-06-11 オリンパス株式会社 Stereoscopic imaging optical system, stereoscopic imaging device and endoscope
WO2015083439A1 (en) * 2013-12-05 2015-06-11 オリンパス株式会社 3d imaging optical system, 3d imaging device, and endoscope
CN105793756A (en) * 2013-12-05 2016-07-20 奥林巴斯株式会社 3D imaging optical system, 3D imaging device, and endoscope
US10634898B2 (en) 2013-12-05 2020-04-28 Olympus Corporation Steroscopic imaging optical system, steroscopic imaging aparatus, and endoscope

Also Published As

Publication number Publication date
JP4332766B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
US8130259B2 (en) Three-dimensional display device and method as well as program
JP2006033228A (en) Picture imaging apparatus
KR20020023227A (en) Three-dimensional image producing method and apparatus therefor
JP2011138093A (en) Stereoscopic imaging apparatus
JP2000341718A (en) Video scope and its display device
JP2017134399A (en) Glasses-free 3d display device without requiring interpupillary distance adjustment
JP4332766B2 (en) Stereoscopic system
KR101699597B1 (en) Single optical path anamorphic stereoscopic imager
JPH08191462A (en) Stereoscopic video reproducing device and stereoscopic image pickup device
CN111095072A (en) Optical system, projection device, and imaging device
JPH0654991B2 (en) Stereoscopic imaging device
JP3081377B2 (en) 3D video phone
JPH11206714A (en) Stereoscopic fundus oculi image formation and stereoscopic fundus oculi image formation system
JP2513403B2 (en) Projection type stereoscopic display device
JPH1152292A (en) Stereoscopic picture observation system
JPH01147444A (en) Image pickup device for stereoscopic television
JP2581601B2 (en) 3D camera and 3D image system
JPH10105692A (en) Stereoscopic picture input system
JP2005148295A (en) Stereoscopic video photographing apparatus, image for stereoscopic video, stereoscopic video processing method and stereoscopic video display method
JPH1146373A (en) Stereoscopic video image capture device
JPH04324410A (en) Stereoscopic microscope
JPH05244643A (en) Three-dimensional television device
JPH08152561A (en) Objective lens, member paired with the same, and stereoscopic microscope equipped with these
JP4420315B2 (en) Stereoscopic endoscope and stereoscopic endoscope system
JP2006017806A (en) Three-dimensional imaging adapter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150703

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees