JPH03162733A - Production of optical recording medium - Google Patents

Production of optical recording medium

Info

Publication number
JPH03162733A
JPH03162733A JP30351289A JP30351289A JPH03162733A JP H03162733 A JPH03162733 A JP H03162733A JP 30351289 A JP30351289 A JP 30351289A JP 30351289 A JP30351289 A JP 30351289A JP H03162733 A JPH03162733 A JP H03162733A
Authority
JP
Japan
Prior art keywords
film
protective film
forming
cvd method
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30351289A
Other languages
Japanese (ja)
Inventor
Koji Ono
浩司 小野
Yoichi Hashimoto
洋一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP30351289A priority Critical patent/JPH03162733A/en
Publication of JPH03162733A publication Critical patent/JPH03162733A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize massproduction of the medium by successively forming a dielectric protective film on a substrate by CVD (chemical vapor depositon) method in vacuum, a recording film by magnetron sputtering method, and further a dielectric protective film by CVD method. CONSTITUTION:The medium is produced by successively forming a dielectric protective film 2 on a substrate 1 by CVD method in high vacuum, a recording film 3 by magnetron sputtering method, and further a dielectric protective film 4 by CVD method. On performing CVD method, ECR (electron cyclotron resonance) plasma CVD method is applied considering that by this method temp. of the substrate 1 does not elevate during forming the film, films can be formed under low gas pressure, the only a little amt. of impurities intrudes in the protective film 2, and high film formation rate can be obtained. Thus, the medium can be massproduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光記録媒体の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an optical recording medium.

[従来の技術] 情報の消去および書き換えが可能な光記録媒体には、光
磁気記録媒体と相変化型の光記録媒体とがある。
[Prior Art] Optical recording media on which information can be erased and rewritten include magneto-optical recording media and phase-change optical recording media.

光磁気記録媒体は、一般には、透明基板の上に保護膜、
垂直磁気異方性を有する記録膜および保護膜をこの順に
積層した構造を有するか、または上記の上層の保護膜上
にさらに反射膜を積層した構造を有している。上記の記
録膜を形成する材料としては、希土類元素と遷移金属と
のアモルファス合金が好ましく、たとえばTbFeCo
, NdDyFeCo,GdTbFeなどの合金が用い
られている。これらの合金材料はその製膜時に酸素が混
入する場合、高湿度下に曝される場合などにおいて特性
が変化することがある。そこで、記録膜の耐久性を向上
させる目的で、上記の杏余材料にCr, Pt, Ti
などを添加する方法が提案されている。しかしながら、
この方法によっては記録膜の耐久性を十分に高めること
はできず、依然として上層および下層の保護膜に高いガ
ス遮断性および水分遮断性が要求されているのが現状で
ある。
Magneto-optical recording media generally have a protective film on a transparent substrate.
It has a structure in which a recording film having perpendicular magnetic anisotropy and a protective film are laminated in this order, or it has a structure in which a reflective film is further laminated on the upper protective film. The material for forming the recording film is preferably an amorphous alloy of rare earth elements and transition metals, such as TbFeCo.
, NdDyFeCo, GdTbFe, and other alloys are used. The properties of these alloy materials may change if oxygen is mixed in during film formation or if they are exposed to high humidity. Therefore, in order to improve the durability of the recording film, Cr, Pt, and Ti are added to the above-mentioned apricot materials.
A method of adding such as however,
This method cannot sufficiently increase the durability of the recording film, and the current situation is that the upper and lower protective films are still required to have high gas barrier properties and moisture barrier properties.

また、相変化型の光記録媒体の記録膜を形成する材料と
しては、一般?こ゜は、結晶一非結晶の泪転移により光
学特性が変化する、InSbTe, GeTeSbなど
のカルコゲナイド系の合金が用いられている。
Also, what are the common materials used to form the recording film of phase-change optical recording media? In this case, chalcogenide alloys such as InSbTe and GeTeSb, whose optical properties change due to a crystal-amorphous transition, are used.

これらの合金材料は熱的安定性が低く、また結晶一非結
晶の相転移の際に記録膜の体積が変化することから、相
変化型の光記録媒体は、通常、透明基板上に保護膜、記
録膜および保護膜をこの順に積層した構造を有している
Since these alloy materials have low thermal stability and the volume of the recording film changes during the crystal-amorphous phase transition, phase-change optical recording media usually have a protective film on a transparent substrate. , has a structure in which a recording film and a protective film are laminated in this order.

上記の光磁気記録媒体および相変化型の光記録媒体にお
ける保護膜を形成する材料としては、Sin, SiO
z、Aハ、AffSiN, SiNなどの誘電体材料が
用いられている。これ会の誘電体からなる保護膜はSi
、^1!Si, AQなどのターゲットを用い、八rガ
スと0,ガスまたはN,ガスとの混合ガス中で行う反応
性スパッタリング法によって形成することが一般的であ
る。
Materials for forming the protective film in the above-mentioned magneto-optical recording medium and phase-change optical recording medium include Sin, SiO
Dielectric materials such as Z, Aff, AffSiN, and SiN are used. The protective film made of this dielectric material is Si
, ^1! It is generally formed by a reactive sputtering method using a target such as Si or AQ in a mixed gas of 8R gas and O2 gas or N2 gas.

する場合、保護膜形成用製膜室、記録膜形成用製膜室な
どを有するインラインスパツタ装置を用いることが多い
。上記の酸化物または窒化物からなる保護膜を反応性ス
パッタリング法によって形成する際の製膜レートは、通
常、上記の記録膜の製膜レートの1/ 10〜1/4程
度であることから、保護膜の製膜工程に要する時間が長
くなるので、光磁気記録媒体または相変化型の光記録媒
体の生産効率が低下する。上記の反応性スパッタリング
法による保護膜の製膜レートを上げるためには印加する
スパッタリングパワーを上げるか、導入する酸素ガスま
たは窒素ガスの分圧を下げればよし1が、いずれにおい
ても基板の温度が上昇するか、または未反応の^Qもし
くはSiが膜内に残留するために、保護膜が不透明にな
る問題が生じる。したがって、これらの方法によって保
護膜の製膜レートを十分に高くすることはできない。
In this case, an in-line sputtering apparatus having a film-forming chamber for forming a protective film, a film-forming chamber for forming a recording film, etc. is often used. The film forming rate when forming the protective film made of the above oxide or nitride by the reactive sputtering method is usually about 1/10 to 1/4 of the film forming rate of the above recording film. Since the time required for the process of forming the protective film becomes long, the production efficiency of the magneto-optical recording medium or the phase change type optical recording medium decreases. In order to increase the deposition rate of the protective film using the above-mentioned reactive sputtering method, it is possible to increase the applied sputtering power or lower the partial pressure of the introduced oxygen gas or nitrogen gas1, but in either case, the temperature of the substrate The problem arises that the protective film becomes opaque because the increased or unreacted ^Q or Si remains in the film. Therefore, it is not possible to make the film formation rate of the protective film sufficiently high by these methods.

本発明の目的は誘電体保護膜を備えた光記録媒体を量産
できる方法を提供することにある。
An object of the present invention is to provide a method for mass-producing optical recording media provided with a dielectric protective film.

[課題を解決するための手段] 本発明によれば、上記の目的は、高真空中で基板上に誘
電体保護膜をC V D ( Chemical Va
porDepos i t ion )法により製膜し
、記録膜をマグネト特徴とする光記録媒体の製造方法を
提供することによって達成される。
[Means for Solving the Problems] According to the present invention, the above object is achieved by forming a dielectric protective film on a substrate in a high vacuum using chemical vapor deposition (CVD).
This is achieved by providing a method for manufacturing an optical recording medium in which the recording film is formed by a porDeposit ion method and has a magnetic feature.

[実施例] 以下、実施例により本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 本発明により製造さ乙る光記録媒体の一例の概略断面図
を第1図に示す。この光記録媒体は高真空中で基板1の
上に誘電体保護膜2をCVD法により製膜し、記録膜3
をマグネトロンスパッタリング法により製膜し、誘電体
保護膜4をCVD法により製膜して順次積層されてなる
Example 1 A schematic cross-sectional view of an example of an optical recording medium manufactured according to the present invention is shown in FIG. This optical recording medium is manufactured by forming a dielectric protective film 2 on a substrate 1 in a high vacuum using the CVD method, and then forming a recording film 3 on a substrate 1 in a high vacuum.
is formed by magnetron sputtering method, and dielectric protective film 4 is formed by CVD method, which are sequentially laminated.

CVD法としては、熱CVD法、高周波(例えば3.7
MHz)を用いるプラズマCVD法、マイクロ波(例え
ば2.45GHz)を用いるE C R ( Elec
tronCyclotron Resonance)プ
ラズマCVD法などが採用される。これらの方法のうち
、製膜時に基板の温度が上昇しないこと、低ガス圧で製
膜でき、保護膜に混入する不純物が少ないこと、高い製
膜レートが得られること啄どからECRプラズマCVD
法を採用するのが好適である。
CVD methods include thermal CVD method, high frequency (e.g. 3.7
MHz), and ECR (Elec
A plasma CVD method (cyclotron resonance) or the like is employed. Among these methods, ECR plasma CVD has the following advantages: the temperature of the substrate does not rise during film formation, the film can be formed at low gas pressure, there are few impurities mixed into the protective film, and a high film formation rate can be obtained.
It is preferable to adopt the law.

熱CVD法またはプラズマCVD法によって、Siの窒
化物からなる保護膜およびSiの酸化物からなる保護膜
を製膜する際に、製膜装置の製膜室に導入するガスおよ
びそのガス圧と、 ECRブラズ マCVD法によって上記の保護膜を製膜する際(こ、と
の一例を第1表に示す。
When forming a protective film made of Si nitride and a protective film made of Si oxide by thermal CVD method or plasma CVD method, the gas introduced into the film forming chamber of the film forming apparatus and its gas pressure; Table 1 shows an example of forming the above-mentioned protective film by the ECR plasma CVD method.

以下余白 プラズマ室にガス圧が0.3一丁orrになるようにN
,ガスを導入し、製膜室にガス圧が0.2mTorrに
なるようにSiHaガスを導入して行うECRプラズマ
CVD法によってSiNからなる保護膜を製膜する際の
、マイクロ波パワーと保護膜の製膜レートとの関係およ
びマイクロ波パワーと得られる保護膜が有する屈折率と
の関係を第2図に示す。
N
Microwave power and protective film when forming a protective film made of SiN by the ECR plasma CVD method, which is performed by introducing gas and introducing SiHa gas so that the gas pressure becomes 0.2 mTorr into the film forming chamber. FIG. 2 shows the relationship between the film forming rate and the relationship between the microwave power and the refractive index of the obtained protective film.

比較例l Siからなるターゲットを用い、製膜室にHzガス(ガ
ス圧: 0.3a+Torr)およびArガス(ガス圧
=0.9+nTorr)を導入して行う反応性スパッタ
リングおよび●I{●波パワーと得られる保護膜が有す
る屈折率との関係を第3図に示す。
Comparative Example 1 Reactive sputtering using a target made of Si and introducing Hz gas (gas pressure: 0.3a+Torr) and Ar gas (gas pressure = 0.9+nTorr) into the film forming chamber and The relationship between the refractive index and the refractive index of the obtained protective film is shown in FIG.

第2図と第3図とを比較することにより明らかなとおり
、ECRプラズマCVD法によって保護膜を製膜する場
合には、反応性スパッタリング法によって製膜する場合
に比べて、同じ屈折率を有する保護膜がlO倍以上の製
膜レートで得られる。
As is clear from comparing FIG. 2 and FIG. 3, when the protective film is formed by ECR plasma CVD, it has the same refractive index as when it is formed by reactive sputtering. A protective film can be obtained at a film formation rate that is 10 times or more.

本発明で用いられる製膜装置は、CVD法による保護膜
形成用製膜室とマグネトロンスパッタリング法による記
録膜形成用製膜室とを備えており、高真空中で保護膜お
よび記録膜を順次製膜することができるものであり、上
層の保護膜形成用製膜室と下層の保護膜形成用製膜室と
をそれぞれ備えていることが好ましい。また、製膜装置
は従来のインラインスパッタ装置におけると同様に予備
真空用のバツファ一室を備えていることが好ましい。
The film forming apparatus used in the present invention is equipped with a film forming chamber for forming a protective film by the CVD method and a film forming chamber for forming the recording film by the magnetron sputtering method, and sequentially forms the protective film and the recording film in a high vacuum. It is preferable to have a film forming chamber for forming an upper protective film and a film forming chamber for forming a lower protective film. Further, it is preferable that the film forming apparatus is provided with a buffer chamber for preliminary vacuum as in the conventional in-line sputtering apparatus.

記録膜3を形成する材料としては、TbFeCo,Nd
DyFeCo, GdTbFeなどの希土類元素と遷移
金属とのアモルファス合金か与なる光磁気記録材料およ
びInSbTe, GeTeSbなどのカルコゲナイド
系のアモルファス合金からなる相変化型の光記録材料な
どの情報の消去および書き換えが可能な材料、またはシ
アニン色素、TeC, TeO、TeSePbなどの情
報の書き込みが可能な材料を用いることが好適である。
Materials for forming the recording film 3 include TbFeCo, Nd
Erasing and rewriting of information is possible in magneto-optical recording materials made of amorphous alloys of rare earth elements and transition metals such as DyFeCo and GdTbFe, and phase-change optical recording materials made of chalcogenide-based amorphous alloys such as InSbTe and GeTeSb. It is preferable to use a material on which information can be written, such as cyanine dye, TeC, TeO, or TeSePb.

保護膜および記録膜の膜厚はこれらの光学的特性に応じ
て決めることができるが、通常、下層の保護膜の膜厚は
600〜1500人の範囲であり、記録膜の膜厚は10
0〜400人の範囲であり、かつ上層の保護膜の膜厚は
200〜1000人の範囲であることが好ましい。
The thickness of the protective film and the recording film can be determined depending on their optical properties, but usually the thickness of the lower protective film is in the range of 600 to 1,500, and the thickness of the recording film is 10.
The thickness of the upper protective film is preferably in the range of 200 to 1000 people.

基゜板lとしては、ボリカーボネート樹脂基板、非品質
ポリオレフイン樹脂基板、ポリメチルメタクリレート樹
脂基板、ガラス基板などが用いられる。
As the substrate 1, a polycarbonate resin substrate, a non-quality polyolefin resin substrate, a polymethyl methacrylate resin substrate, a glass substrate, etc. are used.

[発明の効果〕 本発明によれば、誘電体からなる保護膜を備えた光記録
媒体を量産することができる。
[Effects of the Invention] According to the present invention, optical recording media provided with a protective film made of a dielectric material can be mass-produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により製造される光記録媒体の一例の概
略断面図、第2図はECRプラズマcVD法によってS
iNからなる保護膜を製膜する際の、マイクロ波パワー
と保護膜の製膜レートとの関係およびマイクロ波パワー
と得られる保護膜が有する屈折率との関係を示す図、第
3図は反応性スパ護膜が有する屈折率との関係を示す図
である。 1 ・・・基 板、 2.4・・・保護膜、 3 ・・・記録膜。
FIG. 1 is a schematic cross-sectional view of an example of an optical recording medium manufactured according to the present invention, and FIG.
Figure 3 shows the relationship between the microwave power and the film formation rate of the protective film when forming a protective film made of iN, and the relationship between the microwave power and the refractive index of the resulting protective film. FIG. 3 is a diagram showing the relationship between the refractive index and the spa protective film. 1... Substrate, 2.4... Protective film, 3... Recording film.

Claims (1)

【特許請求の範囲】[Claims]  高真空中で基板上に誘電体保護膜をCVD法により製
膜し、記録膜をマグネトロンスパッタリング法により製
膜し、誘電体保護膜をCVD法により製膜して順次積層
することを特徴とする光記録媒体の製造方法。
The method is characterized in that a dielectric protective film is formed on a substrate in a high vacuum by a CVD method, a recording film is formed by a magnetron sputtering method, and a dielectric protective film is formed by a CVD method, and these are sequentially laminated. A method for manufacturing an optical recording medium.
JP30351289A 1989-11-21 1989-11-21 Production of optical recording medium Pending JPH03162733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30351289A JPH03162733A (en) 1989-11-21 1989-11-21 Production of optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30351289A JPH03162733A (en) 1989-11-21 1989-11-21 Production of optical recording medium

Publications (1)

Publication Number Publication Date
JPH03162733A true JPH03162733A (en) 1991-07-12

Family

ID=17921874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30351289A Pending JPH03162733A (en) 1989-11-21 1989-11-21 Production of optical recording medium

Country Status (1)

Country Link
JP (1) JPH03162733A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022996A1 (en) * 2013-08-16 2015-02-19 Nagayama Kuniaki Lens unit, illumination cap member, sample observation kit, and transmission-type compound microscope device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022996A1 (en) * 2013-08-16 2015-02-19 Nagayama Kuniaki Lens unit, illumination cap member, sample observation kit, and transmission-type compound microscope device

Similar Documents

Publication Publication Date Title
US4929320A (en) Method of making magneto-optical recording medium
JPH03162733A (en) Production of optical recording medium
EP0192878B1 (en) Magneto-optical recording medium and manufacturing method thereof
JPS60197967A (en) Optical recording medium
JPH02265052A (en) Production of optical recording medium
JPH0524572B2 (en)
JPS62279542A (en) Magneto-optical recording medium
JP2527762B2 (en) Magneto-optical recording medium
JPH04500879A (en) Method for manufacturing thermo-optical magnetic recording element
JP2577344B2 (en) Magneto-optical disk and method of manufacturing the same
JPH01204243A (en) Magneto-optical recording medium
JP2548704B2 (en) Magneto-optical disk and its manufacturing method
JPH0766579B2 (en) Magneto-optical recording medium and manufacturing method thereof
JPH0370297B2 (en)
JPH0366048A (en) Production of magneto-optical recording medium
JPS62209750A (en) Photomagnetic recording medium
JPH0283836A (en) Production of optical recording medium
JPH0792935B2 (en) Magneto-optical recording medium
JPH01155534A (en) Production of magneto-optical recording medium
JPH04313835A (en) Production of magneto-optical recording medium
JP2724183B2 (en) Manufacturing method of information recording medium
JPH0630182B2 (en) Manufacturing method of magneto-optical recording element
JPS6148151A (en) Optical recording medium
JPH0249238A (en) Magneto-optical recording medium
JPH06136161A (en) Film having gas and moisture barrier property and its production