JPH0316231A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPH0316231A
JPH0316231A JP15186189A JP15186189A JPH0316231A JP H0316231 A JPH0316231 A JP H0316231A JP 15186189 A JP15186189 A JP 15186189A JP 15186189 A JP15186189 A JP 15186189A JP H0316231 A JPH0316231 A JP H0316231A
Authority
JP
Japan
Prior art keywords
transfer
electrode
charge
area
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15186189A
Other languages
Japanese (ja)
Inventor
Takumi Yamaguchi
琢己 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP15186189A priority Critical patent/JPH0316231A/en
Publication of JPH0316231A publication Critical patent/JPH0316231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To improve transfer efficiency by arranging the constitution such that the effective electrode region inside a transfer electrode inclines at an angle excluding 90 deg. to the irregularity or transfer direction. CONSTITUTION:One or more transfer electrodes are provided, each of which has such structure that the effective electrode region 9, which gives potential to a charge transfer region 4 at the region excluding the region 10 for performing superposition with an adjacent electrode, inclines at an angle excluding 90 deg. to the irregularity or transfer direction. By this constitution, the length 9 of effective electrode region becomes short, so a region 6 with no potential gradient under the transfer electrode 1 becomes narrow, and a region 7 with a potential gradient can be widened. Accordingly, the quantity of charge which remains at the the region 6 with no gradient under the transfer electrode decreases, and the transfer electrode 1 can be driven by transfer pulses of low voltage. Hereby, transfer efficiency can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電極転送装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to an electrode transfer device.

従来の技術 近年、電荷転送装置を組み込んだ固体撮像装置の開発が
進み、固体撮像装置の性能向上が図られてきた。
2. Description of the Related Art In recent years, solid-state imaging devices incorporating charge transfer devices have been developed, and efforts have been made to improve the performance of solid-state imaging devices.

第6図は従来の電荷転送装置の構成図である。FIG. 6 is a block diagram of a conventional charge transfer device.

1は転送電極、2は電荷入力部、3は電荷出力部、4は
電荷転送領域、5は転送電極の繰り返しピッチである。
1 is a transfer electrode, 2 is a charge input section, 3 is a charge output section, 4 is a charge transfer region, and 5 is a repetition pitch of the transfer electrodes.

電荷入力部2にある電荷は転送電極1に転送パルスφ重
 ,φ2,φ3,φ4,φ5が加わることで電荷出力部
3へ転送される。
The charges in the charge input section 2 are transferred to the charge output section 3 by applying transfer pulses φ2, φ3, φ4, and φ5 to the transfer electrode 1.

第7図は第6図のA−A’間の断面ポテンシャル図であ
る。6は隣りの転送電極の影響を受けないポテンシャル
平坦領域、7は隣りの転送電極の影響を受けるポテンシ
ャル傾斜領域、8は電荷、9は電荷転送領域に電位を与
え電荷を転送する、有効電極領域の長さ、10は隣りの
電極と重ね合せを行うための領域の長さである。第7図
はφ1くφ2くφ3の電位関係にある場合のポテンシャ
ル図である。φ1の加わる転送電極1の下にある電荷は
、φ!とφ2の加わる転送電極1の境界にあるポテンシ
ャル傾斜領域7により加速されてφ2の加わる転送電極
1の下へ移動する。φ2の加わる転送電極1の下にある
電荷はφ2とφ3の加わる電極1間の境界にあるポテン
シャル傾斜領域7により加速されてφ3の加わる転送電
極1の下へ移動する。以上のようにしてφ1のjffわ
る転送電極1の下にある電荷はφ3の加わる転送電極へ
と転送される。
FIG. 7 is a cross-sectional potential diagram taken along line AA' in FIG. 6 is a potential flat area that is not affected by the adjacent transfer electrode, 7 is a potential gradient area that is affected by the adjacent transfer electrode, 8 is a charge, and 9 is an effective electrode area that applies a potential to the charge transfer area and transfers the charge. The length 10 is the length of the area for overlapping with the adjacent electrode. FIG. 7 is a potential diagram when there is a potential relationship of φ1, φ2, and φ3. The charge under the transfer electrode 1 to which φ1 is applied is φ! It is accelerated by the potential gradient region 7 at the boundary of the transfer electrode 1 where φ2 is applied and moves below the transfer electrode 1 where φ2 is applied. The charges under the transfer electrode 1 to which φ2 is applied are accelerated by the potential gradient region 7 at the boundary between the electrodes 1 to which φ2 and φ3 are applied, and move under the transfer electrode 1 to which φ3 is applied. As described above, the charge under the transfer electrode 1 where jff of φ1 is transferred to the transfer electrode where φ3 is added.

第8図は第6図の転送電極1下のポテンシャル平坦領域
6を示す図である。転送電極1下のボテンシャル平坦領
域6が広く、電荷入力部2から注入された電荷8を転送
電極1にパルスを加えて転送し、電荷出力部3へ取り出
す場合,電荷7は何度もポテンシャル平坦領域を通るこ
ととなる。
FIG. 8 is a diagram showing the potential flat region 6 under the transfer electrode 1 of FIG. 6. The potential flat region 6 under the transfer electrode 1 is wide, and when the charge 8 injected from the charge input section 2 is transferred by applying a pulse to the transfer electrode 1 and taken out to the charge output section 3, the charge 7 becomes potential flat many times. It will pass through the area.

発明が解決しようとする課題 しかしながら、上記のような構威では、有効電極領域の
長さ9が転送電極の繰り返しビッチ5と等しいのでポテ
ンシャル平想領域6が広くなり、ポテンシャル平坦領域
6に電荷の一部が残ってしまい、電荷結合装置の転送効
率が悪くなってしまう。
Problems to be Solved by the Invention However, in the above structure, since the length 9 of the effective electrode area is equal to the repeat pitch 5 of the transfer electrode, the potential flat area 6 becomes wide, and the potential flat area 6 has no charge. A portion remains, and the transfer efficiency of the charge-coupled device deteriorates.

本発明は上記欠点に鑑み、転送電極1下のポテンシャル
平坦領域6が狭くなるような、転送電極長の短い、電荷
転送装置を提供するものである。
In view of the above drawbacks, the present invention provides a charge transfer device having a short transfer electrode length so that the potential flat region 6 under the transfer electrode 1 is narrow.

課題を解決するための手段 上記課題を解決するために、本発明の電荷転送装置は複
数本の転送電極を備えた電荷転送装置において、前記転
送電極内の、隣りの電極との重ね合せを行うための領域
以外の領域であり、電荷転送領域に電位を与える有効電
極領域が、凹凸または、前記電荷転送装置の転送方向に
対して90’以外の角度で傾斜した構造を持つ前記転送
電極を少なくとも、一本以上有する構成となっている。
Means for Solving the Problems In order to solve the above problems, the charge transfer device of the present invention includes a charge transfer device including a plurality of transfer electrodes, in which adjacent electrodes in the transfer electrodes are overlapped. At least the transfer electrode is a region other than the region for the charge transfer device, and the effective electrode region that applies a potential to the charge transfer region is uneven or has a structure inclined at an angle other than 90' with respect to the transfer direction of the charge transfer device. , is configured to have one or more.

作用 この構成によって、有効電極領域の長さが短くなるため
転送電極下のポテンシャル平坦領域が狭くなり、ポテン
シャル傾.fl領域7を広くすることができる。したが
って転送電極下のポテンシャル平坦領域6に残る電荷量
が少なくなり、電荷結合装置の転送効率を改善すること
ができる。また、ポテンシャル傾斜領域7が広くなった
ことから、低電圧の転送パルスで転送電極を駆動できる
Effect: With this configuration, the length of the effective electrode area is shortened, so the potential flat area under the transfer electrode is narrowed, and the potential gradient is increased. The fl region 7 can be made wider. Therefore, the amount of charge remaining in the potential flat region 6 under the transfer electrode is reduced, and the transfer efficiency of the charge-coupled device can be improved. Furthermore, since the potential gradient region 7 is widened, the transfer electrode can be driven with a low voltage transfer pulse.

実施例 以下、本発明の第1の実施例について図面を参照しなが
ら説明する。第1図は本発明の実施例における電荷転送
装置の構威図である。転送電極1が凹凸の構造となって
いる。
EXAMPLE Hereinafter, a first example of the present invention will be described with reference to the drawings. FIG. 1 is a structural diagram of a charge transfer device in an embodiment of the present invention. The transfer electrode 1 has an uneven structure.

第2図は第1図のB−B’間の断面ポテンシャル図であ
る。B−B’間の有効電極領域の長さ9は、第1図の従
来の転送電極繰り返しピッチ5に比べ短くなるため、φ
2の加わる転送電極1の下では、隣りの転送電極の影響
を受け、ポテンシャル傾斜領域7のみとなる。したがっ
て、B−8’間にはポテンシャル平坦領域6がなく、ポ
テンシャル平坦領域6に取り残される電荷がなくなるた
め電荷結合装置の転送効率を改善することができる。
FIG. 2 is a cross-sectional potential diagram taken along line BB' in FIG. The length 9 of the effective electrode area between B and B' is shorter than the conventional transfer electrode repetition pitch 5 shown in FIG.
Under the transfer electrode 1 where the transfer electrode 2 is applied, there is only a potential gradient region 7 due to the influence of the adjacent transfer electrode. Therefore, there is no potential flat region 6 between B-8', and no charges are left behind in the potential flat region 6, so that the transfer efficiency of the charge coupled device can be improved.

第3図は、第1図の転送電極1下のポテンシャル平坦領
域6を示す図である。第6図に比べポテンシャル平坦領
域6が極端に少なくなり、ポテンシャル平坦領域6に取
り残される電荷が減る。したがって電荷入力部2から注
入された電荷8を電荷出力部3へ取り出す場合の転送効
率を大幅に改善することができる。
FIG. 3 is a diagram showing the potential flat region 6 under the transfer electrode 1 of FIG. 1. Compared to FIG. 6, the potential flat area 6 is extremely small, and the amount of charge left behind in the potential flat area 6 is reduced. Therefore, the transfer efficiency when taking out the charge 8 injected from the charge input section 2 to the charge output section 3 can be significantly improved.

第4図1−1本発明第2の実施例における電荷転送装置
の構成図である。転送電極1が、電荷転送装置の転送方
向に対して45゜傾斜した構造となっている。
FIG. 4 1-1 is a configuration diagram of a charge transfer device in a second embodiment of the present invention. The transfer electrode 1 has a structure inclined at 45 degrees with respect to the transfer direction of the charge transfer device.

第5図は、第4図の転送電極1下のポテンシャル平坦領
域6を示す図である。有効電極領域の長さ9が転送電極
の繰り返しビッチ5に比べ短くなっているため、第6図
に比べポテンシャル平坦領域6の幅が極端に狭くなり、
ポテンシャル平坦領域6に取り残される電荷が減る。し
たがって電荷入力部2から注入された電荷8を電荷出力
部3へ取り出す場合の転送効率を大幅に改善することが
できる。
FIG. 5 is a diagram showing the potential flat region 6 under the transfer electrode 1 of FIG. 4. Since the length 9 of the effective electrode area is shorter than the repeat pitch 5 of the transfer electrode, the width of the potential flat area 6 is extremely narrow compared to FIG.
The amount of charge left behind in the potential flat region 6 is reduced. Therefore, the transfer efficiency when taking out the charge 8 injected from the charge input section 2 to the charge output section 3 can be significantly improved.

本発明の第1の実施例及び第2の実施例は、転送電極の
繰り返しビッチ5が等しい5本転送電極の例であるが、
繰り返しが1本の場合でも同様の効果がある。
The first embodiment and the second embodiment of the present invention are examples of five transfer electrodes having the same repetition bit 5 of the transfer electrodes.
A similar effect can be obtained even when there is only one repetition.

また、繰り返しが行われる範囲外の所にある転送電極の
有効電極領域の長さが、繰り返しの行われる範囲の有効
電力領域の長さより短くなっていれば、繰り返しが行わ
れる範囲外の所にある転送電極の領域でも転送効率を改
善することができる。
In addition, if the length of the effective electrode area of the transfer electrode outside the range where repetition is performed is shorter than the length of the effective power region of the range where repetition is performed, Transfer efficiency can also be improved in certain transfer electrode regions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における電荷転送装置の
構成図、第2図は第1図のB−B’断面図、第3図は第
1図の転送電極下のポテンシャル平坦領域を示す図、第
4図は第2の実施例における電荷転送装置の構成図、第
5図は第4図の転送電極下のポテンシャル平坦領域を示
す図、第6図は従来の電荷転送装置の構成図、第7図は
第6図のA−A’間の断面ポテンシャル図、第8図は第
6図の転送電極下のポテンシャル平坦領域を示す図であ
る。 1・・・・・・転送電極、2・・・・・・電荷入力部、
3・・・・・・電荷出力部、4・・・・・・電荷転送領
域、5・・・・・・転送電極の繰り返しピッチ、6・・
・・・・ポテンシャル平坦領域、7・・・・・・ポテン
シャル傾斜領域、8・・・・・・電荷、9・・・・・・
有効転送電極の長さ、10・・・・・・隣りの電極と重
ね合せを行うための領域。
FIG. 1 is a block diagram of a charge transfer device according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line BB' in FIG. 1, and FIG. 3 is a potential flat region under the transfer electrode in FIG. 1. 4 is a block diagram of the charge transfer device in the second embodiment, FIG. 5 is a diagram showing the potential flat region under the transfer electrode in FIG. 4, and FIG. 7 is a cross-sectional potential diagram taken along line AA' in FIG. 6, and FIG. 8 is a diagram showing a potential flat region under the transfer electrode in FIG. 6. 1... Transfer electrode, 2... Charge input section,
3...Charge output section, 4...Charge transfer region, 5...Repetition pitch of transfer electrode, 6...
...Potential flat region, 7...Potential gradient region, 8...Charge, 9...
Effective transfer electrode length, 10...A region for overlapping with the adjacent electrode.

Claims (5)

【特許請求の範囲】[Claims] (1)複数本の転送電極を備え前記転送電極内の隣りの
電極と重ね合せを行うための領域以外で、電荷転送領域
に電位を与える有効電極領域が、凹凸または前記電荷転
送装置の転送方向に対して90゜以外の角度で傾斜した
構造を持つ前記転送電極を、少なくとも一本以上有する
ことを特徴とする電荷転送装置。
(1) The effective electrode area that applies a potential to the charge transfer area, other than the area that is provided with a plurality of transfer electrodes and is overlapped with an adjacent electrode in the transfer electrode, is uneven or in the transfer direction of the charge transfer device. A charge transfer device comprising at least one transfer electrode having a structure inclined at an angle other than 90° with respect to the charge transfer device.
(2)電荷転送装置の転送方向に対して、転送電極N本
を用いて長さLの周期で前記転送電極をM回繰り返す範
囲において、前記転送電極内の隣りの電極と重ね合せを
行うための領域以外で、電荷転送領域に電位を与える有
効電極領域の最短の長さが、L/Nよりも短い構造を各
々の前記転送電極が有することを特徴とする特許請求の
範囲第1項記載の電荷転送装置。
(2) To superimpose the transfer electrodes with adjacent electrodes in the range in which the transfer electrodes are repeated M times with a period of length L using N transfer electrodes in the transfer direction of the charge transfer device. Claim 1, wherein each of the transfer electrodes has a structure in which the shortest length of an effective electrode area that applies a potential to the charge transfer area is shorter than L/N, other than the area. charge transfer device.
(3)電荷転送装置の転送方向に対して、転送電極N本
を用いて長さLの周期で前記転送電極をM回繰り返す範
囲において、前記転送電極内の隣りの電極と重ね合せを
行うための領域以外で、電荷転送領域に電位を与える有
効電極領域の電荷入力側の端のどの点から測定しても、
電荷出力側への最短距離が、L/N以下の構造を、各々
の前記転送電極が有することを特徴とする特許請求範囲
の第1項記載の電荷転送装置。
(3) In order to overlap the transfer electrode with the adjacent electrode in the range where the transfer electrode is repeated M times at a period of length L using N transfer electrodes in the transfer direction of the charge transfer device. No matter where you measure from any point on the charge input side end of the effective electrode area that applies the potential to the charge transfer area, other than the area
The charge transfer device according to claim 1, wherein each of the transfer electrodes has a structure in which the shortest distance to the charge output side is equal to or less than L/N.
(4)電荷転送装置の転送方向に対して、転送電極N本
を用いて長さLの周期で前記転送電極をM回繰り返す範
囲以外の範囲の前記転送電極において、前記転送電極内
の隣りの電極と重ね合せを行うための領域以外で、電荷
転送領域に電位を与える有効電極領域の最短の長さがL
/Nよりも短い構造を各々の前記転送電極が有すること
を特徴とする特許請求の範囲第1項記載の電荷転送装置
(4) With respect to the transfer direction of the charge transfer device, in the transfer electrode in a range other than the range in which the transfer electrode is repeated M times with a period of length L using N transfer electrodes, adjacent transfer electrodes in the transfer electrode The shortest length of the effective electrode area that applies a potential to the charge transfer area, other than the area for overlapping with the electrode, is L.
2. The charge transfer device according to claim 1, wherein each of said transfer electrodes has a structure shorter than /N.
(5)電荷転送装置の転送方向に対して、転送電極N本
を用いて長さLの周期で前記転送電極をM回繰り返す範
囲以外の範囲の前記転送電極において、前記転送電極内
の隣りの電極と重ね合せを行うための領域以外で、電荷
転送領域に電位を与える有効電極領域の電荷入力側の端
のどの点から測定しても、前記有効電極領域の電荷出力
側への最短距離がL/N以下の構造を各々の前記転送電
極が有することを特徴とする特許請求の範囲第1項記載
の電荷転送装置。
(5) With respect to the transfer direction of the charge transfer device, in the transfer electrode in a range other than the range in which the transfer electrode is repeated M times with a period of length L using N transfer electrodes, adjacent transfer electrodes in the transfer electrode The shortest distance to the charge output side of the effective electrode area is measured from any point on the charge input side of the effective electrode area that applies a potential to the charge transfer area other than the area for overlapping with the electrode. 2. The charge transfer device according to claim 1, wherein each of said transfer electrodes has a structure of L/N or less.
JP15186189A 1989-06-14 1989-06-14 Charge transfer device Pending JPH0316231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15186189A JPH0316231A (en) 1989-06-14 1989-06-14 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15186189A JPH0316231A (en) 1989-06-14 1989-06-14 Charge transfer device

Publications (1)

Publication Number Publication Date
JPH0316231A true JPH0316231A (en) 1991-01-24

Family

ID=15527846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15186189A Pending JPH0316231A (en) 1989-06-14 1989-06-14 Charge transfer device

Country Status (1)

Country Link
JP (1) JPH0316231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046839A (en) * 1990-04-25 1992-01-10 Mitsubishi Electric Corp Charge transfer element
JP2008288373A (en) * 2007-05-17 2008-11-27 Iwate Toshiba Electronics Co Ltd Solid-state imaging device
WO2010035367A1 (en) * 2008-09-25 2010-04-01 パナソニック株式会社 Solid-state imaging device and method for driving the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257574A (en) * 1984-06-04 1985-12-19 Matsushita Electronics Corp Charge transfer device
JPH01266763A (en) * 1988-04-18 1989-10-24 Nec Corp Charge transfer device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257574A (en) * 1984-06-04 1985-12-19 Matsushita Electronics Corp Charge transfer device
JPH01266763A (en) * 1988-04-18 1989-10-24 Nec Corp Charge transfer device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046839A (en) * 1990-04-25 1992-01-10 Mitsubishi Electric Corp Charge transfer element
JP2008288373A (en) * 2007-05-17 2008-11-27 Iwate Toshiba Electronics Co Ltd Solid-state imaging device
JP4724151B2 (en) * 2007-05-17 2011-07-13 岩手東芝エレクトロニクス株式会社 Solid-state imaging device
WO2010035367A1 (en) * 2008-09-25 2010-04-01 パナソニック株式会社 Solid-state imaging device and method for driving the same

Similar Documents

Publication Publication Date Title
DE69233055T2 (en) Linear CCD image sensor
GB1377124A (en) Charge coupled circuits
JPS58212176A (en) Charge transfer device
US5289022A (en) CCD shift register having a plurality of storage regions and transfer regions therein
JPH0316231A (en) Charge transfer device
JPH02211640A (en) Charge transfer device
JPS60257574A (en) Charge transfer device
JPS6149472A (en) Charge transfer device
JPS60187054A (en) Charge transfer device and driving method thereof
JPS62242363A (en) Charge transfer device
JPS5842630B2 (en) charge coupled device
JPS61194870A (en) Solid-state image pick-up device
JPH03114236A (en) Charge transfer device
JPH03283629A (en) Charge transfer device
JPH0425034A (en) Device of charge coupled device
JP2907841B2 (en) Line sensor
JPH06101485B2 (en) Charge transfer device
JPS6098673A (en) Charge coupled element
JPH046839A (en) Charge transfer element
US4558341A (en) Charge transfer with meander channel
JPS61184876A (en) Charge transfer device
JP3122562B2 (en) Circuit for driving charge transfer element
JPS6169173A (en) Charge coupled device
JPH0585041U (en) Charge transfer device
JPS6351670A (en) Solid-state image pickup device