JPH03161523A - Pitch-based carbon fiber - Google Patents
Pitch-based carbon fiberInfo
- Publication number
- JPH03161523A JPH03161523A JP29922689A JP29922689A JPH03161523A JP H03161523 A JPH03161523 A JP H03161523A JP 29922689 A JP29922689 A JP 29922689A JP 29922689 A JP29922689 A JP 29922689A JP H03161523 A JPH03161523 A JP H03161523A
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- fiber
- pitch
- diameter
- carbon fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims description 54
- 239000004917 carbon fiber Substances 0.000 title claims description 54
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 36
- 239000000835 fiber Substances 0.000 claims abstract description 108
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 15
- 239000000470 constituent Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 16
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 4
- 239000004020 conductor Substances 0.000 abstract description 3
- 239000007772 electrode material Substances 0.000 abstract description 3
- 239000004744 fabric Substances 0.000 abstract description 3
- 239000011295 pitch Substances 0.000 description 49
- 238000009987 spinning Methods 0.000 description 20
- 230000007423 decrease Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 238000003763 carbonization Methods 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 9
- 238000004804 winding Methods 0.000 description 8
- 239000002131 composite material Substances 0.000 description 6
- 239000003610 charcoal Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 229910010271 silicon carbide Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000002074 melt spinning Methods 0.000 description 4
- 239000012779 reinforcing material Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000011301 petroleum pitch Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 239000011337 anisotropic pitch Substances 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000012770 industrial material Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 101100129088 Caenorhabditis elegans lys-2 gene Proteins 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 206010073150 Multiple endocrine neoplasia Type 1 Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- -1 molten metal Chemical compound 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/145—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は構成単m維の直径が大きい炭素繊維に間する.
また、本発明は液晶ピッチ系の連続したモノフィラメン
ト、ないしはそれに近い構M.@繊維の本数の少ない連
続した炭素繊維に関する。なお、本発明の液晶ピッチL
L工光学的異方性成分含有ピッチあるいは熱や応力によ
り容易に光学的異方性に転化するピッチの総称である。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to carbon fibers in which the constituent single fibers have a large diameter.
Furthermore, the present invention is directed to a continuous monofilament of a liquid crystal pitch system or a structure similar to the monofilament. @Concerning continuous carbon fiber with a small number of fibers. In addition, the liquid crystal pitch L of the present invention
L is a general term for pitches containing optically anisotropic components or pitches that are easily converted into optical anisotropy by heat or stress.
構成単繊維直径の大きい炭素繊維は導電材料(発熱体、
電極材)、電磁波シールド材科、帯電防止材料、耐熱耐
薬品賃材(濾過布、作業衣、防護服、保護具、保温材)
等に使用される。従来の炭素繊維は構成単繊維が細く単
繊維本数が多いため毛羽が立ち易い等の欠点があり、こ
のような産業賃材の原料としては取り扱いに不便である
.構成単繊維の直径が大きい炭素wA維は繊碓複合材料
の強化材として、腰が強く、マトリックス成分の流れに
よって変形し難い利点がある.特にマトリックス成分が
金属のような表面張力が極めて大きいt,t料の場合、
ある種の熱可塑性樹脂のように極めて粘性の大きいt才
科の場合等であっても、本発明の炭素繊維は、マトリッ
クス成分の流れによって移動して幅在化する傾向が小さ
いので繊紺複合材料の強化材として優れた性能を示す。Constituent single fiber carbon fiber with large diameter is used as a conductive material (heating element,
Electrode materials), electromagnetic shielding materials, antistatic materials, heat-resistant and chemical-resistant materials (filtering cloth, work clothes, protective clothing, protective gear, heat insulation materials)
Used for etc. Conventional carbon fibers have drawbacks such as easy fluffing due to their thin single fibers and large number of single fibers, making them inconvenient to handle as raw materials for such industrial materials. Carbon wA fibers, which have large diameter constituent single fibers, have the advantage of being strong and difficult to deform due to the flow of matrix components, as a reinforcing material for fiber composite materials. In particular, when the matrix component is a t,t material with extremely high surface tension, such as a metal,
Even in the case of materials with extremely high viscosity such as certain thermoplastic resins, the carbon fibers of the present invention have a small tendency to move and spread out due to the flow of matrix components, so they are suitable for use in textile and navy blue composites. Shows excellent performance as a reinforcing material.
構成i繊維本数の少ない炭素繊維、特にモノフィラメン
トはCVD法等によりホウ素、炭化ケイ素、窒化ケイ素
等を被覆する方法で製造されるセラミック繊維等の芯材
料として優れた性能を示す。Structure i Carbon fibers with a small number of fibers, especially monofilaments, exhibit excellent performance as core materials for ceramic fibers and the like produced by coating boron, silicon carbide, silicon nitride, etc. by CVD method or the like.
[従来の{支休■]
ガラスのような脆性材料の場合、非常に細く成形すると
強度が大きくなることが知られていろ。[Conventional {Summary ■] It is well known that when a brittle material such as glass is formed into a very thin material, its strength increases.
これは成形時の歪み等により、ある確率で傷が発生し、
細く成形すると試験片の中に傷が含まれる確率が小さく
なるため、細くなるほど急速に強度が大きくなると説明
ざれている。This is because there is a certain probability that scratches will occur due to distortion during molding, etc.
It is explained that the thinner the test piece is, the smaller the probability that it will contain scratches, so the thinner the test piece, the more quickly the strength will increase.
このような現象は従来から炭素1維の場合にも存在する
ことが摺告されている。PAN系の炭素繊維の場合、繊
紺直径が小さくなると強度が大きくなるため、時代の経
過と共に次第に細い繊維が作られるようになっている。It has been reported that such a phenomenon also exists in the case of monocarbon fibers. In the case of PAN-based carbon fibers, the strength increases as the fiber diameter decreases, so as time passes, thinner fibers are gradually being made.
等方性ピッチ系の炭素繊維の場合、大谷は繊維直径と強
度の関係を調べ、直径がlOμmより大きくなると急速
に強度が低下することを報告している[,+:arbo
n 3、:N〜38(1965)]。メソフエーズピッ
チ系の炭素繊維の場合、D.M.RiggsおよびJ.
f;.Vellnerは炭化温度4soo℃および20
00℃のものは繊維直径8μm以下で450 KSI以
上の強度を有すること、wA碓直径が大きくなるほど強
度が急激に低下し直径13.5μmでは250 KSI
以下になることを報告している。(16tlBienn
ial Conference on Carb
on)このような状況から従来は直径20μm以上の液
晶ピッチ系炭素繊維のモノフィラメント特に連続したモ
ノフィラメントが得られることは、Ill侍ざれていな
かった。In the case of isotropic pitch-based carbon fibers, Otani investigated the relationship between fiber diameter and strength and reported that the strength decreases rapidly when the diameter becomes larger than 10 μm [, +: arbo
n3,:N~38 (1965)]. In the case of mesophase pitch carbon fiber, D. M. Riggs and J.
f;. Vellner has a carbonization temperature of 4 soo C and 20
00℃ has a strength of 450 KSI or more when the fiber diameter is 8 μm or less, and the strength decreases rapidly as the diameter increases, and it is 250 KSI at a diameter of 13.5 μm.
It is reported that the following will occur. (16tlBienn
ial Conference on Carb
Under these circumstances, it has not been possible to obtain liquid crystal pitch-based carbon fiber monofilaments, particularly continuous monofilaments, having a diameter of 20 μm or more.
従来から合成繊維モノフィラメントは、紡糸口金から紡
糸液を押し出して固化させた後、連続して延伸、熱処理
を行い、ざらに引き続いて繊維を一本ないし数本ずつ分
繊して巻き取ることにより、製造されている。Conventionally, synthetic fiber monofilament is produced by extruding the spinning solution from a spinneret and solidifying it, then continuously drawing and heat-treating it, and then separating the fibers one or several fibers at a time and winding them up. Manufactured.
この方γ去は簡略で高度の技術を要しないものでありな
がら、製品の品質精度がよく、ボリアミド、ポリエステ
ル、ポリオレフィン等、多くの合成樹脂に刻して使用ざ
れているものである。Although this method of gamma removal is simple and does not require advanced technology, the quality of the product is high and it is used by cutting into many synthetic resins such as polyamide, polyester, and polyolefin.
またボリアミドのように強度、仲度の大きい繊Itでは
、比較的単繊紺デニールの大きいフィラメント糸を、解
撚しながら一木あるいは二木ずつ分繊して巻き取る方法
も用いられる。In addition, for fibers with high strength and stiffness such as bolyamide, a method is also used in which a relatively single filament yarn with a large denier is untwisted and divided one or two filaments at a time and then wound.
ビッチ繊柑の場合には、紡出漫の単繊維の強度が極端に
低いためこれらの方法を株用することは困難である。紡
糸後のピッチ繊維は集束後直ちに巻き取るか、ケンスの
中もしくは多孔質ベルトの上に1采取する。ピッチ繊維
はボビンに巻かれた状態、ケンスに収納された状態、あ
るいはベルトの上で{纂が付かないようにして不融化お
よび炭化される。分繊のような手荒な加工は、炭化の進
んだ状態でないと実施出来ないのは当然であるが、たと
え炭1ヒ後であっても、多数の細い単繊維が集束し炭化
ざれた状態の炭素繊維を分繊し、連続したモノフィラメ
ントを取り出すことは強度的にも技術的にも非常に困難
である。In the case of bitch fibers, it is difficult to use these methods because the strength of the spun single fibers is extremely low. The spun pitch fibers are either wound up immediately after being bundled, or placed in a can or on a porous belt. The pitch fibers are infusible and carbonized while being wound around a bobbin, stored in a can, or on a belt without forming any knots. It goes without saying that rough processing such as fiber splitting cannot be carried out unless the carbonization is advanced, but even after one charcoal burn, many thin single fibers are bundled and carbonized. Separating carbon fibers and extracting continuous monofilaments is extremely difficult from both strength and technical standpoints.
[発明が解決しようとする[11
従来の炭素繊維の主な用途は複合材料の繊維による強化
であるため、衣服用繊維のようにI’A成単繊維本数の
少ない糸の需要は極めて少なかった。[What the invention attempts to solve] [11 The main use of conventional carbon fibers is to strengthen composite materials with fibers, so there was extremely little demand for yarns with a small number of I'A single fibers, such as fibers for clothing. .
しかし近年炭素繊維の品質の改良が進み、その独特の物
性が産業資材用の繊維として注目を集めるようになって
いる.そのため一般の合戊繊維と同程度の太さの糸の需
要が急速に増加する傾向がある。However, in recent years, the quality of carbon fiber has improved, and its unique physical properties are attracting attention as a fiber for industrial materials. Therefore, there is a tendency for demand for yarns with a thickness similar to that of general synthetic fibers to increase rapidly.
このような炭素繊維の斬規の需要を満たすためには、弾
性率及び引張強度の高いモノフィラメントが必要である
.しかし従来の炭素繊維は、単繊維の直径が10μ曙程
度から大きくなると、急激に強度が低下する問題がある
ことが知られている。In order to meet these demanding demands for carbon fiber, monofilaments with high elastic modulus and tensile strength are required. However, it is known that conventional carbon fibers have a problem in that their strength rapidly decreases when the diameter of a single fiber increases from about 10 μm.
この問題を解決するためにモノフィラメントの製造条件
について検討を進めていたところ、弾性率が高く、単w
i維直径が変化しても強度が大きく変化しない液晶ピッ
チ系炭素繊維を見いだし、本発明に至ったものである.
[課題を解決する手段]
本発明は平均繊&It11I径が20μm以上の連続し
た湾晶ピッチ系単繊維で構成ざれる炭素繊維である。In order to solve this problem, we were investigating the manufacturing conditions for monofilament, and found that it has a high elastic modulus and
We have discovered a liquid crystal pitch-based carbon fiber whose strength does not change significantly even when the fiber diameter changes, leading to the present invention. [Means for Solving the Problems] The present invention is a carbon fiber composed of continuous bay pitch-based single fibers having an average fiber &It11I diameter of 20 μm or more.
木発明の炭素繊維は80,OOOk)( f/ms 2
以上の弾性率及び200kg f/ms 2以上の引張
強度を有することが可能である。Wood's carbon fiber is 80,000k) (f/ms 2
It is possible to have an elastic modulus of 200 kg f/ms 2 or more and a tensile strength of 200 kg f/ms 2 or more.
また本発明の炭素繊維は従来の炭′f:繊維のような多
数のm繊維からなるマルチフィラメシトとして使用する
こともできるが、構成する単繊碓本数が1本であるモノ
フィラメントであることが特に好ましい。Furthermore, the carbon fiber of the present invention can be used as a multifilament consisting of a large number of m fibers like conventional charcoal fiber, but it can also be used as a monofilament consisting of one single fiber. Particularly preferred.
本発明の炭素繊維は比較的高軟化点で分子量分布の挟い
1α品ピッチ、好ましくは軟化点270〜360℃、光
学的異方性成分含有$85〜100%の石油系ピッチか
ら製造されたものである。軟化点が270℃以下のピッ
チを使用する場合、溶融物の粘度が低く、繊維直径が大
きいものを紡糸することが困雅になるとともに、低分子
量成分が多くなると、炭素繊維中の欠陥が増加し強度が
低下する問題がある。従って液晶ピッチは、減圧処理等
によって低分子は成分を除去しておくことが好ましい。The carbon fiber of the present invention is produced from a 1α pitch with a relatively high softening point and a molecular weight distribution, preferably a petroleum pitch with a softening point of 270 to 360°C and an optically anisotropic component content of $85 to 100%. It is something. When using pitch with a softening point of 270°C or lower, the viscosity of the melt is low, making it difficult to spin fibers with a large diameter, and as the amount of low molecular weight components increases, defects in the carbon fiber increase. However, there is a problem that the strength decreases. Therefore, it is preferable to remove low molecular weight components from the liquid crystal pitch by performing a vacuum treatment or the like.
軟化点が360゜C以上のピッチを使用する場合、紡糸
時に1・ローレゾナンスを起こし易くなり、均一な直径
のl繊維を作り難くなる問題がある。液晶ピッチを製漬
する際に、熱処理初間に生成するメソフエーズを分離除
去することによって高分子量になり易い成分や異物等を
除去したピッチを原料として熱処理することは有効な方
法の一つである。光学異方性成分含有率が小さくなると
繊維直径の増加に伴なう繊維強度の低下が大きくなり、
また、光学的等方性成分が増加すると紡糸性が低下する
ので好ましくない。光学異方性戊分含有率は85%以上
であることが好ましく、実質的に100%であることが
特に好ましい。If a pitch with a softening point of 360° C. or higher is used, there is a problem that 1-low resonance tends to occur during spinning, making it difficult to produce 1-fibers with a uniform diameter. When preparing liquid crystal pitch, one effective method is to heat-treat the pitch by separating and removing the mesophase produced during the initial heat treatment to remove components that tend to have high molecular weight and foreign substances, etc. as a raw material. . As the optically anisotropic component content decreases, the decrease in fiber strength increases as the fiber diameter increases;
Further, an increase in the optically isotropic component is not preferable because the spinnability decreases. The optical anisotropic fraction content is preferably 85% or more, particularly preferably substantially 100%.
液晶ピッチとしては通常の流れ模様を持つ光学異方性ピ
ッチのほか、重質油やピッチ類から溶剤抽出により、容
易に光学異方性に転化する成分を集めたもの、あるいは
光学異方性ピッチを還元して、容易に光学異方性に転化
する等方性ピッチにしたもの等の中から迩ぶことができ
る.重質油やピッチ類としては石油系のものが特に好ま
しい.木発明の炭素繊維の製造において、溶融ピッチを
、下流方向に向かって断面積が増大する紡糸孔から紡糸
することが好ましい.このような紡糸孔を使用する利点
の一つは、紡糸孔での圧力低下を大きくし、各紡糸孔か
らのピッチの吐出量を均一化することである。もう一つ
の利点としては、ピッチ分子の配向を割れ易いラジアル
型から、割れ雅いランダム型や摺曲したラジアル型に変
える能力があることである。本発明のような直径の大き
いWiltの場合、第1図に示されるように、表層と中
心部がラジアル、その中間部がランダムという特異な3
層構造になることが多いことがわかった。In addition to optically anisotropic pitch with a normal flow pattern, liquid crystal pitch includes a collection of components that can be easily converted to optically anisotropic by solvent extraction from heavy oils and pitches, or optically anisotropic pitch. can be reduced to isotropic pitch, which is easily converted into optical anisotropy. Petroleum-based heavy oils and pitches are particularly preferred. In the production of the carbon fiber of the Wood Invention, it is preferable to spin the molten pitch through a spinning hole whose cross-sectional area increases in the downstream direction. One of the advantages of using such spinning holes is that the pressure drop across the spinning holes is increased and the amount of pitch discharged from each spinning hole is made uniform. Another advantage is the ability to change the orientation of pitch molecules from a radial type that is easy to break, to a random type that is easy to break, or a radial type that is sliding. In the case of Wilt with a large diameter like the one of the present invention, as shown in Fig. 1, the surface layer and center part are radial, and the middle part is random.
It was found that they often have a layered structure.
なお低速度で紡糸する程製造される炭素繊維の弾性率が
高くなる傾向がみられた。There was a tendency that the lower the spinning speed, the higher the elastic modulus of the carbon fiber produced.
件の一つであり、冷却が不均一になると、ドローレゾナ
ンスを起こして単繊維直径の不均一を生し易い.
本発明の炭素繊維のi!造において、ピッチ繊維の不融
化の際には昇温速度を遅くする必要があり、加熱空a中
では昇温速度1.0℃/分以下で処理することが好まし
い。昇温速度が大きすぎると1碓中心部の不融化が不十
分になるため発泡して弱点を形成するので好ましくない
。また昇温速度が小さすぎるとコストが高くなるので好
ましくない。One of the problems is that if the cooling becomes uneven, draw resonance will occur and the single fiber diameter will likely become uneven. i! of the carbon fiber of the present invention! In the process of making the pitch fibers infusible, it is necessary to slow down the temperature increase rate, and it is preferable to perform the process at a temperature increase rate of 1.0° C./min or less in heating air a. If the temperature increase rate is too high, the infusibility of the center of the foam will be insufficient, resulting in foaming and forming weak points, which is not preferable. On the other hand, if the temperature increase rate is too low, the cost will increase, which is not preferable.
昇冫=速度は好ましくは0.OI〜0.5℃/分である
。Increase=speed is preferably 0. OI~0.5°C/min.
本発明のピッチ繊維の不融化の際にも、通常実施されて
いる、例えば酸素鷹度を高めたIJ[Iv4空気中で処
理する等の手段によって不融化反応を促進することがで
きる。In the case of infusibility of the pitch fibers of the present invention, the infusibility reaction can be promoted by a commonly practiced method such as treatment in IJ [Iv4 air with increased oxygen concentration.
本発明の炭素繊維は炭化工程の初間においては従来の炭
素繊維よりも小さい昇温速度で処理することが好ましい
。特に600℃以上の温度範囲での昇温速度は好ましく
は100℃/分以下、特に好ましくは30℃/分以下で
ある。The carbon fibers of the present invention are preferably treated at a lower heating rate than conventional carbon fibers during the initial stage of the carbonization process. In particular, the temperature increase rate in a temperature range of 600°C or higher is preferably 100°C/min or less, particularly preferably 30°C/min or less.
本発明の炭素繊維は溶融紡糸したピッチ繊維を直ちに巻
き取るか、ケンスの中に収納するかあるいは多孔賞のベ
ルト上に載ぜて不融化及び炭化処理を行った後巻き取り
、種々の加工に供することが好ましい。溶融紡糸直後の
ピッチ繊維は直径が大きいとはいっても極めて弱くかつ
脆いので、これを一本ないしは数本の単繊維で取り扱う
ことには最大限の注意を払う必要がある。しかしこれを
不融化処理し、炭化処理すれば強度は大きくなり、脆さ
も少なくなって、単繊&lt一本ないし数本の糸の、普
通の糸としての!!!0扱いが可能になる。The carbon fibers of the present invention can be processed by winding the melt-spun pitch fibers immediately, storing them in a can, or placing them on a perforated belt, performing infusibility and carbonization treatment, and then winding them. It is preferable to provide Pitch fibers immediately after melt spinning are extremely weak and brittle even though they have a large diameter, so the utmost care must be taken when handling them as one or several single fibers. However, if it is made infusible and carbonized, its strength increases and its brittleness decreases, making it suitable for use as a single or several strands of ordinary yarn. ! ! It becomes possible to treat it as 0.
この段階では、太いwA維東から構成する単繊維本数が
ほぼ等しい複数の繊維束に分割することが可能となり、
細いマルチフィラメント糸やモノフィラメントをこの方
法で製造することもできる。At this stage, it becomes possible to divide the thick wA ITO into multiple fiber bundles with approximately the same number of single fibers.
Thin multifilament yarns and monofilaments can also be produced using this method.
この場合、好ましくはピッチ繊維の製造から若干炭化が
進行して脆さが少なくなるまでの間、単繊維の本数を多
くして処理し、その後ほぼ等しい単wA維本数を持つ複
数の繊碓束に分割し、構成単繊維本数の少ない糸あるい
は構成する単繊維本数を1本とした炭素繊維のモノフィ
ラメントを製造することができる。In this case, it is preferable to process the pitch fibers by increasing the number of single fibers from the time when the pitch fibers are produced until the carbonization progresses a little and the brittleness decreases, and then process a plurality of fiber bundles having approximately the same number of single wA fibers. It is possible to produce a carbon fiber monofilament with a small number of constituent single fibers or a carbon fiber monofilament with one single single fiber.
従来の炭素繊維では単繊維直径が大きくなるほど強度は
小さくなる傾向があると言われているが、本発明の炭素
繊維の場合、この傾向は顕著ではなく、引張強度200
kg f/w 2以上でかつ弾性率を80,000kg
f/!IIlm2以上にすることが可能である.一方、
単繊維直径が大きくなると耐摩耗性が改善されるので、
他のマトリックス材料で被覆することなく、繊維集合体
のままで使用する場合には、単繊維直径が大きいことが
好ましい。It is said that in conventional carbon fibers, the strength tends to decrease as the single fiber diameter increases, but in the case of the carbon fibers of the present invention, this tendency is not remarkable, and the tensile strength is 200%.
kg f/w 2 or more and elastic modulus of 80,000 kg
f/! IIlm2 or higher is possible. on the other hand,
As the single fiber diameter increases, the wear resistance improves.
When the fiber aggregate is used as it is without being coated with another matrix material, it is preferable that the single fiber diameter is large.
しかし単繊維直径が大きくなると不融化が難しくなり、
低温長時間の酸化処理を必要とするようになる.またピ
ッチ繊維の紡糸の際に不均一になり易い傾向がある。こ
のような理由から、本発明の炭素繊維の単TaiIIt
直径は好ましくは200l1m以下、もっとも好ましく
は150μ一以下である.PANあるいはレーヨン系の
炭素繊維は、単繊維の直径が大きくなると急激に強度が
低下する。この理由は繊維の強度が傷が表面に存在する
確率に依存し、直径の増大に伴い傷の存在する11率が
大きくなるためと言われている。However, as the single fiber diameter increases, it becomes difficult to make it infusible.
This requires low-temperature, long-term oxidation treatment. Furthermore, pitch fibers tend to become non-uniform during spinning. For these reasons, the carbon fiber single TaiIIIt of the present invention
The diameter is preferably 200 lm or less, most preferably 150 m or less. The strength of PAN or rayon-based carbon fibers decreases rapidly as the diameter of the single fiber increases. The reason for this is said to be that the strength of the fiber depends on the probability that scratches will be present on the surface, and as the diameter increases, the 11 ratio that scratches will be present increases.
ところが本発明の液晶ピッチ系の炭i繊維Cよ、単繊維
の直径が大きくなった場合の強度の低下が少なく、剛直
性、形熊保持性に優れた特性を有する。また比表面積が
小さいため、嗣食加工が容易であるfリ点を有する。表
面がチタンカーバイト、シリコンカーバイド等で被覆す
ることにより、溶融金属のように炭素を強く腐食する物
質に対する祠食性を確保でき、濱融金pをマトリックス
とする複合t才料の強化材として優れた性能を有する。However, the liquid crystal pitch-based charcoal i-fiber C of the present invention exhibits less decrease in strength when the diameter of the single fiber increases, and has excellent properties in rigidity and shape retention. In addition, since the specific surface area is small, it has a f-point that makes it easy to process as a substitute. By coating the surface with titanium carbide, silicon carbide, etc., it can ensure abrasion resistance against substances that strongly corrode carbon, such as molten metal, and is excellent as a reinforcing material for composite T-materials with Hama Yukin P as a matrix. It has excellent performance.
またこれらのIii4食性t才享3tの1II情層を厚
くして、チタンカーバイド、シリコンカーバイド等を主
体の繊維とすることができ、ざらにホウ素、窒化ケイ素
等をざらにit!Ifffすることができる。In addition, it is possible to thicken the layer of these materials and make the fibers mainly made of titanium carbide, silicon carbide, etc., and it is possible to make the fibers mainly made of titanium carbide, silicon carbide, etc. It is possible to Iff.
本発明の炭素繊維モノフィラメントは、強度、耐食性、
till直性、形態保持性等が優れている。また複合材
料の繊維強化材科として使う場合、成形時にマトリック
ス成分の流動によって、繊維の配置や配列に乱れを生じ
、それによって成形品に欠陥を生じろ事が少ないfリ点
を有する.本発明によると、20μm以上の結晶ピッチ
系炭素繊維の製造が可能となるが、特に後段の処理に於
ける操作性の点からは30μ屠以上の液晶ピッチ系炭素
繊維が好ましい.
本発明の炭素繊維の製造において、分繊を行う場合には
好ましくはピッチ繊維を薄い板状に成形しつつ巻取り、
引き続いて該板状の形状を保った状態で不融化及び炭化
を行う。成形に際して(i糊剤あるいCi集束性のよい
油剤を付着させ、薄い板状の形が反転や分裂を生じない
ように巻取る。The carbon fiber monofilament of the present invention has strength, corrosion resistance,
Excellent till straightness, shape retention, etc. In addition, when used as a fiber reinforcement material for composite materials, it has a f-point that causes disturbances in the arrangement and arrangement of fibers due to the flow of the matrix component during molding, which causes defects in the molded product. According to the present invention, it is possible to produce crystalline pitch-based carbon fibers with a thickness of 20 μm or more, but liquid crystal pitch-based carbon fibers with a thickness of 30 μm or more are particularly preferred from the viewpoint of operability in subsequent processing. In producing the carbon fiber of the present invention, when splitting the fibers, it is preferable to form the pitch fiber into a thin plate shape and wind it up.
Subsequently, infusibility and carbonization are performed while maintaining the plate-like shape. During molding (I), glue or Ci oil with good focusing properties is applied, and the thin plate-like shape is rolled up to prevent it from turning over or splitting.
この巻取の際に、好ましくは巻取機の綾振りガイドとし
て、単繊維の位置の移動を生しない程度に狭い隙間を持
つものを用いる。この隙間はヵイドの形状として形成さ
せても良く、また繊維束の偏平化装置と幅広のガイトと
の朝み合わせであっても良い.この綾瀉リガイトの隙r
W1は、好ましくは繊維直径の2培よりも小さいものと
する。During this winding, it is preferable to use a traversing guide for the winding machine that has a narrow gap to the extent that the position of the single fiber does not shift. This gap may be formed in the shape of a guide, or may be formed by a combination of a fiber bundle flattening device and a wide guide. This gap in Ayaya Rigite
W1 is preferably smaller than two times the fiber diameter.
巻取ったこの薄い板状の繊維束は、反転や分裂を生じな
いようにして巻き出し、不融化および炭化を行う。この
場合ピッチの紡糸から炭化工程まで、巻取ることなく連
続して処理することも可hヒである.しかし各工程の好
適な処理速度に差があるので、ピッチの紡糸後に巻取る
ことが好ましい.[作 用]
本発明は強度及び弾性率に優れた、繊維直径の大きい連
続した液晶ピッチ系単繊維で構成される炭素繊維である
。This thin plate-shaped fiber bundle is unwound without being turned over or split, and is made infusible and carbonized. In this case, it is also possible to perform continuous processing from pitch spinning to carbonization without winding. However, since there are differences in the suitable processing speed for each process, it is preferable to wind the yarn after pitch spinning. [Function] The present invention is a carbon fiber composed of continuous liquid crystal pitch-based single fibers having a large fiber diameter and excellent strength and elastic modulus.
このような炭素繊フ1tが得られる理由は明らかでない
が、高軟化点で分子量分布の狭い液晶ピッチの使用、下
流方向に向かって断面積が増大する紡糸孔の使用等の相
乗的な効果により、繊維直径が大きくても高い強度及び
弾性率を有し、炭化後でも割れ等の欠陥が生成しない特
異な微細11i造の繊維が製造ざれたのではないかと推
察される。また石油系のピッチは石炭系等のピッチにく
らべてピッチ中に含まれる炭素粒子のような非流動性の
夾雑物の存在量が極度に少ないので、単繊維直径が大き
くても強度が優れた炭膏繊維が得られると考えられる.
[実鞭例]
次に本発明を実施例により、さらに具体的に説明する.
実施例 1
軟化点318℃、光学異方性成分含有率100%の石油
系ピッチを原料とし、紡糸孔の最狭部の直径0.1+w
、紡糸孔の出口の直径0.25−の紡糸孔を有する口金
を用い、紡糸温度329.2℃で窒素を吹付けながら、
IfJ融紡糸を行った。ピッチの吐出量0.070g/
ホール◆分、巻取速度30m /分てあった。It is not clear why such carbon fiber fibers can be obtained, but it is due to the synergistic effects of the use of liquid crystal pitch with a high softening point and narrow molecular weight distribution, and the use of spinning holes whose cross-sectional area increases in the downstream direction. It is surmised that a unique fine 11i fiber was produced which has high strength and elastic modulus even if the fiber diameter is large and does not produce defects such as cracks even after carbonization. In addition, petroleum-based pitch has an extremely low amount of non-flowing impurities such as carbon particles contained in the pitch compared to coal-based pitch, so it has excellent strength even if the single fiber diameter is large. It is thought that charcoal fibers can be obtained. [Practical Examples] Next, the present invention will be explained in more detail with reference to Examples. Example 1 Petroleum pitch with a softening point of 318°C and an optically anisotropic component content of 100% is used as a raw material, and the diameter of the narrowest part of the spinning hole is 0.1+w
Using a spinneret having a spinning hole with a diameter of 0.25 mm at the exit of the spinning hole, while blowing nitrogen at a spinning temperature of 329.2°C,
IfJ melt spinning was performed. Pitch discharge amount 0.070g/
The hole was ◆min, and the winding speed was 30m/min.
紡出した繊維はオイリングの後、繊維が平行にほぼ密着
するような形で巻き取れる速度でトラバースさせながら
巻き取った.
紡出された繊維を昇温速度0.1℃/分で300℃まで
昇温し、300℃に30分間保って不融化処理し、ざら
に昇温速度5℃/分で700℃まで昇温しで軽度の炭化
を行った。引き続き最高准度2500℃の炉に連続的に
供給して昇温速度12℃/分で昇温しで炭化処理した.
得られた繊維は直径約32μ慣の太さのものであった.
引張強度は275kgf/關2、弾性率は85,000
kgf/am2であった.繊維横断面を観察したところ
、第1図に示したように表層と中心部がラジアル状でそ
の中間部がランダム状の断面構造であり、割れ欠けおよ
びボイドの存在は認められなかった。After oiling, the spun fibers were wound up while being traversed at a speed that would allow the fibers to be wound in a parallel, almost close contact manner. The spun fiber was heated to 300°C at a heating rate of 0.1°C/min, kept at 300°C for 30 minutes for infusibility treatment, and then roughly raised to 700°C at a heating rate of 5°C/min. Light carbonization was performed using Subsequently, the material was continuously supplied to a furnace with a maximum temperature of 2500°C, and the temperature was increased at a rate of 12°C/min for carbonization. The obtained fibers had a diameter of approximately 32 μm.
Tensile strength is 275kgf/2, elastic modulus is 85,000
kgf/am2. When the cross section of the fiber was observed, as shown in FIG. 1, the cross-sectional structure was found to be radial in the surface layer and center and random in the middle, and no cracks or voids were observed.
なお2500℃で炭化する際に、昇温速度を36℃/分
に上げたところ強度が198kg f/+w 2まで低
下し、120℃/分としたところ85kg f/m 2
まで低下した。Furthermore, when carbonizing at 2500°C, the strength decreased to 198 kg f/+w2 when the heating rate was increased to 36°C/min, and 85 kg f/m2 when the temperature was increased to 120°C/min.
It dropped to .
実施例 2
実施例1の紡糸口金のかわりに、紡糸孔の最狭部の直径
0 . 1 mvm、紡糸孔の出口の直径0.25Il
lIの紡糸孔を100個有する口金を用い、同様のピッ
チを用いて、紡糸温度330℃でビッチa維を紡糸した
.ピッチの吐出jl LOgl分、巻取速度30m/分
であった●
紡出した繊維はポリアクリルアミド系のサイジング剤を
用いて集束し、Il1!4lI1mのテープ状の成形物
として巻き取った。巻取ったテープは実施例1と同様に
して不融化処理し、さらに最高温度2700℃で炭化処
理した。処理の間は繊維束が裏返ったり、削れたりしな
いようにした。Example 2 Instead of the spinneret of Example 1, the diameter of the narrowest part of the spinning hole was 0. 1 mvm, exit diameter of spinning hole 0.25Il
Bitch A fibers were spun at a spinning temperature of 330°C using a spinneret with 100 lI spinning holes and using the same pitch. The pitch discharge was jl LOgl, and the winding speed was 30 m/min.● The spun fibers were bundled using a polyacrylamide sizing agent and wound up as a tape-shaped molded product of Il1!4lI1m. The wound tape was treated to be infusible in the same manner as in Example 1, and then carbonized at a maximum temperature of 2700°C. During the treatment, the fiber bundles were prevented from turning over or being scraped.
炭化処理後、得られた繊維を分繊し、10木のマルチフ
ィラメントとして巻き取った。得られた繊維は直径約3
2μ国の単繊維約10本からなるマルチフィラメントで
優れた加工性を有しており、引張強度は295kg f
lys 2、弾性率は92.OOOkg f/IIIm
2であった●
実施例 3
実施例lの紡糸口金と同様に紡糸口金を用いて種々の軟
化点、光学異方性成分含有率を有する石油系ピッチを用
いて、紡糸冶度を軟化点+18℃で繊維直径を変えて溶
融紡糸を行った.得られたピッチ繊維を実施例lと同様
にして不融化および炭化を行った。用いたピッチの軟化
点、光学異方性成分含有率および得られた繊維性能を第
1表に示す.
第1表
ピッチの特性と繊維性能
ビッチNa
2 3 4
5
軟化点(”C)
272
28+ 290 340
358
光学異11性
f戊分a11′率(1)
8G
1ノ3
100
!00
+00
単以紺串lう1
直t1f(4m)22285598147引張強度
(kκf/s+m2)234 256 264
270 259側れ率
(IO3kgf/ms’> 81 82
84 91 87犬絶f’jl+ 4
コールタールピッチを幼処理してメソフェーズ小球体の
含イ1率を約2%とし、平均孔径1.27lmσ〕情結
?t金フィルダーにより繞過して、精製ピッチを得た。After the carbonization treatment, the obtained fibers were separated and wound up as a 10-wood multifilament. The resulting fiber has a diameter of approximately 3
It is a multi-filament made of approximately 10 single fibers from 2μ country and has excellent processability, and has a tensile strength of 295kg f.
lys 2, elastic modulus is 92. OOOkg f/IIIm
2. Example 3 Using a spinneret similar to the spinneret of Example 1, petroleum pitches having various softening points and optical anisotropic component contents were used, and the spinning metallurgy was adjusted to softening point +18. Melt spinning was performed at ℃ with different fiber diameters. The obtained pitch fibers were made infusible and carbonized in the same manner as in Example 1. Table 1 shows the softening point of the pitch used, the optically anisotropic component content, and the fiber performance obtained. Table 1 Pitch characteristics and fiber performance Bitch Na 2 3 4 5 Softening point ("C) 272 28+ 290 340 358 Optical anomaly 11 property f a11' ratio (1) 8G 1 no 3 100 !00 +00 Monochrome Skewer 1 Straight t1f (4m) 22285598147 Tensile strength (kκf/s+m2) 234 256 264
270 259 Side deviation rate (IO3kgf/ms'> 81 82
84 91 87 Inuzets f'jl+ 4 Coal tar pitch is treated to reduce the content of mesophase spherules to approximately 2%, and the average pore diameter is 1.27lmσ]Josei? Purified pitch was obtained by passing through a gold filter.
こσ)精製ピッチを+1!に熱処理して軟{ヒ点316
℃、)I(学異方性成分含有I90%、キノリン不溶分
45%と1ノたp、実施例lと同様ここして溶融紡糸を
tテい、−f融化およひ炭{ヒを行った。σ) Refining pitch +1! Heat treated to soften {hi point 316
°C, ) I (containing anisotropic components I 90%, quinoline insoluble content 45% and 1 tap), melt spinning was carried out in the same manner as in Example 1, -f melting and charcoal went.
得られた炭素繊維の直径は約34am.引張強度220
kgf/m南2、弾性率81ナ00kgf/聞2であっ
た。この(直は?,Y来の直径の大きい炭素繊維に比べ
て優わ5ているが、実施例lと比較すると弾性率、強度
ともやや見劣りがする.
[発明の効果]
本発明は構成単繊維直径の大きい炭稟繊碓に関する。本
発明は液晶ピッチ系の連続したモノフィラメント、ない
しはそれ(こ近い横成単j# filの本数の少ない炭
素繊維である。The diameter of the obtained carbon fiber was approximately 34 am. Tensile strength 220
kgf/m south 2, elastic modulus 81 na 00 kgf/m2. Although this straightness is superior to conventional carbon fibers with a large diameter, the elastic modulus and strength are slightly inferior when compared with Example 1. [Effects of the Invention] The present invention The present invention relates to a carbon fiber having a large fiber diameter.The present invention is a continuous monofilament of a liquid crystal pitch type, or a carbon fiber with a small number of monofilaments (nearly horizontal monofilament).
炭素繊維の構成単1&維直径の大ぎい炭素繊維は導電材
料(発熱体、電極材)電磁波シールト4.4t4、帯電
防正材料、mlvN而・1桑品貞材(槽過布、作業八、
防護服、保護具、保7昌材)等に佇用される.従来の炭
素繊維は横成畦繊紐が細く単繊紺木数が多いため毛羽が
立ち易い等の欠点があり、このような一般的な産t資材
の原科としては取υ扱いに不快である。Carbon fiber composition Single & large diameter carbon fiber is conductive material (heating element, electrode material) electromagnetic wave shield 4.4t4, anti-static material, mlvN material, 1 mulberry steel material (tank cloth, work 8,
It is used in protective clothing, protective equipment, protective materials), etc. Conventional carbon fiber has shortcomings such as easy fluffing due to its thin horizontal ridged fibers and large number of monofilament dark blue fibers. be.
構成単!fi碓の直径が大きい炭素繊維は繊&It ’
Ii合材料の強化材として、牌が強く、マトリックス成
分の流れによって変形し難い利点がある。特(こマトリ
ックス成分が金属のような表面張力が極めて?きい材t
4の場0・、1hる種の熱可塑性樹n}iのようにt4
14 .!/)て粘件の大きい相料の場合等であっても
、本発明σ)炭素繊紺はマトリックス成分の流れによー
)7−桟動じて偏在化する帥向が小さいので繊維複音I
1 v4の強{ヒ亭{と*i T kれた性能を示す。Simple composition! Fiusa's large diameter carbon fiber is fiber &It'
As a reinforcing material for the Ii composite material, the tiles are strong and have the advantage of being difficult to deform due to the flow of matrix components. This is a special material whose matrix component has an extremely high surface tension like that of a metal.
t4 as the thermoplastic tree n}i of 0·, 1h in the field 4
14. ! /) Even in the case of a phase material with a large viscosity, the carbon fiber navy blue of the present invention has a small tendency to become unevenly distributed due to the flow of matrix components.
1 shows performance superior to that of v4.
{h成単繊維本数の少ない炭素繊維、持Cこモノフィ→
メン1■f.tCVD/大笠によりホウ素、炭化ケイ素
、Qi ff: ’rイ泰等を彼渾イ゜る方法τ製造ざ
れるセラミ・リク繊紐等の芯I!−11とし′T.擾れ
たf1能を承ず。{Carbon fiber with a small number of h-formed single fibers, carbon fiber with a small number of monofilaments→
Men 1 f. tCVD/Okasa uses boron, silicon carbide, Qi ff: 'r-yield, etc. How to make the core of ceramics, ribbons, etc.! -11'T. We did not accept the f1 performance that had been disrupted.
4、M 面C7) vI屯Q AQ 明第1図は繊&I
t横断而の1,千顕徹鏡写真を表す。4, M side C7) vI tun Q AQ Ming figure 1 is fiber & I
1. Represents 1,000 microscopic photographs of t-crossings.
出仙人 株式会社 ベ !・ カSennin Co., Ltd. Be !・ mosquito
Claims (1)
系単繊維で構成される炭素繊維。 2、構成する単繊維が1本であることを特徴とする請求
項1記載の炭素繊維。 3、弾性率が80,000kgf/mm^2以上、引張
強度が200kgf/mm^2以上であることを特徴と
する請求項1または2記載の炭素繊維。[Scope of Claims] 1. A carbon fiber composed of continuous liquid crystal pitch single fibers having an average fiber diameter of 20 μm or more. 2. The carbon fiber according to claim 1, characterized in that the number of constituent single fibers is one. 3. The carbon fiber according to claim 1 or 2, having an elastic modulus of 80,000 kgf/mm^2 or more and a tensile strength of 200 kgf/mm^2 or more.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1299226A JP2711918B2 (en) | 1989-11-17 | 1989-11-17 | Pitch-based carbon fiber |
DE1990625376 DE69025376T2 (en) | 1989-11-17 | 1990-11-08 | Pitch-based carbon fibers |
EP19900121410 EP0428944B1 (en) | 1989-11-17 | 1990-11-08 | Pitch based carbon fibers |
US08/080,013 US5407614A (en) | 1989-11-17 | 1993-04-20 | Process of making pitch-based carbon fibers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1299226A JP2711918B2 (en) | 1989-11-17 | 1989-11-17 | Pitch-based carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03161523A true JPH03161523A (en) | 1991-07-11 |
JP2711918B2 JP2711918B2 (en) | 1998-02-10 |
Family
ID=17869780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1299226A Expired - Lifetime JP2711918B2 (en) | 1989-11-17 | 1989-11-17 | Pitch-based carbon fiber |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0428944B1 (en) |
JP (1) | JP2711918B2 (en) |
DE (1) | DE69025376T2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS541810A (en) * | 1977-06-07 | 1979-01-09 | Matsushita Electric Ind Co Ltd | Electric motor |
JPS61275426A (en) * | 1985-05-30 | 1986-12-05 | Mitsui Cokes Kogyo Kk | Pitch-based carbon fiber and production thereof |
JPS63315614A (en) * | 1987-06-19 | 1988-12-23 | Mitsubishi Oil Co Ltd | Production of highly electrically conductive graphite fiber |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4005183A (en) * | 1972-03-30 | 1977-01-25 | Union Carbide Corporation | High modulus, high strength carbon fibers produced from mesophase pitch |
US4915926A (en) * | 1988-02-22 | 1990-04-10 | E. I. Dupont De Nemours And Company | Balanced ultra-high modulus and high tensile strength carbon fibers |
-
1989
- 1989-11-17 JP JP1299226A patent/JP2711918B2/en not_active Expired - Lifetime
-
1990
- 1990-11-08 EP EP19900121410 patent/EP0428944B1/en not_active Expired - Lifetime
- 1990-11-08 DE DE1990625376 patent/DE69025376T2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS541810A (en) * | 1977-06-07 | 1979-01-09 | Matsushita Electric Ind Co Ltd | Electric motor |
JPS61275426A (en) * | 1985-05-30 | 1986-12-05 | Mitsui Cokes Kogyo Kk | Pitch-based carbon fiber and production thereof |
JPS63315614A (en) * | 1987-06-19 | 1988-12-23 | Mitsubishi Oil Co Ltd | Production of highly electrically conductive graphite fiber |
Also Published As
Publication number | Publication date |
---|---|
DE69025376T2 (en) | 1996-06-20 |
EP0428944A3 (en) | 1991-08-28 |
EP0428944A2 (en) | 1991-05-29 |
EP0428944B1 (en) | 1996-02-14 |
DE69025376D1 (en) | 1996-03-28 |
JP2711918B2 (en) | 1998-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2648711B2 (en) | Manufacturing method of pitch-based carbon fiber three-dimensional fabric | |
JPH026624A (en) | Carbon fiber well-balanced in ultrahigh modulus and high tensile force | |
JPS62117820A (en) | Production of carbon fiber chopped strand | |
JPS60173121A (en) | Production of carbon yarn and graphite yarn | |
JPH03161523A (en) | Pitch-based carbon fiber | |
US5407614A (en) | Process of making pitch-based carbon fibers | |
CA1311883C (en) | Pitch based carbon fibers and their production method | |
JPS58220821A (en) | Acrylic carbon fiber bundle with high strength and elongation and its production | |
JP3644271B2 (en) | Method for producing pitch-based carbon fiber | |
CN111088535B (en) | Oiling method of low-silicon polyacrylonitrile protofilament | |
JP2654613B2 (en) | Method for producing pitch-based carbon fiber | |
JPS59168115A (en) | Melt spinning for pitch | |
JPS6257932A (en) | Production of carbon fiber and graphite fiber | |
JPS62133123A (en) | Production of carbon fiber and graphite fiber | |
JPH02133618A (en) | Production of pitch-based carbon yarn and winder for pitch yarn | |
JPH043452B2 (en) | ||
JPS62191518A (en) | Production of carbon fiber and graphite fiber | |
JPS62184125A (en) | Production of carbon yarn and graphite yarn | |
JPS62191515A (en) | Production of carbon fiber and graphite fiber | |
JPH01229820A (en) | Pitch based carbon fiber bundle of less than 1000 filaments and production thereof | |
JPH06166912A (en) | Production of carbon fiber | |
JPS59150115A (en) | Production of carbon fiber | |
JPH0726424A (en) | Production of pitch-based carbon fiber | |
JPS59168113A (en) | Melt-spinning of multifilaments for carbon fiber | |
JPS63175123A (en) | Pitch fiber |